Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
DualTVDD.jl
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Stephan Hilb
DualTVDD.jl
Commits
c8c50744
Commit
c8c50744
authored
4 years ago
by
Stephan Hilb
Browse files
Options
Downloads
Patches
Plain Diff
revert to global dd
parent
18f638d7
No related branches found
No related tags found
No related merge requests found
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
src/DualTVDD.jl
+46
-26
46 additions, 26 deletions
src/DualTVDD.jl
src/chambolle.jl
+1
-1
1 addition, 1 deletion
src/chambolle.jl
src/dualtvdd.jl
+32
-63
32 additions, 63 deletions
src/dualtvdd.jl
src/types.jl
+1
-1
1 addition, 1 deletion
src/types.jl
with
80 additions
and
91 deletions
src/DualTVDD.jl
+
46
−
26
View file @
c8c50744
...
...
@@ -11,16 +11,22 @@ include("projgrad.jl")
using
Makie
:
heatmap
function
run
()
g
=
ones
(
20
,
20
)
#g = [0. 2; 1 0.]
g
=
rand
(
10
,
10
)
#g[4:17,4:17] .= 1
#g[:size(g, 1)÷2,:] .= 1
#g = [0. 2; 1 0.]
B
=
diagm
(
fill
(
100
,
length
(
g
)))
α
=
0.1
display
(
g
)
B
=
0.1
*
rand
(
length
(
g
),
length
(
g
))
B
.+=
diagm
(
ones
(
length
(
g
)))
α
=
0.025
display
(
norm
(
B
))
md
=
DualTVDD
.
OpROFModel
(
g
,
B
,
α
)
alg
=
DualTVDD
.
ChambolleAlgorithm
()
ctx
=
DualTVDD
.
init
(
md
,
alg
)
ctx
=
DualTVDD
.
init
(
md
,
DualTVDD
.
ChambolleAlgorithm
()
)
ctx
2
=
DualTVDD
.
init
(
md
,
DualTVDD
.
ProjGradAlgorithm
(
λ
=
1
/
sqrt
(
8
)
/
norm
(
B
))
)
#scene = vbox(
# heatmap(ctx.s, colorrange=(0,1), colormap=:gray, scale_plot=false, show_axis=false),
...
...
@@ -31,41 +37,51 @@ function run()
#hm = last(scene)
for
i
in
1
:
10000
step!
(
ctx
)
step!
(
ctx2
)
#hm[1] = ctx.s
#yield()
#sleep(0.2)
end
display
(
ctx
.
p
)
display
(
recover_u!
(
ctx
))
display
(
copy
(
ctx
.
p
))
display
(
copy
(
recover_u!
(
ctx
)))
println
(
energy
(
ctx
))
println
()
ctx
display
(
copy
(
ctx2
.
p
))
display
(
copy
(
recover_u!
(
ctx2
)))
println
(
energy
(
ctx2
))
ctx
,
ctx2
#hm[1] = ctx.s
#yield()
end
function
rundd
()
β
=
0
f
=
zeros
(
2
,
2
)
f
[
1
,
:
]
.=
1
#g = [0. 2; 1 0.]
f
=
zeros
(
4
,
4
)
f
[
1
,
1
]
=
1
#f = [0. 2; 1 0.]
#A = diagm(vcat(fill(1, length(f)÷2), fill(1/10, length(f)÷2)))
A
=
rand
(
length
(
f
),
length
(
f
))
display
(
A
)
println
(
cond
(
A
))
display
(
eigen
(
A
))
#
A = diagm(fill(1/2, length(f))
)
#
A = rand(length(f), length(f))
A
=
0.
*
rand
(
length
(
f
),
length
(
f
)
)
A
.+=
diagm
(
ones
(
length
(
f
)
))
#
display(A
)
B
=
inv
(
A
'
*
A
+
β
*
I
)
println
(
norm
(
sqrt
(
B
)
))
println
(
norm
(
A
))
#println(norm(sqrt(B)))
g
=
similar
(
f
)
vec
(
g
)
.=
A
'
*
vec
(
f
)
α
=
.
025
α
=
1
/
4
md
=
DualTVDD
.
DualTVDDModel
(
f
,
A
,
α
,
0.
,
0.
)
alg
=
DualTVDD
.
DualTVDDAlgorithm
(
M
=
(
1
,
1
),
overlap
=
(
1
,
1
),
σ
=
1
)
alg
=
DualTVDD
.
DualTVDDAlgorithm
(
M
=
(
2
,
2
),
overlap
=
(
2
,
2
),
σ
=
1
)
ctx
=
DualTVDD
.
init
(
md
,
alg
)
md2
=
DualTVDD
.
OpROFModel
(
g
,
B
,
α
)
...
...
@@ -73,11 +89,13 @@ function rundd()
ctx2
=
DualTVDD
.
init
(
md2
,
alg2
)
for
i
in
1
:
1
for
i
in
1
:
1
000
step!
(
ctx
)
#println(energy(ctx))
end
for
i
in
1
:
10000
00
for
i
in
1
:
10000
step!
(
ctx2
)
#println(energy(ctx2))
end
#scene = heatmap(ctx.s,
...
...
@@ -95,11 +113,11 @@ function rundd()
#hm[1] = ctx.s
#yield()
println
(
"p result"
)
println
(
"
\n
p result"
)
display
(
ctx
.
p
)
display
(
ctx2
.
p
)
println
(
"u result"
)
println
(
"
\n
u result"
)
display
(
recover_u!
(
ctx
))
display
(
recover_u!
(
ctx2
))
...
...
@@ -111,7 +129,7 @@ end
function
run3
()
f
=
rand
(
20
,
20
)
A
=
rand
(
length
(
f
),
length
(
f
))
A
=
0.1
*
rand
(
length
(
f
),
length
(
f
))
A
.+=
diagm
(
ones
(
length
(
f
)))
g
=
reshape
(
A
'
*
vec
(
f
),
size
(
f
))
...
...
@@ -160,9 +178,10 @@ function energy(ctx::Union{DualTVDDContext,ProjGradContext})
# v = div(p) + A'*f
map!
(
kΛ
,
v
,
extend
(
ctx
.
p
,
StaticKernels
.
ExtensionNothing
()))
v
.+=
ctx
.
g
#display(v)
# |v|_B^2 / 2
u
=
ctx
.
B
*
vec
(
v
)
return
sum
(
u
.*
vec
(
v
))
/
2
end
...
...
@@ -177,9 +196,10 @@ function energy(ctx::ChambolleContext)
# v = div(p) + g
map!
(
kΛ
,
v
,
extend
(
ctx
.
p
,
StaticKernels
.
ExtensionNothing
()))
v
.+=
ctx
.
model
.
g
#display(v)
# |v|_B^2 / 2
u
=
ctx
.
model
.
B
*
vec
(
v
)
return
sum
(
u
.*
vec
(
v
))
/
2
end
...
...
This diff is collapsed.
Click to expand it.
src/chambolle.jl
+
1
−
1
View file @
c8c50744
...
...
@@ -16,7 +16,7 @@ using LinearAlgebra
struct
ChambolleAlgorithm
<:
Algorithm
"fixed point inertia parameter"
τ
::
Float64
function
ChambolleAlgorithm
(;
τ
=
1
/
4
)
function
ChambolleAlgorithm
(;
τ
=
1
/
8
)
return
new
(
τ
)
end
end
...
...
This diff is collapsed.
Click to expand it.
src/dualtvdd.jl
+
32
−
63
View file @
c8c50744
...
...
@@ -34,11 +34,11 @@ function init(md::DualTVDDModel, alg::DualTVDDAlgorithm)
ax
=
axes
(
md
.
f
)
# subdomain axes
subax
=
subaxes
(
md
.
f
,
alg
.
M
,
alg
.
overlap
)
subax
=
subaxes
(
size
(
md
.
f
)
,
alg
.
M
,
alg
.
overlap
)
# preallocated data for subproblems
subg
=
[
Array
{
Float64
,
d
}(
undef
,
length
.
(
subax
[
i
]
))
for
i
in
CartesianIndices
(
subax
)]
subg
=
[
Array
{
Float64
,
d
}(
undef
,
length
.
(
ax
))
for
i
in
CartesianIndices
(
subax
)]
# locally dependent tv parameter
subα
=
[
md
.
α
.*
theta
.
(
Ref
(
ax
),
Ref
(
subax
[
i
]),
Ref
(
alg
.
overlap
),
CartesianIndices
(
subax
[
i
]
))
subα
=
[
md
.
α
.*
theta
.
(
Ref
(
ax
),
Ref
(
subax
[
i
]),
Ref
(
alg
.
overlap
),
CartesianIndices
(
ax
))
for
i
in
CartesianIndices
(
subax
)]
# this is the global g, the local gs are getting initialized in step!()
...
...
@@ -53,9 +53,8 @@ function init(md::DualTVDDModel, alg::DualTVDDAlgorithm)
B
=
diagm
(
ones
(
length
(
md
.
f
)))
+
md
.
β
*
I
# create subproblem contexts
# TODO: extraction of B subparts only makes sense for blockdiagonal B (i.e. A too)
li
=
LinearIndices
(
size
(
md
.
f
))
submds
=
[
OpROFModel
(
subg
[
i
],
B
[
vec
(
li
[
subax
[
i
]
...
]),
vec
(
li
[
subax
[
i
]
...
])]
,
subα
[
i
])
submds
=
[
OpROFModel
(
subg
[
i
],
B
,
subα
[
i
])
for
i
in
CartesianIndices
(
subax
)]
subalg
=
ChambolleAlgorithm
()
subctx
=
[
init
(
submds
[
i
],
subalg
)
for
i
in
CartesianIndices
(
subax
)]
...
...
@@ -67,62 +66,32 @@ function init(md::DualTVDDModel, alg::DualTVDDAlgorithm)
end
function
step!
(
ctx
::
DualTVDDContext
)
σ
=
ctx
.
algorithm
.
σ
d
=
ndims
(
ctx
.
p
)
ax
=
axes
(
ctx
.
p
)
overlap
=
ctx
.
algorithm
.
overlap
li
=
LinearIndices
(
size
(
ctx
.
model
.
f
))
@inline
kfΛ
(
w
)
=
@inbounds
-
divergence_global
(
w
)
@inline
kfΛ
(
w
)
=
@inbounds
divergence_global
(
w
)
kΛ
=
Kernel
{
ntuple
(
_
->-
1
:
1
,
d
)}(
kfΛ
)
λ
=
2
*
norm
(
sqrt
(
ctx
.
B
))
^
2
# TODO: algorithm parameter
# call run! on each cell (this can be threaded)
for
i
in
eachindex
(
ctx
.
subctx
)
sax
=
ctx
.
subax
[
i
]
ci
=
CartesianIndices
(
sax
)
for
(
i
,
sax
)
in
pairs
(
ctx
.
subax
)
sg
=
ctx
.
subg
[
i
]
# julia-bug workaround
# TODO: make p computation local!
# g_i = (A*f - Λ(1-theta_i)p^n)|_{\Omega_i}
# subctx[i].p is used as a buffer
ctx
.
ptmp
.=
.-
(
1
.-
theta
.
(
Ref
(
ax
),
Ref
(
sax
),
Ref
(
overlap
),
CartesianIndices
(
ctx
.
p
)))
.*
ctx
.
p
#tmp3 = .-(1 .- theta.(Ref(ax), Ref(sax), Ref(overlap), CartesianIndices(ctx.p)))
#ctx.subctx[i].p .= .-(1 .- theta.(Ref(ax), Ref(sax), Ref(overlap), ci)) .* ctx.p[ctx.subax[i]...]
ctx
.
subg
[
i
]
.=
map
(
kΛ
,
ctx
.
ptmp
)[
sax
...
]
#map!(kΛ, ctx.subg[i], ctx.subctx[i].p)
ctx
.
subg
[
i
]
.+=
ctx
.
g
[
sax
...
]
# set sensible starting value
reset!
(
ctx
.
subctx
[
i
])
# precomputed: B/λ * (A'f - Λ(1-θ_i)p^n)
gloc
=
copy
(
ctx
.
subg
[
i
])
# v_0
ctx
.
ptmp
.=
theta
.
(
Ref
(
ax
),
Ref
(
sax
),
Ref
(
overlap
),
CartesianIndices
(
ctx
.
p
))
.*
ctx
.
p
ctx
.
subctx
[
i
]
.
p
.=
ctx
.
ptmp
[
sax
...
]
ctx
.
ptmp
.=
(
1
.-
theta
.
(
Ref
(
ax
),
Ref
(
sax
),
Ref
(
overlap
),
CartesianIndices
(
ctx
.
p
)))
.*
ctx
.
p
map!
(
kΛ
,
sg
,
ctx
.
ptmp
)
sg
.+=
ctx
.
g
# subcontext B is identity!
subIB
=
I
-
ctx
.
B
[
vec
(
li
[
sax
...
]),
vec
(
li
[
sax
...
])]
./
λ
subB
=
ctx
.
B
[
vec
(
li
[
sax
...
]),
vec
(
li
[
sax
...
])]
./
λ
for
j
in
1
:
10000
subΛp
=
map
(
kΛ
,
ctx
.
subctx
[
i
]
.
p
)
vec
(
ctx
.
subg
[
i
])
.=
subIB
*
vec
(
subΛp
)
.+
subB
*
vec
(
gloc
)
for
k
in
1
:
1000
step!
(
ctx
.
subctx
[
i
])
end
for
j
in
1
:
1000
step!
(
ctx
.
subctx
[
i
])
end
end
# aggregate (not thread-safe!)
σ
=
ctx
.
algorithm
.
σ
ctx
.
p
.*=
1
-
σ
for
i
in
CartesianIndice
s
(
ctx
.
subax
)
ctx
.
p
[
ctx
.
subax
[
i
]
...
]
.+=
σ
.*
ctx
.
subctx
[
i
]
.
p
for
(
i
,
sax
)
in
pair
s
(
ctx
.
subax
)
ctx
.
p
.+=
σ
.*
ctx
.
subctx
[
i
]
.
p
end
end
...
...
@@ -167,8 +136,8 @@ This assumes that subdomains have size at least 2 .* overlap.
theta
(
ax
,
sax
,
overlap
,
i
::
CartesianIndex
)
=
prod
(
theta
.
(
ax
,
sax
,
overlap
,
Tuple
(
i
)))
theta
(
ax
,
sax
,
overlap
::
Int
,
i
::
Int
)
=
max
(
0.
,
min
(
1.
,
first
(
ax
)
==
first
(
sax
)
&&
i
<
first
(
ax
)
+
overlap
?
1.
:
(
i
-
first
(
sax
))
/
overlap
,
last
(
ax
)
==
last
(
sax
)
&&
i
>
last
(
ax
)
-
overlap
?
1.
:
(
last
(
sax
)
-
i
)
/
overlap
))
first
(
ax
)
==
first
(
sax
)
&&
i
<
first
(
ax
)
+
overlap
?
1.
:
(
i
-
first
(
sax
)
+
1
)
/
(
overlap
+
1
)
,
last
(
ax
)
==
last
(
sax
)
&&
i
>
last
(
ax
)
-
overlap
?
1.
:
(
last
(
sax
)
-
i
+
1
)
/
(
overlap
+
1
)
))
"""
...
...
@@ -177,21 +146,21 @@ theta(ax, sax, overlap::Int, i::Int) =
Determine axes for all subdomains, given per dimension number of domains
`pnum` and overlap `overlap`
"""
function
subaxes
(
domain
,
pnum
,
overlap
)
overlap
=
1
.+
overlap
d
=
ndims
(
domain
)
tsize
=
size
(
domain
)
.+
(
pnum
.-
1
)
.*
overlap
psize
=
tsize
.÷
pnum
osize
=
tsize
.-
pnum
.*
psize
overhang
(
I
,
j
)
=
I
[
j
]
==
pnum
[
j
]
?
osize
[
j
]
:
0
function
subaxes
(
sizes
,
pnum
,
overlap
)
d
=
Val
(
length
(
sizes
))
ax
=
partition
.
(
sizes
,
pnum
,
overlap
)
return
[
ntuple
(
i
->
ax
[
i
][
I
[
i
]],
d
)
for
I
in
CartesianIndices
(
pnum
)]
end
indices
=
Array
{
NTuple
{
d
,
UnitRange
{
Int
}},
d
}(
undef
,
pnum
)
for
I
in
CartesianIndices
(
pnum
)
indices
[
I
]
=
ntuple
(
j
->
((
I
[
j
]
-
1
)
*
psize
[
j
]
-
(
I
[
j
]
-
1
)
*
overlap
[
j
]
+
1
)
:
(
I
[
j
]
*
psize
[
j
]
-
(
I
[
j
]
-
1
)
*
overlap
[
j
]
+
overhang
(
I
,
j
)),
d
)
function
partition
(
n
,
k
,
o
)
part
=
UnitRange
[]
i
=
1
while
k
>
1
s
=
(
n
+
(
k
-
1
)
*
o
)
÷
k
push!
(
part
,
i
:
i
+
s
-
1
)
i
=
i
+
s
-
o
n
-=
s
-
o
k
-=
1
end
@assert
all
(
length
.
(
sax
)
>=
1
.*
overlap
for
sax
in
indices
)
return
indices
push!
(
part
,
i
:
i
+
n
-
1
)
end
This diff is collapsed.
Click to expand it.
src/types.jl
+
1
−
1
View file @
c8c50744
...
...
@@ -29,7 +29,7 @@ struct DualTVDDModel{U,VV} <: Model
γ
::
Float64
end
"min_p 1/2 * |div(p) - g|_B^2 + χ_{|p|<=λ}"
"min_p 1/2 * |
-
div(p) - g|_B^2 + χ_{|p|<=λ}"
struct
OpROFModel
{
U
,
VV
,
Λ
}
<:
Model
"given data"
g
::
U
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment