Skip to content
Snippets Groups Projects
Commit d86f1eaa authored by David Seus's avatar David Seus
Browse files

fix weird git fuckug

parent 60d6185f
No related branches found
No related tags found
No related merge requests found
......@@ -7,11 +7,32 @@ import typing as tp
import domainPatch as dp
import LDDsimulation as ldd
import functools as ft
import helpers as hlp
#import ufl as ufl
# init sympy session
sym.init_printing()
solver_tol = 5E-6
############ GRID #######################ü
mesh_resolution = 20
timestep_size = 0.01
number_of_timesteps = 100
# decide how many timesteps you want analysed. Analysed means, that we write out
# subsequent errors of the L-iteration within the timestep.
number_of_timesteps_to_analyse = 10
starttime = 0
Lw = 1/timestep_size
Lnw=Lw
l_param_w = 40
l_param_nw = 40
include_gravity = True
##### Domain and Interface ####
# global simulation domain domain
sub_domain0_vertices = [df.Point(-1.0,-1.0), #
......@@ -80,15 +101,6 @@ isRichards = {
}
############ GRID #######################ü
mesh_resolution = 41
timestep_size = 0.01
number_of_timesteps = 100
# decide how many timesteps you want analysed. Analysed means, that we write out
# subsequent errors of the L-iteration within the timestep.
number_of_timesteps_to_analyse = 11
starttime = 0
viscosity = {#
# subdom_num : viscosity
1 : {'wetting' :1,
......@@ -116,19 +128,19 @@ porosity = {#
L = {#
# subdom_num : subdomain L for L-scheme
1 : {'wetting' :0.25,
'nonwetting': 0.25},#
2 : {'wetting' :0.25,
'nonwetting': 0.25}
1 : {'wetting' :Lw,
'nonwetting': Lnw},#
2 : {'wetting' :Lw,
'nonwetting': Lnw}
}
l_param = 40
lambda_param = {#
# subdom_num : lambda parameter for the L-scheme
1 : {'wetting' :l_param,
'nonwetting': l_param},#
2 : {'wetting' :l_param,
'nonwetting': l_param}
1 : {'wetting' :l_param_w,
'nonwetting': l_param_nw},#
2 : {'wetting' :l_param_w,
'nonwetting': l_param_nw}
}
## relative permeabilty functions on subdomain 1
......@@ -177,7 +189,7 @@ def rel_perm1w_prime(s):
def rel_perm1nw_prime(s):
# relative permeabilty on subdomain1
return 2*(1-s)
return -2*(1-s)
# # definition of the derivatives of the relative permeabilities
# # relative permeabilty functions on subdomain 1
......@@ -187,7 +199,7 @@ def rel_perm1nw_prime(s):
#
# def rel_perm2nw_prime(s):
# # relative permeabilty on subdomain1
# return 2*(l_param_w1-s)
# return -2*(l_param_w1-s)
_rel_perm1w_prime = ft.partial(rel_perm1w_prime)
_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime)
......@@ -364,211 +376,36 @@ p_e_sym = {
# 5: {'wetting': 1.0 - (1.0 + t*t)*(1.0 + x*x + y*y)}
}
# pc_e_sym = {
# 1: -1*p_e_sym[1]['wetting'],
# 2: -1*p_e_sym[2]['wetting'],
# # 3: -1*p_e_sym[3]['wetting'],
# # 4: -1*p_e_sym[4]['wetting'],
# # 5: -1*p_e_sym[5]['wetting']
# }
pc_e_sym = {
1: p_e_sym[1]['nonwetting'] - p_e_sym[1]['wetting'],
2: p_e_sym[2]['nonwetting'] - p_e_sym[2]['wetting'],
# 3: -1*p_e_sym[3]['wetting'],
# 4: -1*p_e_sym[4]['wetting'],
# 5: -1*p_e_sym[5]['wetting']
}
# #### Manufacture source expressions with sympy
# ###############################################################################
# ## subdomain1
# x, y = sym.symbols('x[0], x[1]') # needed by UFL
# t = sym.symbols('t', positive=True)
# #f = -sym.diff(u, x, 2) - sym.diff(u, y, 2) # -Laplace(u)
# #f = sym.simplify(f) # simplify f
# p1_w = 1 - (1+t**2)*(1 + x**2 + (y-0.5)**2)
# p1_nw = t*(1-(y-0.5) - x**2)**2 - sym.sqrt(2+t**2)*(1-(y-0.5))
#
# #dtS1_w = sym.diff(S_pc_rel_sym[1](p1_nw - p1_w), t, 1)
# #dtS1_nw = -sym.diff(S_pc_rel_sym[1](p1_nw - p1_w), t, 1)
# dtS1_w = porosity[1]*sym.diff(sym.Piecewise((S_pc_rel[1](p1_nw - p1_w), (p1_nw - p1_w) > 0), (1, True) ), t, 1)
# dtS1_nw = -porosity[1]*sym.diff(sym.Piecewise((S_pc_rel[1](p1_nw - p1_w), (p1_nw - p1_w) > 0), (1, True) ), t, 1)
# print("dtS1_w = ", dtS1_w, "\n")
# print("dtS1_nw = ", dtS1_nw, "\n")
#
# #dxdxflux1_w = -sym.diff(relative_permeability[1]['wetting'](S_pc_rel_sym[1](p1_nw - p1_w))*sym.diff(p1_w, x, 1), x, 1)
# #dydyflux1_w = -sym.diff(relative_permeability[1]['wetting'](S_pc_rel_sym[1](p1_nw - p1_w))*sym.diff(p1_w, y, 1), y, 1)
# dxdxflux1_w = -1/viscosity[1]['wetting']*sym.diff(relative_permeability[1]['wetting'](sym.Piecewise((S_pc_rel[1](p1_nw - p1_w), (p1_nw - p1_w) > 0), (1, True) ))*sym.diff(p1_w, x, 1), x, 1)
# dydyflux1_w = -1/viscosity[1]['wetting']*sym.diff(relative_permeability[1]['wetting'](sym.Piecewise((S_pc_rel[1](p1_nw - p1_w), (p1_nw - p1_w) > 0), (1, True) ))*sym.diff(p1_w, y, 1), y, 1)
#
# rhs1_w = dtS1_w + dxdxflux1_w + dydyflux1_w
# rhs1_w = sym.printing.ccode(rhs1_w)
# print("rhs_w = ", rhs1_w, "\n")
# #rhs_w = sym.expand(rhs_w)
# #print("rhs_w", rhs_w, "\n")
# #rhs_w = sym.collect(rhs_w, x)
# #print("rhs_w", rhs_w, "\n")
#
# #dxdxflux1_nw = -sym.diff(relative_permeability[1]['nonwetting'](S_pc_rel_sym[1](p1_nw - p1_w))*sym.diff(p1_nw, x, 1), x, 1)
# #dydyflux1_nw = -sym.diff(relative_permeability[1]['nonwetting'](S_pc_rel_sym[1](p1_nw - p1_w))*sym.diff(p1_nw, y, 1), y, 1)
# dxdxflux1_nw = -1/viscosity[1]['nonwetting']*sym.diff(relative_permeability[1]['nonwetting'](1-sym.Piecewise((S_pc_rel[1](p1_nw - p1_w), (p1_nw - p1_w) > 0), (1, True) ))*sym.diff(p1_nw, x, 1), x, 1)
# dydyflux1_nw = -1/viscosity[1]['nonwetting']*sym.diff(relative_permeability[1]['nonwetting'](1-sym.Piecewise((S_pc_rel[1](p1_nw - p1_w), (p1_nw - p1_w) > 0), (1, True) ))*sym.diff(p1_nw, y, 1), y, 1)
#
# rhs1_nw = dtS1_nw + dxdxflux1_nw + dydyflux1_nw
# rhs1_nw = sym.printing.ccode(rhs1_nw)
# print("rhs_nw = ", rhs1_nw, "\n")
#
# ## subdomain2
# p2_w = 1 - (1+t**2)*(1 + x**2)
# p2_nw = t*(1- x**2)**2 - sym.sqrt(2+t**2)*(1-(y-0.5))
#
# #dtS2_w = sym.diff(S_pc_rel_sym[2](p2_nw - p2_w), t, 1)
# #dtS2_nw = -sym.diff(S_pc_rel_sym[2](p2_nw - p2_w), t, 1)
# dtS2_w = porosity[2]*sym.diff(sym.Piecewise((sym.Piecewise((S_pc_rel[2](p2_nw - p2_w), (p2_nw - p2_w) > 0), (1, True) ), (p2_nw - p2_w) > 0), (1, True) ), t, 1)
# dtS2_nw = -porosity[2]*sym.diff(sym.Piecewise((S_pc_rel[2](p2_nw - p2_w), (p2_nw - p2_w) > 0), (1, True) ), t, 1)
# print("dtS2_w = ", dtS2_w, "\n")
# print("dtS2_nw = ", dtS2_nw, "\n")
#
# #dxdxflux2_w = -sym.diff(relative_permeability[2]['wetting'](S_pc_rel_sym[2](p2_nw - p2_w))*sym.diff(p2_w, x, 1), x, 1)
# #dydyflux2_w = -sym.diff(relative_permeability[2]['wetting'](S_pc_rel_sym[2](p2_nw - p2_w))*sym.diff(p2_w, y, 1), y, 1)
# dxdxflux2_w = -1/viscosity[2]['wetting']*sym.diff(relative_permeability[2]['wetting'](sym.Piecewise((S_pc_rel[2](p2_nw - p2_w), (p2_nw - p2_w) > 0), (1, True) ))*sym.diff(p2_w, x, 1), x, 1)
# dydyflux2_w = -1/viscosity[2]['wetting']*sym.diff(relative_permeability[2]['wetting'](sym.Piecewise((S_pc_rel[2](p2_nw - p2_w), (p2_nw - p2_w) > 0), (1, True) ))*sym.diff(p2_w, y, 1), y, 1)
#
# rhs2_w = dtS2_w + dxdxflux2_w + dydyflux2_w
# rhs2_w = sym.printing.ccode(rhs2_w)
# print("rhs2_w = ", rhs2_w, "\n")
# #rhs_w = sym.expand(rhs_w)
# #print("rhs_w", rhs_w, "\n")
# #rhs_w = sym.collect(rhs_w, x)
# #print("rhs_w", rhs_w, "\n")
#
# #dxdxflux2_nw = -sym.diff(relative_permeability[2]['nonwetting'](S_pc_rel_sym[2](p2_nw - p2_w))*sym.diff(p2_nw, x, 1), x, 1)
# #dydyflux2_nw = -sym.diff(relative_permeability[2]['nonwetting'](S_pc_rel_sym[2](p2_nw - p2_w))*sym.diff(p2_nw, y, 1), y, 1)
# dxdxflux2_nw = -1/viscosity[2]['nonwetting']*sym.diff(relative_permeability[2]['nonwetting'](1-sym.Piecewise((S_pc_rel[2](p2_nw - p2_w), (p2_nw - p2_w) > 0), (1, True) ))*sym.diff(p2_nw, x, 1), x, 1)
# dydyflux2_nw = -1/viscosity[2]['nonwetting']*sym.diff(relative_permeability[2]['nonwetting'](1-sym.Piecewise((S_pc_rel[2](p2_nw - p2_w), (p2_nw - p2_w) > 0), (1, True) ))*sym.diff(p2_nw, y, 1), y, 1)
#
# rhs2_nw = dtS2_nw + dxdxflux2_nw + dydyflux2_nw
# rhs2_nw = sym.printing.ccode(rhs2_nw)
# print("rhs2_nw = ", rhs2_nw, "\n")
#
#
# ###############################################################################
#
# source_expression = {
# 1: {'wetting': rhs1_w,
# 'nonwetting': rhs1_nw},
# 2: {'wetting': rhs2_w,
# 'nonwetting': rhs2_nw}
# }
#
# p1_w_00 = p1_w.subs(t, 0)
# p1_nw_00 = p1_nw.subs(t, 0)
# p2_w_00 = p2_w.subs(t, 0)
# p2_nw_00 = p2_nw.subs(t, 0)
# # p1_w_00 = sym.printing.ccode(p1_w_00)
#
# initial_condition = {
# 1: {'wetting': sym.printing.ccode(p1_w_00),
# 'nonwetting': sym.printing.ccode(p1_nw_00)},#
# 2: {'wetting': sym.printing.ccode(p2_w_00),
# 'nonwetting': sym.printing.ccode(p2_nw_00)}
# }
#
# exact_solution = {
# 1: {'wetting': sym.printing.ccode(p1_w),
# 'nonwetting': sym.printing.ccode(p1_nw)},#
# 2: {'wetting': sym.printing.ccode(p2_w),
# 'nonwetting': sym.printing.ccode(p2_nw)}
# }
#
# # similary to the outer boundary dictionary, if a patch has no outer boundary
# # None should be written instead of an expression. This is a bit of a brainfuck:
# # dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind.
# # Since a domain patch can have several disjoint outer boundary parts, the expressions
# # need to get an enumaration index which starts at 0. So dirichletBC[ind][j] is
# # the dictionary of outer dirichlet conditions of subdomain ind and boundary part j.
# # finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting'] return
# # the actual expression needed for the dirichlet condition for both phases if present.
# dirichletBC = {
# #subdomain index: {outer boudary part index: {phase: expression}}
# 1: { 0: {'wetting': sym.printing.ccode(p1_w),
# 'nonwetting': sym.printing.ccode(p1_nw)}},
# 2: { 0: {'wetting': sym.printing.ccode(p2_w),
# 'nonwetting': sym.printing.ccode(p2_nw)}}
# }
# turn above symbolic code into exact solution for dolphin and
# construct the rhs that matches the above exact solution.
dtS = dict()
div_flux = dict()
source_expression = dict()
exact_solution = dict()
initial_condition = dict()
pc_e_sym = dict()
for subdomain, isR in isRichards.items():
dtS.update({subdomain: dict()})
div_flux.update({subdomain: dict()})
source_expression.update({subdomain: dict()})
exact_solution.update({subdomain: dict()})
initial_condition.update({subdomain: dict()})
if isR:
subdomain_has_phases = ["wetting"]
pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']})
else:
subdomain_has_phases = ["wetting", "nonwetting"]
# conditional for S_pc_prime
pc = pc_e_sym[subdomain]
dtpc = sym.diff(pc, t, 1)
dxpc = sym.diff(pc, x, 1)
dypc = sym.diff(pc, y, 1)
S = sym.Piecewise((S_pc_sym[subdomain](pc), pc > 0), (1, True))
dS = sym.Piecewise((S_pc_sym_prime[subdomain](pc), pc > 0), (0, True))
for phase in subdomain_has_phases:
# Turn above symbolic expression for exact solution into c code
exact_solution[subdomain].update(
{phase: sym.printing.ccode(p_e_sym[subdomain][phase])}
)
# save the c code for initial conditions
initial_condition[subdomain].update(
{phase: sym.printing.ccode(p_e_sym[subdomain][phase].subs(t, 0))}
)
if phase == "nonwetting":
dtS[subdomain].update(
{phase: -porosity[subdomain]*dS*dtpc}
)
else:
dtS[subdomain].update(
{phase: porosity[subdomain]*dS*dtpc}
)
pa = p_e_sym[subdomain][phase]
dxpa = sym.diff(pa, x, 1)
dxdxpa = sym.diff(pa, x, 2)
dypa = sym.diff(pa, y, 1)
dydypa = sym.diff(pa, y, 2)
mu = viscosity[subdomain][phase]
ka = relative_permeability[subdomain][phase]
dka = ka_prime[subdomain][phase]
rho = densities[subdomain][phase]
g = gravity_acceleration
if phase == "nonwetting":
# x part of div(flux) for nonwetting
dxdxflux = -1/mu*dka(1-S)*dS*dxpc*dxpa + 1/mu*dxdxpa*ka(1-S)
# y part of div(flux) for nonwetting
dydyflux = -1/mu*dka(1-S)*dS*dypc*(dypa - rho*g) \
+ 1/mu*dydypa*ka(1-S)
else:
# x part of div(flux) for wetting
dxdxflux = 1/mu*dka(S)*dS*dxpc*dxpa + 1/mu*dxdxpa*ka(S)
# y part of div(flux) for wetting
dydyflux = 1/mu*dka(S)*dS*dypc*(dypa - rho*g) + 1/mu*dydypa*ka(S)
div_flux[subdomain].update({phase: dxdxflux + dydyflux})
contructed_rhs = dtS[subdomain][phase] - div_flux[subdomain][phase]
source_expression[subdomain].update(
{phase: sym.printing.ccode(contructed_rhs)}
pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'] - p_e_sym[subdomain]['wetting']})
symbols = {"x": x,
"y": y,
"t": t}
# turn above symbolic code into exact solution for dolphin and
# construct the rhs that matches the above exact solution.
exact_solution_example = hlp.generate_exact_solution_expressions(
symbols=symbols,
isRichards=isRichards,
symbolic_pressure=p_e_sym,
symbolic_capillary_pressure=pc_e_sym,
saturation_pressure_relationship=S_pc_sym,
saturation_pressure_relationship_prime=S_pc_sym_prime,
viscosity=viscosity,
porosity=porosity,
relative_permeability=relative_permeability,
relative_permeability_prime=ka_prime,
densities=densities,
gravity_acceleration=gravity_acceleration,
include_gravity=include_gravity,
)
# print(f"source_expression[{subdomain}][{phase}] =", source_expression[subdomain][phase])
source_expression = exact_solution_example['source']
exact_solution = exact_solution_example['exact_solution']
initial_condition = exact_solution_example['initial_condition']
# Dictionary of dirichlet boundary conditions.
dirichletBC = dict()
......@@ -612,7 +449,7 @@ write_to_file = {
# initialise LDD simulation class
simulation = ldd.LDDsimulation(tol = 1E-14, LDDsolver_tol = 1E-6, debug = False)
simulation = ldd.LDDsimulation(tol = 1E-14, LDDsolver_tol = solver_tol, debug = True)
simulation.set_parameters(output_dir = "./output/",#
subdomain_def_points = subdomain_def_points,#
isRichards = isRichards,#
......@@ -635,7 +472,7 @@ simulation.set_parameters(output_dir = "./output/",#
dirichletBC_expression_strings = dirichletBC,#
exact_solution = exact_solution,#
densities=densities,
include_gravity=True,
include_gravity=include_gravity,
write2file = write_to_file,#
)
......
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please to comment