Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
DualTVDD.jl
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Stephan Hilb
DualTVDD.jl
Commits
c8c50744
Commit
c8c50744
authored
4 years ago
by
Stephan Hilb
Browse files
Options
Downloads
Patches
Plain Diff
revert to global dd
parent
18f638d7
No related branches found
No related tags found
No related merge requests found
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
src/DualTVDD.jl
+46
-26
46 additions, 26 deletions
src/DualTVDD.jl
src/chambolle.jl
+1
-1
1 addition, 1 deletion
src/chambolle.jl
src/dualtvdd.jl
+32
-63
32 additions, 63 deletions
src/dualtvdd.jl
src/types.jl
+1
-1
1 addition, 1 deletion
src/types.jl
with
80 additions
and
91 deletions
src/DualTVDD.jl
+
46
−
26
View file @
c8c50744
...
@@ -11,16 +11,22 @@ include("projgrad.jl")
...
@@ -11,16 +11,22 @@ include("projgrad.jl")
using
Makie
:
heatmap
using
Makie
:
heatmap
function
run
()
function
run
()
g
=
ones
(
20
,
20
)
#g = [0. 2; 1 0.]
g
=
rand
(
10
,
10
)
#g[4:17,4:17] .= 1
#g[4:17,4:17] .= 1
#g[:size(g, 1)÷2,:] .= 1
#g[:size(g, 1)÷2,:] .= 1
#g = [0. 2; 1 0.]
#g = [0. 2; 1 0.]
B
=
diagm
(
fill
(
100
,
length
(
g
)))
display
(
g
)
α
=
0.1
B
=
0.1
*
rand
(
length
(
g
),
length
(
g
))
B
.+=
diagm
(
ones
(
length
(
g
)))
α
=
0.025
display
(
norm
(
B
))
md
=
DualTVDD
.
OpROFModel
(
g
,
B
,
α
)
md
=
DualTVDD
.
OpROFModel
(
g
,
B
,
α
)
alg
=
DualTVDD
.
ChambolleAlgorithm
()
ctx
=
DualTVDD
.
init
(
md
,
DualTVDD
.
ChambolleAlgorithm
()
)
ctx
=
DualTVDD
.
init
(
md
,
alg
)
ctx
2
=
DualTVDD
.
init
(
md
,
DualTVDD
.
ProjGradAlgorithm
(
λ
=
1
/
sqrt
(
8
)
/
norm
(
B
))
)
#scene = vbox(
#scene = vbox(
# heatmap(ctx.s, colorrange=(0,1), colormap=:gray, scale_plot=false, show_axis=false),
# heatmap(ctx.s, colorrange=(0,1), colormap=:gray, scale_plot=false, show_axis=false),
...
@@ -31,41 +37,51 @@ function run()
...
@@ -31,41 +37,51 @@ function run()
#hm = last(scene)
#hm = last(scene)
for
i
in
1
:
10000
for
i
in
1
:
10000
step!
(
ctx
)
step!
(
ctx
)
step!
(
ctx2
)
#hm[1] = ctx.s
#hm[1] = ctx.s
#yield()
#yield()
#sleep(0.2)
#sleep(0.2)
end
end
display
(
ctx
.
p
)
display
(
copy
(
ctx
.
p
))
display
(
recover_u!
(
ctx
))
display
(
copy
(
recover_u!
(
ctx
)))
println
(
energy
(
ctx
))
println
()
ctx
display
(
copy
(
ctx2
.
p
))
display
(
copy
(
recover_u!
(
ctx2
)))
println
(
energy
(
ctx2
))
ctx
,
ctx2
#hm[1] = ctx.s
#hm[1] = ctx.s
#yield()
#yield()
end
end
function
rundd
()
function
rundd
()
β
=
0
β
=
0
f
=
zeros
(
2
,
2
)
f
=
zeros
(
4
,
4
)
f
[
1
,
:
]
.=
1
f
[
1
,
1
]
=
1
#g = [0. 2; 1 0.]
#f = [0. 2; 1 0.]
#A = diagm(vcat(fill(1, length(f)÷2), fill(1/10, length(f)÷2)))
#A = diagm(vcat(fill(1, length(f)÷2), fill(1/10, length(f)÷2)))
A
=
rand
(
length
(
f
),
length
(
f
))
#
A = rand(length(f), length(f))
display
(
A
)
A
=
0.
*
rand
(
length
(
f
),
length
(
f
)
)
println
(
cond
(
A
))
A
.+=
diagm
(
ones
(
length
(
f
)
))
display
(
eigen
(
A
))
#
A = diagm(fill(1/2, length(f))
)
#
display(A
)
B
=
inv
(
A
'
*
A
+
β
*
I
)
B
=
inv
(
A
'
*
A
+
β
*
I
)
println
(
norm
(
sqrt
(
B
)
))
println
(
norm
(
A
))
#println(norm(sqrt(B)))
#println(norm(sqrt(B)))
g
=
similar
(
f
)
g
=
similar
(
f
)
vec
(
g
)
.=
A
'
*
vec
(
f
)
vec
(
g
)
.=
A
'
*
vec
(
f
)
α
=
.
025
α
=
1
/
4
md
=
DualTVDD
.
DualTVDDModel
(
f
,
A
,
α
,
0.
,
0.
)
md
=
DualTVDD
.
DualTVDDModel
(
f
,
A
,
α
,
0.
,
0.
)
alg
=
DualTVDD
.
DualTVDDAlgorithm
(
M
=
(
1
,
1
),
overlap
=
(
1
,
1
),
σ
=
1
)
alg
=
DualTVDD
.
DualTVDDAlgorithm
(
M
=
(
2
,
2
),
overlap
=
(
2
,
2
),
σ
=
1
)
ctx
=
DualTVDD
.
init
(
md
,
alg
)
ctx
=
DualTVDD
.
init
(
md
,
alg
)
md2
=
DualTVDD
.
OpROFModel
(
g
,
B
,
α
)
md2
=
DualTVDD
.
OpROFModel
(
g
,
B
,
α
)
...
@@ -73,11 +89,13 @@ function rundd()
...
@@ -73,11 +89,13 @@ function rundd()
ctx2
=
DualTVDD
.
init
(
md2
,
alg2
)
ctx2
=
DualTVDD
.
init
(
md2
,
alg2
)
for
i
in
1
:
1
for
i
in
1
:
1
000
step!
(
ctx
)
step!
(
ctx
)
#println(energy(ctx))
end
end
for
i
in
1
:
10000
00
for
i
in
1
:
10000
step!
(
ctx2
)
step!
(
ctx2
)
#println(energy(ctx2))
end
end
#scene = heatmap(ctx.s,
#scene = heatmap(ctx.s,
...
@@ -95,11 +113,11 @@ function rundd()
...
@@ -95,11 +113,11 @@ function rundd()
#hm[1] = ctx.s
#hm[1] = ctx.s
#yield()
#yield()
println
(
"p result"
)
println
(
"
\n
p result"
)
display
(
ctx
.
p
)
display
(
ctx
.
p
)
display
(
ctx2
.
p
)
display
(
ctx2
.
p
)
println
(
"u result"
)
println
(
"
\n
u result"
)
display
(
recover_u!
(
ctx
))
display
(
recover_u!
(
ctx
))
display
(
recover_u!
(
ctx2
))
display
(
recover_u!
(
ctx2
))
...
@@ -111,7 +129,7 @@ end
...
@@ -111,7 +129,7 @@ end
function
run3
()
function
run3
()
f
=
rand
(
20
,
20
)
f
=
rand
(
20
,
20
)
A
=
rand
(
length
(
f
),
length
(
f
))
A
=
0.1
*
rand
(
length
(
f
),
length
(
f
))
A
.+=
diagm
(
ones
(
length
(
f
)))
A
.+=
diagm
(
ones
(
length
(
f
)))
g
=
reshape
(
A
'
*
vec
(
f
),
size
(
f
))
g
=
reshape
(
A
'
*
vec
(
f
),
size
(
f
))
...
@@ -160,9 +178,10 @@ function energy(ctx::Union{DualTVDDContext,ProjGradContext})
...
@@ -160,9 +178,10 @@ function energy(ctx::Union{DualTVDDContext,ProjGradContext})
# v = div(p) + A'*f
# v = div(p) + A'*f
map!
(
kΛ
,
v
,
extend
(
ctx
.
p
,
StaticKernels
.
ExtensionNothing
()))
map!
(
kΛ
,
v
,
extend
(
ctx
.
p
,
StaticKernels
.
ExtensionNothing
()))
v
.+=
ctx
.
g
v
.+=
ctx
.
g
#display(v)
# |v|_B^2 / 2
u
=
ctx
.
B
*
vec
(
v
)
u
=
ctx
.
B
*
vec
(
v
)
return
sum
(
u
.*
vec
(
v
))
/
2
return
sum
(
u
.*
vec
(
v
))
/
2
end
end
...
@@ -177,9 +196,10 @@ function energy(ctx::ChambolleContext)
...
@@ -177,9 +196,10 @@ function energy(ctx::ChambolleContext)
# v = div(p) + g
# v = div(p) + g
map!
(
kΛ
,
v
,
extend
(
ctx
.
p
,
StaticKernels
.
ExtensionNothing
()))
map!
(
kΛ
,
v
,
extend
(
ctx
.
p
,
StaticKernels
.
ExtensionNothing
()))
v
.+=
ctx
.
model
.
g
v
.+=
ctx
.
model
.
g
#display(v)
# |v|_B^2 / 2
u
=
ctx
.
model
.
B
*
vec
(
v
)
u
=
ctx
.
model
.
B
*
vec
(
v
)
return
sum
(
u
.*
vec
(
v
))
/
2
return
sum
(
u
.*
vec
(
v
))
/
2
end
end
...
...
This diff is collapsed.
Click to expand it.
src/chambolle.jl
+
1
−
1
View file @
c8c50744
...
@@ -16,7 +16,7 @@ using LinearAlgebra
...
@@ -16,7 +16,7 @@ using LinearAlgebra
struct
ChambolleAlgorithm
<:
Algorithm
struct
ChambolleAlgorithm
<:
Algorithm
"fixed point inertia parameter"
"fixed point inertia parameter"
τ
::
Float64
τ
::
Float64
function
ChambolleAlgorithm
(;
τ
=
1
/
4
)
function
ChambolleAlgorithm
(;
τ
=
1
/
8
)
return
new
(
τ
)
return
new
(
τ
)
end
end
end
end
...
...
This diff is collapsed.
Click to expand it.
src/dualtvdd.jl
+
32
−
63
View file @
c8c50744
...
@@ -34,11 +34,11 @@ function init(md::DualTVDDModel, alg::DualTVDDAlgorithm)
...
@@ -34,11 +34,11 @@ function init(md::DualTVDDModel, alg::DualTVDDAlgorithm)
ax
=
axes
(
md
.
f
)
ax
=
axes
(
md
.
f
)
# subdomain axes
# subdomain axes
subax
=
subaxes
(
md
.
f
,
alg
.
M
,
alg
.
overlap
)
subax
=
subaxes
(
size
(
md
.
f
)
,
alg
.
M
,
alg
.
overlap
)
# preallocated data for subproblems
# preallocated data for subproblems
subg
=
[
Array
{
Float64
,
d
}(
undef
,
length
.
(
subax
[
i
]
))
for
i
in
CartesianIndices
(
subax
)]
subg
=
[
Array
{
Float64
,
d
}(
undef
,
length
.
(
ax
))
for
i
in
CartesianIndices
(
subax
)]
# locally dependent tv parameter
# locally dependent tv parameter
subα
=
[
md
.
α
.*
theta
.
(
Ref
(
ax
),
Ref
(
subax
[
i
]),
Ref
(
alg
.
overlap
),
CartesianIndices
(
subax
[
i
]
))
subα
=
[
md
.
α
.*
theta
.
(
Ref
(
ax
),
Ref
(
subax
[
i
]),
Ref
(
alg
.
overlap
),
CartesianIndices
(
ax
))
for
i
in
CartesianIndices
(
subax
)]
for
i
in
CartesianIndices
(
subax
)]
# this is the global g, the local gs are getting initialized in step!()
# this is the global g, the local gs are getting initialized in step!()
...
@@ -53,9 +53,8 @@ function init(md::DualTVDDModel, alg::DualTVDDAlgorithm)
...
@@ -53,9 +53,8 @@ function init(md::DualTVDDModel, alg::DualTVDDAlgorithm)
B
=
diagm
(
ones
(
length
(
md
.
f
)))
+
md
.
β
*
I
B
=
diagm
(
ones
(
length
(
md
.
f
)))
+
md
.
β
*
I
# create subproblem contexts
# create subproblem contexts
# TODO: extraction of B subparts only makes sense for blockdiagonal B (i.e. A too)
li
=
LinearIndices
(
size
(
md
.
f
))
li
=
LinearIndices
(
size
(
md
.
f
))
submds
=
[
OpROFModel
(
subg
[
i
],
B
[
vec
(
li
[
subax
[
i
]
...
]),
vec
(
li
[
subax
[
i
]
...
])]
,
subα
[
i
])
submds
=
[
OpROFModel
(
subg
[
i
],
B
,
subα
[
i
])
for
i
in
CartesianIndices
(
subax
)]
for
i
in
CartesianIndices
(
subax
)]
subalg
=
ChambolleAlgorithm
()
subalg
=
ChambolleAlgorithm
()
subctx
=
[
init
(
submds
[
i
],
subalg
)
for
i
in
CartesianIndices
(
subax
)]
subctx
=
[
init
(
submds
[
i
],
subalg
)
for
i
in
CartesianIndices
(
subax
)]
...
@@ -67,62 +66,32 @@ function init(md::DualTVDDModel, alg::DualTVDDAlgorithm)
...
@@ -67,62 +66,32 @@ function init(md::DualTVDDModel, alg::DualTVDDAlgorithm)
end
end
function
step!
(
ctx
::
DualTVDDContext
)
function
step!
(
ctx
::
DualTVDDContext
)
σ
=
ctx
.
algorithm
.
σ
d
=
ndims
(
ctx
.
p
)
d
=
ndims
(
ctx
.
p
)
ax
=
axes
(
ctx
.
p
)
ax
=
axes
(
ctx
.
p
)
overlap
=
ctx
.
algorithm
.
overlap
overlap
=
ctx
.
algorithm
.
overlap
li
=
LinearIndices
(
size
(
ctx
.
model
.
f
))
@inline
kfΛ
(
w
)
=
@inbounds
-
divergence_global
(
w
)
@inline
kfΛ
(
w
)
=
@inbounds
divergence_global
(
w
)
kΛ
=
Kernel
{
ntuple
(
_
->-
1
:
1
,
d
)}(
kfΛ
)
kΛ
=
Kernel
{
ntuple
(
_
->-
1
:
1
,
d
)}(
kfΛ
)
λ
=
2
*
norm
(
sqrt
(
ctx
.
B
))
^
2
# TODO: algorithm parameter
# call run! on each cell (this can be threaded)
# call run! on each cell (this can be threaded)
for
i
in
eachindex
(
ctx
.
subctx
)
for
(
i
,
sax
)
in
pairs
(
ctx
.
subax
)
sax
=
ctx
.
subax
[
i
]
sg
=
ctx
.
subg
[
i
]
# julia-bug workaround
ci
=
CartesianIndices
(
sax
)
# TODO: make p computation local!
# TODO: make p computation local!
# g_i = (A*f - Λ(1-theta_i)p^n)|_{\Omega_i}
ctx
.
ptmp
.=
(
1
.-
theta
.
(
Ref
(
ax
),
Ref
(
sax
),
Ref
(
overlap
),
CartesianIndices
(
ctx
.
p
)))
.*
ctx
.
p
# subctx[i].p is used as a buffer
map!
(
kΛ
,
sg
,
ctx
.
ptmp
)
sg
.+=
ctx
.
g
ctx
.
ptmp
.=
.-
(
1
.-
theta
.
(
Ref
(
ax
),
Ref
(
sax
),
Ref
(
overlap
),
CartesianIndices
(
ctx
.
p
)))
.*
ctx
.
p
#tmp3 = .-(1 .- theta.(Ref(ax), Ref(sax), Ref(overlap), CartesianIndices(ctx.p)))
#ctx.subctx[i].p .= .-(1 .- theta.(Ref(ax), Ref(sax), Ref(overlap), ci)) .* ctx.p[ctx.subax[i]...]
ctx
.
subg
[
i
]
.=
map
(
kΛ
,
ctx
.
ptmp
)[
sax
...
]
#map!(kΛ, ctx.subg[i], ctx.subctx[i].p)
ctx
.
subg
[
i
]
.+=
ctx
.
g
[
sax
...
]
# set sensible starting value
reset!
(
ctx
.
subctx
[
i
])
# precomputed: B/λ * (A'f - Λ(1-θ_i)p^n)
gloc
=
copy
(
ctx
.
subg
[
i
])
# v_0
ctx
.
ptmp
.=
theta
.
(
Ref
(
ax
),
Ref
(
sax
),
Ref
(
overlap
),
CartesianIndices
(
ctx
.
p
))
.*
ctx
.
p
ctx
.
subctx
[
i
]
.
p
.=
ctx
.
ptmp
[
sax
...
]
# subcontext B is identity!
for
j
in
1
:
1000
subIB
=
I
-
ctx
.
B
[
vec
(
li
[
sax
...
]),
vec
(
li
[
sax
...
])]
./
λ
step!
(
ctx
.
subctx
[
i
])
subB
=
ctx
.
B
[
vec
(
li
[
sax
...
]),
vec
(
li
[
sax
...
])]
./
λ
for
j
in
1
:
10000
subΛp
=
map
(
kΛ
,
ctx
.
subctx
[
i
]
.
p
)
vec
(
ctx
.
subg
[
i
])
.=
subIB
*
vec
(
subΛp
)
.+
subB
*
vec
(
gloc
)
for
k
in
1
:
1000
step!
(
ctx
.
subctx
[
i
])
end
end
end
end
end
# aggregate (not thread-safe!)
# aggregate (not thread-safe!)
σ
=
ctx
.
algorithm
.
σ
ctx
.
p
.*=
1
-
σ
ctx
.
p
.*=
1
-
σ
for
i
in
CartesianIndice
s
(
ctx
.
subax
)
for
(
i
,
sax
)
in
pair
s
(
ctx
.
subax
)
ctx
.
p
[
ctx
.
subax
[
i
]
...
]
.+=
σ
.*
ctx
.
subctx
[
i
]
.
p
ctx
.
p
.+=
σ
.*
ctx
.
subctx
[
i
]
.
p
end
end
end
end
...
@@ -167,8 +136,8 @@ This assumes that subdomains have size at least 2 .* overlap.
...
@@ -167,8 +136,8 @@ This assumes that subdomains have size at least 2 .* overlap.
theta
(
ax
,
sax
,
overlap
,
i
::
CartesianIndex
)
=
prod
(
theta
.
(
ax
,
sax
,
overlap
,
Tuple
(
i
)))
theta
(
ax
,
sax
,
overlap
,
i
::
CartesianIndex
)
=
prod
(
theta
.
(
ax
,
sax
,
overlap
,
Tuple
(
i
)))
theta
(
ax
,
sax
,
overlap
::
Int
,
i
::
Int
)
=
theta
(
ax
,
sax
,
overlap
::
Int
,
i
::
Int
)
=
max
(
0.
,
min
(
1.
,
max
(
0.
,
min
(
1.
,
first
(
ax
)
==
first
(
sax
)
&&
i
<
first
(
ax
)
+
overlap
?
1.
:
(
i
-
first
(
sax
))
/
overlap
,
first
(
ax
)
==
first
(
sax
)
&&
i
<
first
(
ax
)
+
overlap
?
1.
:
(
i
-
first
(
sax
)
+
1
)
/
(
overlap
+
1
)
,
last
(
ax
)
==
last
(
sax
)
&&
i
>
last
(
ax
)
-
overlap
?
1.
:
(
last
(
sax
)
-
i
)
/
overlap
))
last
(
ax
)
==
last
(
sax
)
&&
i
>
last
(
ax
)
-
overlap
?
1.
:
(
last
(
sax
)
-
i
+
1
)
/
(
overlap
+
1
)
))
"""
"""
...
@@ -177,21 +146,21 @@ theta(ax, sax, overlap::Int, i::Int) =
...
@@ -177,21 +146,21 @@ theta(ax, sax, overlap::Int, i::Int) =
Determine axes for all subdomains, given per dimension number of domains
Determine axes for all subdomains, given per dimension number of domains
`pnum` and overlap `overlap`
`pnum` and overlap `overlap`
"""
"""
function
subaxes
(
domain
,
pnum
,
overlap
)
function
subaxes
(
sizes
,
pnum
,
overlap
)
overlap
=
1
.+
overlap
d
=
Val
(
length
(
sizes
))
d
=
ndims
(
domain
)
ax
=
partition
.
(
sizes
,
pnum
,
overlap
)
tsize
=
size
(
domain
)
.+
(
pnum
.-
1
)
.*
overlap
return
[
ntuple
(
i
->
ax
[
i
][
I
[
i
]],
d
)
for
I
in
CartesianIndices
(
pnum
)]
end
psize
=
tsize
.÷
pnum
osize
=
tsize
.-
pnum
.*
psize
overhang
(
I
,
j
)
=
I
[
j
]
==
pnum
[
j
]
?
osize
[
j
]
:
0
indices
=
Array
{
NTuple
{
d
,
UnitRange
{
Int
}},
d
}(
undef
,
pnum
)
function
partition
(
n
,
k
,
o
)
for
I
in
CartesianIndices
(
pnum
)
part
=
UnitRange
[]
indices
[
I
]
=
ntuple
(
j
->
((
I
[
j
]
-
1
)
*
psize
[
j
]
-
(
I
[
j
]
-
1
)
*
overlap
[
j
]
+
1
)
:
i
=
1
(
I
[
j
]
*
psize
[
j
]
-
(
I
[
j
]
-
1
)
*
overlap
[
j
]
+
overhang
(
I
,
j
)),
d
)
while
k
>
1
s
=
(
n
+
(
k
-
1
)
*
o
)
÷
k
push!
(
part
,
i
:
i
+
s
-
1
)
i
=
i
+
s
-
o
n
-=
s
-
o
k
-=
1
end
end
@assert
all
(
length
.
(
sax
)
>=
1
.*
overlap
for
sax
in
indices
)
push!
(
part
,
i
:
i
+
n
-
1
)
return
indices
end
end
This diff is collapsed.
Click to expand it.
src/types.jl
+
1
−
1
View file @
c8c50744
...
@@ -29,7 +29,7 @@ struct DualTVDDModel{U,VV} <: Model
...
@@ -29,7 +29,7 @@ struct DualTVDDModel{U,VV} <: Model
γ
::
Float64
γ
::
Float64
end
end
"min_p 1/2 * |div(p) - g|_B^2 + χ_{|p|<=λ}"
"min_p 1/2 * |
-
div(p) - g|_B^2 + χ_{|p|<=λ}"
struct
OpROFModel
{
U
,
VV
,
Λ
}
<:
Model
struct
OpROFModel
{
U
,
VV
,
Λ
}
<:
Model
"given data"
"given data"
g
::
U
g
::
U
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment