From d86f1eaad44db1a5538c5d047a5aa2cc9e7dc919 Mon Sep 17 00:00:00 2001 From: David Seus <david.seus@ians.uni-stuttgart.de> Date: Fri, 16 Aug 2019 15:09:41 +0200 Subject: [PATCH] fix weird git fuckug --- .../TP-TP-2-patch-constant-solution.py | 285 ++++-------------- 1 file changed, 61 insertions(+), 224 deletions(-) diff --git a/TP-TP-2-patch-constant-solution/TP-TP-2-patch-constant-solution.py b/TP-TP-2-patch-constant-solution/TP-TP-2-patch-constant-solution.py index b60c4a7..0dfa344 100755 --- a/TP-TP-2-patch-constant-solution/TP-TP-2-patch-constant-solution.py +++ b/TP-TP-2-patch-constant-solution/TP-TP-2-patch-constant-solution.py @@ -7,11 +7,32 @@ import typing as tp import domainPatch as dp import LDDsimulation as ldd import functools as ft +import helpers as hlp #import ufl as ufl # init sympy session sym.init_printing() +solver_tol = 5E-6 + +############ GRID #######################ü +mesh_resolution = 20 +timestep_size = 0.01 +number_of_timesteps = 100 +# decide how many timesteps you want analysed. Analysed means, that we write out +# subsequent errors of the L-iteration within the timestep. +number_of_timesteps_to_analyse = 10 +starttime = 0 + +Lw = 1/timestep_size +Lnw=Lw + +l_param_w = 40 +l_param_nw = 40 + +include_gravity = True + + ##### Domain and Interface #### # global simulation domain domain sub_domain0_vertices = [df.Point(-1.0,-1.0), # @@ -80,15 +101,6 @@ isRichards = { } -############ GRID #######################ü -mesh_resolution = 41 -timestep_size = 0.01 -number_of_timesteps = 100 -# decide how many timesteps you want analysed. Analysed means, that we write out -# subsequent errors of the L-iteration within the timestep. -number_of_timesteps_to_analyse = 11 -starttime = 0 - viscosity = {# # subdom_num : viscosity 1 : {'wetting' :1, @@ -116,19 +128,19 @@ porosity = {# L = {# # subdom_num : subdomain L for L-scheme - 1 : {'wetting' :0.25, - 'nonwetting': 0.25},# - 2 : {'wetting' :0.25, - 'nonwetting': 0.25} + 1 : {'wetting' :Lw, + 'nonwetting': Lnw},# + 2 : {'wetting' :Lw, + 'nonwetting': Lnw} } -l_param = 40 + lambda_param = {# # subdom_num : lambda parameter for the L-scheme - 1 : {'wetting' :l_param, - 'nonwetting': l_param},# - 2 : {'wetting' :l_param, - 'nonwetting': l_param} + 1 : {'wetting' :l_param_w, + 'nonwetting': l_param_nw},# + 2 : {'wetting' :l_param_w, + 'nonwetting': l_param_nw} } ## relative permeabilty functions on subdomain 1 @@ -177,7 +189,7 @@ def rel_perm1w_prime(s): def rel_perm1nw_prime(s): # relative permeabilty on subdomain1 - return 2*(1-s) + return -2*(1-s) # # definition of the derivatives of the relative permeabilities # # relative permeabilty functions on subdomain 1 @@ -187,7 +199,7 @@ def rel_perm1nw_prime(s): # # def rel_perm2nw_prime(s): # # relative permeabilty on subdomain1 -# return 2*(l_param_w1-s) +# return -2*(l_param_w1-s) _rel_perm1w_prime = ft.partial(rel_perm1w_prime) _rel_perm1nw_prime = ft.partial(rel_perm1nw_prime) @@ -364,211 +376,36 @@ p_e_sym = { # 5: {'wetting': 1.0 - (1.0 + t*t)*(1.0 + x*x + y*y)} } -# pc_e_sym = { -# 1: -1*p_e_sym[1]['wetting'], -# 2: -1*p_e_sym[2]['wetting'], -# # 3: -1*p_e_sym[3]['wetting'], -# # 4: -1*p_e_sym[4]['wetting'], -# # 5: -1*p_e_sym[5]['wetting'] -# } - -pc_e_sym = { - 1: p_e_sym[1]['nonwetting'] - p_e_sym[1]['wetting'], - 2: p_e_sym[2]['nonwetting'] - p_e_sym[2]['wetting'], - # 3: -1*p_e_sym[3]['wetting'], - # 4: -1*p_e_sym[4]['wetting'], - # 5: -1*p_e_sym[5]['wetting'] -} - - -# #### Manufacture source expressions with sympy -# ############################################################################### -# ## subdomain1 -# x, y = sym.symbols('x[0], x[1]') # needed by UFL -# t = sym.symbols('t', positive=True) -# #f = -sym.diff(u, x, 2) - sym.diff(u, y, 2) # -Laplace(u) -# #f = sym.simplify(f) # simplify f -# p1_w = 1 - (1+t**2)*(1 + x**2 + (y-0.5)**2) -# p1_nw = t*(1-(y-0.5) - x**2)**2 - sym.sqrt(2+t**2)*(1-(y-0.5)) -# -# #dtS1_w = sym.diff(S_pc_rel_sym[1](p1_nw - p1_w), t, 1) -# #dtS1_nw = -sym.diff(S_pc_rel_sym[1](p1_nw - p1_w), t, 1) -# dtS1_w = porosity[1]*sym.diff(sym.Piecewise((S_pc_rel[1](p1_nw - p1_w), (p1_nw - p1_w) > 0), (1, True) ), t, 1) -# dtS1_nw = -porosity[1]*sym.diff(sym.Piecewise((S_pc_rel[1](p1_nw - p1_w), (p1_nw - p1_w) > 0), (1, True) ), t, 1) -# print("dtS1_w = ", dtS1_w, "\n") -# print("dtS1_nw = ", dtS1_nw, "\n") -# -# #dxdxflux1_w = -sym.diff(relative_permeability[1]['wetting'](S_pc_rel_sym[1](p1_nw - p1_w))*sym.diff(p1_w, x, 1), x, 1) -# #dydyflux1_w = -sym.diff(relative_permeability[1]['wetting'](S_pc_rel_sym[1](p1_nw - p1_w))*sym.diff(p1_w, y, 1), y, 1) -# dxdxflux1_w = -1/viscosity[1]['wetting']*sym.diff(relative_permeability[1]['wetting'](sym.Piecewise((S_pc_rel[1](p1_nw - p1_w), (p1_nw - p1_w) > 0), (1, True) ))*sym.diff(p1_w, x, 1), x, 1) -# dydyflux1_w = -1/viscosity[1]['wetting']*sym.diff(relative_permeability[1]['wetting'](sym.Piecewise((S_pc_rel[1](p1_nw - p1_w), (p1_nw - p1_w) > 0), (1, True) ))*sym.diff(p1_w, y, 1), y, 1) -# -# rhs1_w = dtS1_w + dxdxflux1_w + dydyflux1_w -# rhs1_w = sym.printing.ccode(rhs1_w) -# print("rhs_w = ", rhs1_w, "\n") -# #rhs_w = sym.expand(rhs_w) -# #print("rhs_w", rhs_w, "\n") -# #rhs_w = sym.collect(rhs_w, x) -# #print("rhs_w", rhs_w, "\n") -# -# #dxdxflux1_nw = -sym.diff(relative_permeability[1]['nonwetting'](S_pc_rel_sym[1](p1_nw - p1_w))*sym.diff(p1_nw, x, 1), x, 1) -# #dydyflux1_nw = -sym.diff(relative_permeability[1]['nonwetting'](S_pc_rel_sym[1](p1_nw - p1_w))*sym.diff(p1_nw, y, 1), y, 1) -# dxdxflux1_nw = -1/viscosity[1]['nonwetting']*sym.diff(relative_permeability[1]['nonwetting'](1-sym.Piecewise((S_pc_rel[1](p1_nw - p1_w), (p1_nw - p1_w) > 0), (1, True) ))*sym.diff(p1_nw, x, 1), x, 1) -# dydyflux1_nw = -1/viscosity[1]['nonwetting']*sym.diff(relative_permeability[1]['nonwetting'](1-sym.Piecewise((S_pc_rel[1](p1_nw - p1_w), (p1_nw - p1_w) > 0), (1, True) ))*sym.diff(p1_nw, y, 1), y, 1) -# -# rhs1_nw = dtS1_nw + dxdxflux1_nw + dydyflux1_nw -# rhs1_nw = sym.printing.ccode(rhs1_nw) -# print("rhs_nw = ", rhs1_nw, "\n") -# -# ## subdomain2 -# p2_w = 1 - (1+t**2)*(1 + x**2) -# p2_nw = t*(1- x**2)**2 - sym.sqrt(2+t**2)*(1-(y-0.5)) -# -# #dtS2_w = sym.diff(S_pc_rel_sym[2](p2_nw - p2_w), t, 1) -# #dtS2_nw = -sym.diff(S_pc_rel_sym[2](p2_nw - p2_w), t, 1) -# dtS2_w = porosity[2]*sym.diff(sym.Piecewise((sym.Piecewise((S_pc_rel[2](p2_nw - p2_w), (p2_nw - p2_w) > 0), (1, True) ), (p2_nw - p2_w) > 0), (1, True) ), t, 1) -# dtS2_nw = -porosity[2]*sym.diff(sym.Piecewise((S_pc_rel[2](p2_nw - p2_w), (p2_nw - p2_w) > 0), (1, True) ), t, 1) -# print("dtS2_w = ", dtS2_w, "\n") -# print("dtS2_nw = ", dtS2_nw, "\n") -# -# #dxdxflux2_w = -sym.diff(relative_permeability[2]['wetting'](S_pc_rel_sym[2](p2_nw - p2_w))*sym.diff(p2_w, x, 1), x, 1) -# #dydyflux2_w = -sym.diff(relative_permeability[2]['wetting'](S_pc_rel_sym[2](p2_nw - p2_w))*sym.diff(p2_w, y, 1), y, 1) -# dxdxflux2_w = -1/viscosity[2]['wetting']*sym.diff(relative_permeability[2]['wetting'](sym.Piecewise((S_pc_rel[2](p2_nw - p2_w), (p2_nw - p2_w) > 0), (1, True) ))*sym.diff(p2_w, x, 1), x, 1) -# dydyflux2_w = -1/viscosity[2]['wetting']*sym.diff(relative_permeability[2]['wetting'](sym.Piecewise((S_pc_rel[2](p2_nw - p2_w), (p2_nw - p2_w) > 0), (1, True) ))*sym.diff(p2_w, y, 1), y, 1) -# -# rhs2_w = dtS2_w + dxdxflux2_w + dydyflux2_w -# rhs2_w = sym.printing.ccode(rhs2_w) -# print("rhs2_w = ", rhs2_w, "\n") -# #rhs_w = sym.expand(rhs_w) -# #print("rhs_w", rhs_w, "\n") -# #rhs_w = sym.collect(rhs_w, x) -# #print("rhs_w", rhs_w, "\n") -# -# #dxdxflux2_nw = -sym.diff(relative_permeability[2]['nonwetting'](S_pc_rel_sym[2](p2_nw - p2_w))*sym.diff(p2_nw, x, 1), x, 1) -# #dydyflux2_nw = -sym.diff(relative_permeability[2]['nonwetting'](S_pc_rel_sym[2](p2_nw - p2_w))*sym.diff(p2_nw, y, 1), y, 1) -# dxdxflux2_nw = -1/viscosity[2]['nonwetting']*sym.diff(relative_permeability[2]['nonwetting'](1-sym.Piecewise((S_pc_rel[2](p2_nw - p2_w), (p2_nw - p2_w) > 0), (1, True) ))*sym.diff(p2_nw, x, 1), x, 1) -# dydyflux2_nw = -1/viscosity[2]['nonwetting']*sym.diff(relative_permeability[2]['nonwetting'](1-sym.Piecewise((S_pc_rel[2](p2_nw - p2_w), (p2_nw - p2_w) > 0), (1, True) ))*sym.diff(p2_nw, y, 1), y, 1) -# -# rhs2_nw = dtS2_nw + dxdxflux2_nw + dydyflux2_nw -# rhs2_nw = sym.printing.ccode(rhs2_nw) -# print("rhs2_nw = ", rhs2_nw, "\n") -# -# -# ############################################################################### -# -# source_expression = { -# 1: {'wetting': rhs1_w, -# 'nonwetting': rhs1_nw}, -# 2: {'wetting': rhs2_w, -# 'nonwetting': rhs2_nw} -# } -# -# p1_w_00 = p1_w.subs(t, 0) -# p1_nw_00 = p1_nw.subs(t, 0) -# p2_w_00 = p2_w.subs(t, 0) -# p2_nw_00 = p2_nw.subs(t, 0) -# # p1_w_00 = sym.printing.ccode(p1_w_00) -# -# initial_condition = { -# 1: {'wetting': sym.printing.ccode(p1_w_00), -# 'nonwetting': sym.printing.ccode(p1_nw_00)},# -# 2: {'wetting': sym.printing.ccode(p2_w_00), -# 'nonwetting': sym.printing.ccode(p2_nw_00)} -# } -# -# exact_solution = { -# 1: {'wetting': sym.printing.ccode(p1_w), -# 'nonwetting': sym.printing.ccode(p1_nw)},# -# 2: {'wetting': sym.printing.ccode(p2_w), -# 'nonwetting': sym.printing.ccode(p2_nw)} -# } -# -# # similary to the outer boundary dictionary, if a patch has no outer boundary -# # None should be written instead of an expression. This is a bit of a brainfuck: -# # dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind. -# # Since a domain patch can have several disjoint outer boundary parts, the expressions -# # need to get an enumaration index which starts at 0. So dirichletBC[ind][j] is -# # the dictionary of outer dirichlet conditions of subdomain ind and boundary part j. -# # finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting'] return -# # the actual expression needed for the dirichlet condition for both phases if present. -# dirichletBC = { -# #subdomain index: {outer boudary part index: {phase: expression}} -# 1: { 0: {'wetting': sym.printing.ccode(p1_w), -# 'nonwetting': sym.printing.ccode(p1_nw)}}, -# 2: { 0: {'wetting': sym.printing.ccode(p2_w), -# 'nonwetting': sym.printing.ccode(p2_nw)}} -# } - -# turn above symbolic code into exact solution for dolphin and -# construct the rhs that matches the above exact solution. -dtS = dict() -div_flux = dict() -source_expression = dict() -exact_solution = dict() -initial_condition = dict() +pc_e_sym = dict() for subdomain, isR in isRichards.items(): - dtS.update({subdomain: dict()}) - div_flux.update({subdomain: dict()}) - source_expression.update({subdomain: dict()}) - exact_solution.update({subdomain: dict()}) - initial_condition.update({subdomain: dict()}) if isR: - subdomain_has_phases = ["wetting"] + pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']}) else: - subdomain_has_phases = ["wetting", "nonwetting"] - - # conditional for S_pc_prime - pc = pc_e_sym[subdomain] - dtpc = sym.diff(pc, t, 1) - dxpc = sym.diff(pc, x, 1) - dypc = sym.diff(pc, y, 1) - S = sym.Piecewise((S_pc_sym[subdomain](pc), pc > 0), (1, True)) - dS = sym.Piecewise((S_pc_sym_prime[subdomain](pc), pc > 0), (0, True)) - for phase in subdomain_has_phases: - # Turn above symbolic expression for exact solution into c code - exact_solution[subdomain].update( - {phase: sym.printing.ccode(p_e_sym[subdomain][phase])} - ) - # save the c code for initial conditions - initial_condition[subdomain].update( - {phase: sym.printing.ccode(p_e_sym[subdomain][phase].subs(t, 0))} - ) - if phase == "nonwetting": - dtS[subdomain].update( - {phase: -porosity[subdomain]*dS*dtpc} - ) - else: - dtS[subdomain].update( - {phase: porosity[subdomain]*dS*dtpc} - ) - pa = p_e_sym[subdomain][phase] - dxpa = sym.diff(pa, x, 1) - dxdxpa = sym.diff(pa, x, 2) - dypa = sym.diff(pa, y, 1) - dydypa = sym.diff(pa, y, 2) - mu = viscosity[subdomain][phase] - ka = relative_permeability[subdomain][phase] - dka = ka_prime[subdomain][phase] - rho = densities[subdomain][phase] - g = gravity_acceleration - - if phase == "nonwetting": - # x part of div(flux) for nonwetting - dxdxflux = -1/mu*dka(1-S)*dS*dxpc*dxpa + 1/mu*dxdxpa*ka(1-S) - # y part of div(flux) for nonwetting - dydyflux = -1/mu*dka(1-S)*dS*dypc*(dypa - rho*g) \ - + 1/mu*dydypa*ka(1-S) - else: - # x part of div(flux) for wetting - dxdxflux = 1/mu*dka(S)*dS*dxpc*dxpa + 1/mu*dxdxpa*ka(S) - # y part of div(flux) for wetting - dydyflux = 1/mu*dka(S)*dS*dypc*(dypa - rho*g) + 1/mu*dydypa*ka(S) - div_flux[subdomain].update({phase: dxdxflux + dydyflux}) - contructed_rhs = dtS[subdomain][phase] - div_flux[subdomain][phase] - source_expression[subdomain].update( - {phase: sym.printing.ccode(contructed_rhs)} - ) - # print(f"source_expression[{subdomain}][{phase}] =", source_expression[subdomain][phase]) + pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'] - p_e_sym[subdomain]['wetting']}) + +symbols = {"x": x, + "y": y, + "t": t} +# turn above symbolic code into exact solution for dolphin and +# construct the rhs that matches the above exact solution. +exact_solution_example = hlp.generate_exact_solution_expressions( + symbols=symbols, + isRichards=isRichards, + symbolic_pressure=p_e_sym, + symbolic_capillary_pressure=pc_e_sym, + saturation_pressure_relationship=S_pc_sym, + saturation_pressure_relationship_prime=S_pc_sym_prime, + viscosity=viscosity, + porosity=porosity, + relative_permeability=relative_permeability, + relative_permeability_prime=ka_prime, + densities=densities, + gravity_acceleration=gravity_acceleration, + include_gravity=include_gravity, + ) +source_expression = exact_solution_example['source'] +exact_solution = exact_solution_example['exact_solution'] +initial_condition = exact_solution_example['initial_condition'] # Dictionary of dirichlet boundary conditions. dirichletBC = dict() @@ -612,7 +449,7 @@ write_to_file = { # initialise LDD simulation class -simulation = ldd.LDDsimulation(tol = 1E-14, LDDsolver_tol = 1E-6, debug = False) +simulation = ldd.LDDsimulation(tol = 1E-14, LDDsolver_tol = solver_tol, debug = True) simulation.set_parameters(output_dir = "./output/",# subdomain_def_points = subdomain_def_points,# isRichards = isRichards,# @@ -635,7 +472,7 @@ simulation.set_parameters(output_dir = "./output/",# dirichletBC_expression_strings = dirichletBC,# exact_solution = exact_solution,# densities=densities, - include_gravity=True, + include_gravity=include_gravity, write2file = write_to_file,# ) -- GitLab