Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
L
LDD-for-two-phase-flow-systems
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
David Seus
LDD-for-two-phase-flow-systems
Commits
84518db1
Commit
84518db1
authored
Jun 9, 2020
by
David
Browse files
Options
Downloads
Patches
Plain Diff
update and clean up example
parent
19afee6c
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study.py
+137
-91
137 additions, 91 deletions
...o-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study.py
with
137 additions
and
91 deletions
Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study.py
+
137
−
91
View file @
84518db1
#!/usr/bin/python3
#!/usr/bin/python3
"""
TPR 2 patch soil simulation.
This program sets up an LDD simulation
"""
import
dolfin
as
df
import
dolfin
as
df
import
mshr
import
numpy
as
np
import
sympy
as
sym
import
sympy
as
sym
import
typing
as
tp
import
domainPatch
as
dp
import
LDDsimulation
as
ldd
import
functools
as
ft
import
functools
as
ft
import
LDDsimulation
as
ldd
import
helpers
as
hlp
import
helpers
as
hlp
import
datetime
import
datetime
import
os
import
os
import
pandas
as
pd
import
pandas
as
pd
date
=
datetime
.
datetime
.
now
()
datestr
=
date
.
strftime
(
"
%Y-%m-%d
"
)
#import ufl as ufl
# init sympy session
# init sympy session
sym
.
init_printing
()
sym
.
init_printing
()
# PREREQUISITS ###############################################################
# check if output directory "./output" exists. This will be used in
# the generation of the output string.
if
not
os
.
path
.
exists
(
'
./output
'
):
os
.
mkdir
(
'
./output
'
)
print
(
"
Directory
"
,
'
./output
'
,
"
created
"
)
else
:
print
(
"
Directory
"
,
'
./output
'
,
"
already exists. Will use as output
\
directory
"
)
date
=
datetime
.
datetime
.
now
()
datestr
=
date
.
strftime
(
"
%Y-%m-%d
"
)
# Name of the usecase that will be printed during simulation.
use_case
=
"
TPR-2-patch-realistic-testrun
"
use_case
=
"
TPR-2-patch-realistic-testrun
"
# solver_tol = 6E-7
# The name of this very file. Needed for creating log output.
thisfile
=
"
TP-R-2-patch-mesh-study.py
"
# GENERAL SOLVER CONFIG ######################################################
# maximal iteration per timestep
max_iter_num
=
500
max_iter_num
=
500
FEM_Lagrange_degree
=
1
FEM_Lagrange_degree
=
1
# GRID AND MESH STUDY SPECIFICATIONS #########################################
mesh_study
=
True
mesh_study
=
True
resolutions
=
{
resolutions
=
{
1
:
1e-6
,
1
:
1e-6
,
...
@@ -36,18 +53,19 @@ resolutions = {
...
@@ -36,18 +53,19 @@ resolutions = {
256
:
1e-6
,
256
:
1e-6
,
}
}
############ GRID #######################
# starttimes gives a list of starttimes to run the simulation from.
# mesh_resolution = 20
# The list is looped over and a simulation is run with t_0 as initial time
# for each element t_0 in starttimes.
starttimes
=
[
0.0
]
timestep_size
=
0.001
timestep_size
=
0.001
number_of_timesteps
=
1000
number_of_timesteps
=
1000
plot_timestep_every
=
4
# decide how many timesteps you want analysed. Analysed means, that we write out
# subsequent errors of the L-iteration within the timestep.
number_of_timesteps_to_analyse
=
5
starttimes
=
[
0.0
]
Lw
=
0.025
#/timestep_size
# LDD scheme parameters ######################################################
Lnw
=
0.025
Lw1
=
0.025
#/timestep_size
Lnw1
=
0.025
Lw2
=
0.025
#/timestep_size
Lnw2
=
0.025
lambda_w
=
40
lambda_w
=
40
lambda_nw
=
40
lambda_nw
=
40
...
@@ -56,22 +74,38 @@ include_gravity = False
...
@@ -56,22 +74,38 @@ include_gravity = False
debugflag
=
False
debugflag
=
False
analyse_condition
=
True
analyse_condition
=
True
if
mesh_study
:
# I/O CONFIG #################################################################
output_string
=
"
./output/{}-{}_timesteps{}_P{}
"
.
format
(
datestr
,
use_case
,
number_of_timesteps
,
FEM_Lagrange_degree
)
# when number_of_timesteps is high, it might take a long time to write all
else
:
# timesteps to disk. Therefore, you can choose to only write data of every
for
tol
in
resolutions
.
values
():
# plot_timestep_every timestep to disk.
solver_tol
=
tol
plot_timestep_every
=
4
output_string
=
"
./output/{}-{}_timesteps{}_P{}_solver_tol{}
"
.
format
(
datestr
,
use_case
,
number_of_timesteps
,
FEM_Lagrange_degree
,
solver_tol
)
# Decide how many timesteps you want analysed. Analysed means, that
# subsequent errors of the L-iteration within the timestep are written out.
number_of_timesteps_to_analyse
=
5
# toggle what should be written to files
# fine grained control over data to be written to disk in the mesh study case
# as well as for a regular simuation for a fixed grid.
if
mesh_study
:
if
mesh_study
:
write_to_file
=
{
write_to_file
=
{
# output the relative errornorm (integration in space) w.r.t. an exact
# solution for each timestep into a csv file.
'
space_errornorms
'
:
True
,
'
space_errornorms
'
:
True
,
# save the mesh and marker functions to disk
'
meshes_and_markers
'
:
True
,
'
meshes_and_markers
'
:
True
,
'
L_iterations_per_timestep
'
:
True
,
# save xdmf/h5 data for each LDD iteration for timesteps determined by
# number_of_timesteps_to_analyse. I/O intensive!
'
L_iterations_per_timestep
'
:
False
,
# save solution to xdmf/h5.
'
solutions
'
:
True
,
'
solutions
'
:
True
,
# save absolute differences w.r.t an exact solution to xdmf/h5 file
# to monitor where on the domains errors happen
'
absolute_differences
'
:
True
,
'
absolute_differences
'
:
True
,
# analyise condition numbers for timesteps determined by
# number_of_timesteps_to_analyse and save them over time to csv.
'
condition_numbers
'
:
analyse_condition
,
'
condition_numbers
'
:
analyse_condition
,
# output subsequent iteration errors measured in L^2 to csv for
# timesteps determined by number_of_timesteps_to_analyse.
# Usefull to monitor convergence of the acutal LDD solver.
'
subsequent_errors
'
:
True
'
subsequent_errors
'
:
True
}
}
else
:
else
:
...
@@ -85,9 +119,20 @@ else:
...
@@ -85,9 +119,20 @@ else:
'
subsequent_errors
'
:
True
'
subsequent_errors
'
:
True
}
}
# OUTPUT FILE STRING #########################################################
if
mesh_study
:
output_string
=
"
./output/{}-{}_timesteps{}_P{}
"
.
format
(
datestr
,
use_case
,
number_of_timesteps
,
FEM_Lagrange_degree
)
else
:
for
tol
in
resolutions
.
values
():
solver_tol
=
tol
output_string
=
"
./output/{}-{}_timesteps{}_P{}_solver_tol{}
"
.
format
(
datestr
,
use_case
,
number_of_timesteps
,
FEM_Lagrange_degree
,
solver_tol
)
#
#### Domain and Interface
####
#
DOMAIN AND INTERFACE ###################################################
####
# global simulation domain domain
# global simulation domain domain
sub_domain0_vertices
=
[
df
.
Point
(
-
1.0
,
-
1.0
),
sub_domain0_vertices
=
[
df
.
Point
(
-
1.0
,
-
1.0
),
df
.
Point
(
1.0
,
-
1.0
),
df
.
Point
(
1.0
,
-
1.0
),
...
@@ -181,28 +226,19 @@ gravity_acceleration = 9.81
...
@@ -181,28 +226,19 @@ gravity_acceleration = 9.81
L
=
{
#
L
=
{
#
# subdom_num : subdomain L for L-scheme
# subdom_num : subdomain L for L-scheme
1
:
{
'
wetting
'
:
Lw
,
1
:
{
'
wetting
'
:
Lw
1
,
'
nonwetting
'
:
Lnw
},
#
'
nonwetting
'
:
Lnw
1
},
#
2
:
{
'
wetting
'
:
Lw
,
2
:
{
'
wetting
'
:
Lw
2
,
'
nonwetting
'
:
Lnw
}
'
nonwetting
'
:
Lnw
2
}
}
}
lambda_param
=
{
#
lambda_param
=
{
#
# subdom_num : lambda parameter for the L-scheme
# subdom_num : lambda parameter for the L-scheme
1
:
{
'
wetting
'
:
lambda_w
,
0
:
{
'
wetting
'
:
lambda_w
,
'
nonwetting
'
:
lambda_nw
},
#
'
nonwetting
'
:
lambda_nw
},
#
2
:
{
'
wetting
'
:
lambda_w
,
'
nonwetting
'
:
lambda_nw
}
}
}
# intrinsic_permeability = {
# 1: {"wetting": 1,
# "nonwetting": 1},
# 2: {"wetting": 1,
# "nonwetting": 1},
# }
intrinsic_permeability
=
{
intrinsic_permeability
=
{
1
:
1
,
1
:
1
,
2
:
1
,
2
:
1
,
...
@@ -229,7 +265,7 @@ def rel_perm2w(s):
...
@@ -229,7 +265,7 @@ def rel_perm2w(s):
# relative permeabilty wetting on subdomain2
# relative permeabilty wetting on subdomain2
return
intrinsic_permeability
[
2
]
*
s
**
3
return
intrinsic_permeability
[
2
]
*
s
**
3
def
rel_perm2nw
(
s
):
def
rel_perm2nw
(
s
):
# relative permeabilty nonwetting on subdo
sym.cos(0.8*t - (0.8*x + 1/7*y))
main2
# relative permeabilty nonwetting on subdomain2
return
intrinsic_permeability
[
2
]
*
(
1
-
s
)
**
3
return
intrinsic_permeability
[
2
]
*
(
1
-
s
)
**
3
_rel_perm2w
=
ft
.
partial
(
rel_perm2w
)
_rel_perm2w
=
ft
.
partial
(
rel_perm2w
)
...
@@ -442,7 +478,7 @@ dirichletBC = dict()
...
@@ -442,7 +478,7 @@ dirichletBC = dict()
# subdomain index: {outer boudary part index: {phase: expression}}
# subdomain index: {outer boudary part index: {phase: expression}}
for
subdomain
in
isRichards
.
keys
():
for
subdomain
in
isRichards
.
keys
():
#
if
subdomain
has no outer boundary,
outer
_
boundary
_def_points[subdomain] is None
# subdomain
can have no
outer
boundary
if
outer_boundary_def_points
[
subdomain
]
is
None
:
if
outer_boundary_def_points
[
subdomain
]
is
None
:
dirichletBC
.
update
({
subdomain
:
None
})
dirichletBC
.
update
({
subdomain
:
None
})
else
:
else
:
...
@@ -455,13 +491,9 @@ for subdomain in isRichards.keys():
...
@@ -455,13 +491,9 @@ for subdomain in isRichards.keys():
)
)
# def saturation(pressure, subdomain_index):
# read this file and print it to std out. This way the simulation can produce a
# # inverse capillary pressure-saturation-relationship
# log file with ./TP-R-layered_soil.py | tee simulation.log
# return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1)
f
=
open
(
thisfile
,
'
r
'
)
#
# sa
f
=
open
(
'
TP-R-2-patch-mesh-study.py
'
,
'
r
'
)
print
(
f
.
read
())
print
(
f
.
read
())
f
.
close
()
f
.
close
()
...
@@ -478,7 +510,8 @@ for starttime in starttimes:
...
@@ -478,7 +510,8 @@ for starttime in starttimes:
mesh_study
=
mesh_study
mesh_study
=
mesh_study
)
)
simulation
.
set_parameters
(
use_case
=
use_case
,
simulation
.
set_parameters
(
use_case
=
use_case
,
output_dir
=
output_string
,
output_dir
=
output_string
,
subdomain_def_points
=
subdomain_def_points
,
subdomain_def_points
=
subdomain_def_points
,
isRichards
=
isRichards
,
isRichards
=
isRichards
,
...
@@ -512,9 +545,11 @@ for starttime in starttimes:
...
@@ -512,9 +545,11 @@ for starttime in starttimes:
output
=
simulation
.
run
(
analyse_condition
=
analyse_condition
)
output
=
simulation
.
run
(
analyse_condition
=
analyse_condition
)
for
subdomain_index
,
subdomain_output
in
output
.
items
():
for
subdomain_index
,
subdomain_output
in
output
.
items
():
mesh_h
=
subdomain_output
[
'
mesh_size
'
]
mesh_h
=
subdomain_output
[
'
mesh_size
'
]
for
phase
,
different_errornorms
in
subdomain_output
[
'
errornorm
'
].
items
():
for
phase
,
error_dict
in
subdomain_output
[
'
errornorm
'
].
items
():
filename
=
output_dir
+
"
subdomain{}-space-time-errornorm-{}-phase.csv
"
.
format
(
subdomain_index
,
phase
)
filename
=
output_dir
\
# for errortype, errornorm in different_errornorms.items():
+
"
subdomain{}
"
.
format
(
subdomain_index
)
\
+
"
-space-time-errornorm-{}-phase.csv
"
.
format
(
phase
)
# for errortype, errornorm in error_dict.items():
# eocfile = open("eoc_filename", "a")
# eocfile = open("eoc_filename", "a")
# eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" )
# eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" )
...
@@ -524,14 +559,25 @@ for starttime in starttimes:
...
@@ -524,14 +559,25 @@ for starttime in starttimes:
'
mesh_parameter
'
:
mesh_resolution
,
'
mesh_parameter
'
:
mesh_resolution
,
'
mesh_h
'
:
mesh_h
,
'
mesh_h
'
:
mesh_h
,
}
}
for
err
or_type
,
errornorm
s
in
different_errornorms
.
items
():
for
n
or
m
_type
,
errornorm
in
error_dict
.
items
():
data_dict
.
update
(
data_dict
.
update
(
{
err
or_type
:
errornorm
s
}
{
n
or
m
_type
:
errornorm
}
)
)
errors
=
pd
.
DataFrame
(
data_dict
,
index
=
[
mesh_resolution
])
errors
=
pd
.
DataFrame
(
data_dict
,
index
=
[
mesh_resolution
])
# check if file exists
# check if file exists
if
os
.
path
.
isfile
(
filename
)
==
True
:
if
os
.
path
.
isfile
(
filename
)
is
True
:
with
open
(
filename
,
'
a
'
)
as
f
:
with
open
(
filename
,
'
a
'
)
as
f
:
errors
.
to_csv
(
f
,
header
=
False
,
sep
=
'
\t
'
,
encoding
=
'
utf-8
'
,
index
=
False
)
errors
.
to_csv
(
f
,
header
=
False
,
sep
=
'
\t
'
,
encoding
=
'
utf-8
'
,
index
=
False
)
else
:
else
:
errors
.
to_csv
(
filename
,
sep
=
'
\t
'
,
encoding
=
'
utf-8
'
,
index
=
False
)
errors
.
to_csv
(
filename
,
sep
=
'
\t
'
,
encoding
=
'
utf-8
'
,
index
=
False
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment