Skip to content
Snippets Groups Projects
Commit 19afee6c authored by David's avatar David
Browse files

set up pure dd mesh study

parent 12192742
No related branches found
No related tags found
No related merge requests found
#!/usr/bin/python3
"""Layered soil simulation with inner patch.
This program sets up an LDD simulation
"""
import dolfin as df
import sympy as sym
import functools as ft
import LDDsimulation as ldd
import helpers as hlp
import datetime
import os
import pandas as pd
# check if output directory exists
if not os.path.exists('./output'):
os.mkdir('./output')
print("Directory ", './output', " created ")
else:
print("Directory ", './output', " already exists. Will use as output \
directory")
date = datetime.datetime.now()
datestr = date.strftime("%Y-%m-%d")
# init sympy session
sym.init_printing()
# solver_tol = 6E-7
use_case = "TP-R-layered-soil-with-inner-patch-pure-dd"
# name of this very file. Needed for log output.
thisfile = "TP-R-layered_soil_with_inner_patch-pure-dd-mesh-study.py"
max_iter_num = 300
FEM_Lagrange_degree = 1
mesh_study = True
resolutions = {
1: 5e-6, # h=2
2: 5e-6, # h=1.1180
4: 5e-6, # h=0.5590
8: 5e-6, # h=0.2814
16: 5e-6, # h=0.1412
32: 5e-6,
64: 5e-6,
128: 5e-6
}
# GRID #######################
# mesh_resolution = 20
timestep_size = 0.001
number_of_timesteps = 800
plot_timestep_every = 4
# decide how many timesteps you want analysed. Analysed means, that we write
# out subsequent errors of the L-iteration within the timestep.
number_of_timesteps_to_analyse = 5
starttimes = [0.0]
Lw1 = 0.25 # /timestep_size
Lnw1 = Lw1
Lw2 = 0.25 # /timestep_size
Lnw2 = Lw2
Lw3 = 0.25 # /timestep_size
Lnw3 = Lw3
Lw4 = 0.25 # /timestep_size
Lnw4 = Lw4
Lw5 = 0.25 # /timestep_size
Lnw5 = Lw5
Lw6 = 0.25 # /timestep_size
Lnw6 = Lw6
lambda12_w = 4
lambda12_nw = 4
lambda23_w = 4
lambda23_nw = 4
lambda24_w = 4
lambda24_nw= 4
lambda25_w= 4
lambda25_nw= 4
lambda34_w = 4
lambda34_nw = 4
lambda36_w = 4
lambda36_nw = 4
lambda45_w = 4
lambda45_nw = 4
lambda46_w = 4
lambda46_nw = 4
lambda56_w = 4
lambda56_nw = 4
include_gravity = False
debugflag = True
analyse_condition = True
if mesh_study:
output_string = "./output/{}-{}_timesteps{}_P{}".format(
datestr, use_case, number_of_timesteps, FEM_Lagrange_degree
)
else:
for tol in resolutions.values():
solver_tol = tol
output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format(
datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol
)
# toggle what should be written to files
if mesh_study:
write_to_file = {
'space_errornorms': True,
'meshes_and_markers': True,
'L_iterations_per_timestep': True,
'solutions': True,
'absolute_differences': True,
'condition_numbers': analyse_condition,
'subsequent_errors': True
}
else:
write_to_file = {
'space_errornorms': True,
'meshes_and_markers': True,
'L_iterations_per_timestep': True,
'solutions': True,
'absolute_differences': True,
'condition_numbers': analyse_condition,
'subsequent_errors': True
}
# global domain
subdomain0_vertices = [df.Point(-1.0,-1.0), #
df.Point(1.0,-1.0),#
df.Point(1.0,1.0),#
df.Point(-1.0,1.0)]
interface12_vertices = [df.Point(-1.0, 0.8),
df.Point(0.3, 0.8),
df.Point(0.5, 0.9),
df.Point(0.8, 0.7),
df.Point(1.0, 0.65)]
# interface23
interface23_vertices = [df.Point(-1.0, 0.0),
df.Point(-0.35, 0.0),
# df.Point(6.5, 4.5),
df.Point(0.0, 0.0)]
interface24_vertices = [interface23_vertices[2],
df.Point(0.6, 0.0),
]
interface25_vertices = [interface24_vertices[1],
df.Point(1.0, 0.0)
]
interface32_vertices = [interface23_vertices[2],
interface23_vertices[1],
interface23_vertices[0]]
interface36_vertices = [df.Point(-1.0, -0.6),
df.Point(-0.6, -0.45)]
interface46_vertices = [interface36_vertices[1],
df.Point(0.3, -0.25)]
interface56_vertices = [interface46_vertices[1],
df.Point(0.65, -0.6),
df.Point(1.0, -0.7)]
interface34_vertices = [interface36_vertices[1],
interface23_vertices[2]]
# interface36
interface45_vertices = [interface56_vertices[0],
df.Point(0.7, -0.2),
interface25_vertices[0]
]
# interface_vertices introduces a global numbering of interfaces.
interface_def_points = [interface12_vertices,
interface23_vertices,
interface24_vertices,
interface25_vertices,
interface34_vertices,
interface36_vertices,
interface45_vertices,
interface46_vertices,
interface56_vertices,
]
adjacent_subdomains = [[1,2],
[2,3],
[2,4],
[2,5],
[3,4],
[3,6],
[4,5],
[4,6],
[5,6]
]
# subdomain1.
subdomain1_vertices = [interface12_vertices[0],
interface12_vertices[1],
interface12_vertices[2],
interface12_vertices[3],
interface12_vertices[4], # southern boundary, 12 interface
subdomain0_vertices[2], # eastern boundary, outer boundary
subdomain0_vertices[3]] # northern boundary, outer on_boundary
# vertex coordinates of the outer boundaries. If it can not be specified as a
# polygon, use an entry per boundary polygon.
# This information is used for defining
# the Dirichlet boundary conditions. If a domain is completely internal, the
# dictionary entry should be 0: None
subdomain1_outer_boundary_verts = {
0: [subdomain1_vertices[4],
subdomain1_vertices[5], # eastern boundary, outer boundary
subdomain1_vertices[6],
subdomain1_vertices[0]]
}
#subdomain1
subdomain2_vertices = [interface23_vertices[0],
interface23_vertices[1],
interface23_vertices[2],
interface24_vertices[1],
interface25_vertices[1], # southern boundary, 23 interface
subdomain1_vertices[4], # eastern boundary, outer boundary
subdomain1_vertices[3],
subdomain1_vertices[2],
subdomain1_vertices[1],
subdomain1_vertices[0] ] # northern boundary, 12 interface
subdomain2_outer_boundary_verts = {
0: [subdomain2_vertices[9],
subdomain2_vertices[0]],
1: [subdomain2_vertices[4],
subdomain2_vertices[5]]
}
subdomain3_vertices = [interface36_vertices[0],
interface36_vertices[1],
# interface34_vertices[0],
interface34_vertices[1],
# interface32_vertices[0],
interface32_vertices[1],
interface32_vertices[2]
]
subdomain3_outer_boundary_verts = {
0: [subdomain3_vertices[4],
subdomain3_vertices[0]]
}
# subdomain3
subdomain4_vertices = [interface46_vertices[0],
interface46_vertices[1],
interface45_vertices[1],
interface24_vertices[1],
interface24_vertices[0],
interface34_vertices[1]
]
subdomain4_outer_boundary_verts = None
subdomain5_vertices = [interface56_vertices[0],
interface56_vertices[1],
interface56_vertices[2],
interface25_vertices[1],
interface25_vertices[0],
interface45_vertices[1],
interface45_vertices[0]
]
subdomain5_outer_boundary_verts = {
0: [subdomain5_vertices[2],
subdomain5_vertices[3]]
}
subdomain6_vertices = [subdomain0_vertices[0],
subdomain0_vertices[1], # southern boundary, outer boundary
interface56_vertices[2],
interface56_vertices[1],
interface56_vertices[0],
interface36_vertices[1],
interface36_vertices[0]
]
subdomain6_outer_boundary_verts = {
0: [subdomain6_vertices[6],
subdomain6_vertices[0],
subdomain6_vertices[1],
subdomain6_vertices[2]]
}
subdomain_def_points = [subdomain0_vertices,#
subdomain1_vertices,#
subdomain2_vertices,#
subdomain3_vertices,#
subdomain4_vertices,
subdomain5_vertices,
subdomain6_vertices
]
# if a subdomain has no outer boundary write None instead, i.e.
# i: None
# if i is the index of the inner subdomain.
outer_boundary_def_points = {
# subdomain number
1: subdomain1_outer_boundary_verts,
2: subdomain2_outer_boundary_verts,
3: subdomain3_outer_boundary_verts,
4: subdomain4_outer_boundary_verts,
5: subdomain5_outer_boundary_verts,
6: subdomain6_outer_boundary_verts
}
isRichards = {
1: True,
2: True,
3: False,
4: False,
5: False,
6: False
}
# isRichards = {
# 1: True,
# 2: True,
# 3: True,
# 4: True,
# 5: True,
# 6: True
# }
# Dict of the form: { subdom_num : viscosity }
viscosity = {
1: {'wetting' :1,
'nonwetting': 1},
2: {'wetting' :1,
'nonwetting': 1},
3: {'wetting' :1,
'nonwetting': 1},
4: {'wetting' :1,
'nonwetting': 1},
5: {'wetting' :1,
'nonwetting': 1},
6: {'wetting' :1,
'nonwetting': 1},
}
# Dict of the form: { subdom_num : density }
densities = {
1: {'wetting': 1, #997
'nonwetting': 1}, #1}, #1.225},
2: {'wetting': 1, #997
'nonwetting': 1}, #1.225},
3: {'wetting': 1, #997
'nonwetting': 1}, #1.225},
4: {'wetting': 1, #997
'nonwetting': 1}, #1.225}
5: {'wetting': 1, #997
'nonwetting': 1}, #1.225},
6: {'wetting': 1, #997
'nonwetting': 1} #1.225}
}
gravity_acceleration = 9.81
# porosities taken from
# https://www.geotechdata.info/parameter/soil-porosity.html
# Dict of the form: { subdom_num : porosity }
porosity = {
1: 1, #0.2, # Clayey gravels, clayey sandy gravels
2: 1, #0.22, # Silty gravels, silty sandy gravels
3: 1, #0.37, # Clayey sands
4: 1, #0.2 # Silty or sandy clay
5: 1, #
6: 1, #
}
# subdom_num : subdomain L for L-scheme
L = {
1: {'wetting' :Lw1,
'nonwetting': Lnw1},
2: {'wetting' :Lw2,
'nonwetting': Lnw2},
3: {'wetting' :Lw3,
'nonwetting': Lnw3},
4: {'wetting' :Lw4,
'nonwetting': Lnw4},
5: {'wetting' :Lw5,
'nonwetting': Lnw5},
6: {'wetting' :Lw6,
'nonwetting': Lnw6}
}
# interface_num : lambda parameter for the L-scheme on that interface.
# Note that interfaces are numbered starting from 0, because
# adjacent_subdomains is a list and not a dict. Historic fuckup, I know
# We have defined above as interfaces
# # interface_vertices introduces a global numbering of interfaces.
# interface_def_points = [interface12_vertices,
# interface23_vertices,
# interface24_vertices,
# interface25_vertices,
# interface34_vertices,
# interface36_vertices,
# interface45_vertices,
# interface46_vertices,
# interface56_vertices,
# ]
lambda_param = {
0: {'wetting': lambda12_w,
'nonwetting': lambda12_nw},#
1: {'wetting': lambda23_w,
'nonwetting': lambda23_nw},#
2: {'wetting': lambda24_w,
'nonwetting': lambda24_nw},#
3: {'wetting': lambda25_w,
'nonwetting': lambda25_nw},#
4: {'wetting': lambda34_w,
'nonwetting': lambda34_nw},#
5: {'wetting': lambda36_w,
'nonwetting': lambda36_nw},#
6: {'wetting': lambda45_w,
'nonwetting': lambda45_nw},#
7: {'wetting': lambda46_w,
'nonwetting': lambda46_nw},#
8: {'wetting': lambda56_w,
'nonwetting': lambda56_nw},#
}
# after Lewis, see pdf file
intrinsic_permeability = {
1: 1, # sand
2: 1, # sand, there is a range
3: 1, #10e-2, # clay has a range
4: 1, #10e-3
5: 1, #10e-2, # clay has a range
6: 1, #10e-3
}
# relative permeabilty functions on subdomain 1
def rel_perm1w(s):
# relative permeabilty wetting on subdomain1
return intrinsic_permeability[1]*s**2
def rel_perm1nw(s):
# relative permeabilty nonwetting on subdomain1
return intrinsic_permeability[1]*(1-s)**2
# relative permeabilty functions on subdomain 2
def rel_perm2w(s):
# relative permeabilty wetting on subdomain2
return intrinsic_permeability[2]*s**2
def rel_perm2nw(s):
# relative permeabilty nonwetting on subdomain2
return intrinsic_permeability[2]*(1-s)**2
# relative permeabilty functions on subdomain 3
def rel_perm3w(s):
# relative permeabilty wetting on subdomain3
return intrinsic_permeability[3]*s**3
def rel_perm3nw(s):
# relative permeabilty nonwetting on subdomain3
return intrinsic_permeability[3]*(1-s)**3
# relative permeabilty functions on subdomain 4
def rel_perm4w(s):
# relative permeabilty wetting on subdomain4
return intrinsic_permeability[4]*s**3
def rel_perm4nw(s):
# relative permeabilty nonwetting on subdomain4
return intrinsic_permeability[4]*(1-s)**3
# relative permeabilty functions on subdomain 5
def rel_perm5w(s):
# relative permeabilty wetting on subdomain5
return intrinsic_permeability[5]*s**3
def rel_perm5nw(s):
# relative permeabilty nonwetting on subdomain5
return intrinsic_permeability[5]*(1-s)**3
# relative permeabilty functions on subdomain 6
def rel_perm6w(s):
# relative permeabilty wetting on subdomain6
return intrinsic_permeability[6]*s**3
def rel_perm6nw(s):
# relative permeabilty nonwetting on subdomain6
return intrinsic_permeability[6]*(1-s)**3
_rel_perm1w = ft.partial(rel_perm1w)
_rel_perm1nw = ft.partial(rel_perm1nw)
_rel_perm2w = ft.partial(rel_perm2w)
_rel_perm2nw = ft.partial(rel_perm2nw)
_rel_perm3w = ft.partial(rel_perm3w)
_rel_perm3nw = ft.partial(rel_perm3nw)
_rel_perm4w = ft.partial(rel_perm4w)
_rel_perm4nw = ft.partial(rel_perm4nw)
_rel_perm5w = ft.partial(rel_perm5w)
_rel_perm5nw = ft.partial(rel_perm5nw)
_rel_perm6w = ft.partial(rel_perm6w)
_rel_perm6nw = ft.partial(rel_perm6nw)
subdomain1_rel_perm = {
'wetting': _rel_perm1w,
'nonwetting': _rel_perm1nw
}
subdomain2_rel_perm = {
'wetting': _rel_perm2w,
'nonwetting': _rel_perm2nw
}
subdomain3_rel_perm = {
'wetting': _rel_perm3w,
'nonwetting': _rel_perm3nw
}
subdomain4_rel_perm = {
'wetting': _rel_perm4w,
'nonwetting': _rel_perm4nw
}
subdomain5_rel_perm = {
'wetting': _rel_perm5w,
'nonwetting': _rel_perm5nw
}
subdomain6_rel_perm = {
'wetting': _rel_perm6w,
'nonwetting': _rel_perm6nw
}
# dictionary of relative permeabilties on all domains.
relative_permeability = {
1: subdomain1_rel_perm,
2: subdomain2_rel_perm,
3: subdomain3_rel_perm,
4: subdomain4_rel_perm,
5: subdomain5_rel_perm,
6: subdomain6_rel_perm
}
# definition of the derivatives of the relative permeabilities
# relative permeabilty functions on subdomain 1
def rel_perm1w_prime(s):
# relative permeabilty on subdomain1
return intrinsic_permeability[1]*2*s
def rel_perm1nw_prime(s):
# relative permeabilty on subdomain1
return -1*intrinsic_permeability[1]*2*(1-s)
def rel_perm2w_prime(s):
# relative permeabilty on subdomain2
return intrinsic_permeability[2]*2*s
def rel_perm2nw_prime(s):
# relative permeabilty on subdomain2
return -1*intrinsic_permeability[2]*2*(1-s)
# definition of the derivatives of the relative permeabilities
# relative permeabilty functions on subdomain 3
def rel_perm3w_prime(s):
# relative permeabilty on subdomain3
return intrinsic_permeability[3]*3*s**2
def rel_perm3nw_prime(s):
# relative permeabilty on subdomain3
return -1*intrinsic_permeability[3]*3*(1-s)**2
# definition of the derivatives of the relative permeabilities
# relative permeabilty functions on subdomain 4
def rel_perm4w_prime(s):
# relative permeabilty on subdomain4
return intrinsic_permeability[4]*3*s**2
def rel_perm4nw_prime(s):
# relative permeabilty on subdomain4
return -1*intrinsic_permeability[4]*3*(1-s)**2
# definition of the derivatives of the relative permeabilities
# relative permeabilty functions on subdomain 5
def rel_perm5w_prime(s):
# relative permeabilty on subdomain5
return intrinsic_permeability[5]*3*s**2
def rel_perm5nw_prime(s):
# relative permeabilty on subdomain5
return -1*intrinsic_permeability[5]*3*(1-s)**2
# definition of the derivatives of the relative permeabilities
# relative permeabilty functions on subdomain 6
def rel_perm6w_prime(s):
# relative permeabilty on subdomain6
return intrinsic_permeability[6]*3*s**2
def rel_perm6nw_prime(s):
# relative permeabilty on subdomain6
return -1*intrinsic_permeability[6]*3*(1-s)**2
_rel_perm1w_prime = ft.partial(rel_perm1w_prime)
_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime)
_rel_perm2w_prime = ft.partial(rel_perm2w_prime)
_rel_perm2nw_prime = ft.partial(rel_perm2nw_prime)
_rel_perm3w_prime = ft.partial(rel_perm3w_prime)
_rel_perm3nw_prime = ft.partial(rel_perm3nw_prime)
_rel_perm4w_prime = ft.partial(rel_perm4w_prime)
_rel_perm4nw_prime = ft.partial(rel_perm4nw_prime)
_rel_perm5w_prime = ft.partial(rel_perm5w_prime)
_rel_perm5nw_prime = ft.partial(rel_perm5nw_prime)
_rel_perm6w_prime = ft.partial(rel_perm6w_prime)
_rel_perm6nw_prime = ft.partial(rel_perm6nw_prime)
subdomain1_rel_perm_prime = {
'wetting': _rel_perm1w_prime,
'nonwetting': _rel_perm1nw_prime
}
subdomain2_rel_perm_prime = {
'wetting': _rel_perm2w_prime,
'nonwetting': _rel_perm2nw_prime
}
subdomain3_rel_perm_prime = {
'wetting': _rel_perm3w_prime,
'nonwetting': _rel_perm3nw_prime
}
subdomain4_rel_perm_prime = {
'wetting': _rel_perm4w_prime,
'nonwetting': _rel_perm4nw_prime
}
subdomain5_rel_perm_prime = {
'wetting': _rel_perm5w_prime,
'nonwetting': _rel_perm5nw_prime
}
subdomain6_rel_perm_prime = {
'wetting': _rel_perm6w_prime,
'nonwetting': _rel_perm6nw_prime
}
# dictionary of relative permeabilties on all domains.
ka_prime = {
1: subdomain1_rel_perm_prime,
2: subdomain2_rel_perm_prime,
3: subdomain3_rel_perm_prime,
4: subdomain4_rel_perm_prime,
5: subdomain5_rel_perm_prime,
6: subdomain6_rel_perm_prime,
}
# S-pc-relation ship. We use the van Genuchten approach, i.e.
# pc = 1/alpha*(S^{-1/m} -1)^1/n, where we set alpha = 0, assume
# m = 1-1/n (see Helmig) and assume that residual saturation is Sw
# this function needs to be monotonically decreasing in the capillary pressure
# pc.
# Since in the richards case pc=-pw, this becomes as a function of pw a mono
# tonically INCREASING function like in our Richards-Richards paper. However
# since we unify the treatment in the code for Richards and two-phase, we need
# the same requierment
# for both cases, two-phase and Richards.
# def saturation(pc, n_index, alpha):
# # inverse capillary pressure-saturation-relationship
# return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1)
#
# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where
# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw
# def saturation_sym(pc, n_index, alpha):
# # inverse capillary pressure-saturation-relationship
# #df.conditional(pc > 0,
# return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index))
#
#
# # derivative of S-pc relationship with respect to pc. This is needed for the
# # construction of a analytic solution.
# def saturation_sym_prime(pc, n_index, alpha):
# # inverse capillary pressure-saturation-relationship
# return -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1)) / ( (1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index) )
##
# # note that the conditional definition of S-pc in the nonsymbolic part will be
# # incorporated in the construction of the exact solution below.
# S_pc_sym = {
# 1: ft.partial(saturation_sym, n_index=3, alpha=0.001),
# 2: ft.partial(saturation_sym, n_index=3, alpha=0.001),
# 3: ft.partial(saturation_sym, n_index=3, alpha=0.001),
# 4: ft.partial(saturation_sym, n_index=3, alpha=0.001),
# 5: ft.partial(saturation_sym, n_index=3, alpha=0.001),
# 6: ft.partial(saturation_sym, n_index=3, alpha=0.001)
# }
#
# S_pc_sym_prime = {
# 1: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
# 2: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
# 3: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
# 4: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
# 5: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
# 6: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001)
# }
#
# sat_pressure_relationship = {
# 1: ft.partial(saturation, n_index=3, alpha=0.001),
# 2: ft.partial(saturation, n_index=3, alpha=0.001),
# 3: ft.partial(saturation, n_index=3, alpha=0.001),
# 4: ft.partial(saturation, n_index=3, alpha=0.001),
# 5: ft.partial(saturation, n_index=3, alpha=0.001),
# 6: ft.partial(saturation, n_index=3, alpha=0.001)
# }
def saturation(pc, n_index):
# inverse capillary pressure-saturation-relationship
return df.conditional(pc > 0, 1/((1 + pc)**(1/(n_index + 1))), 1)
def saturation_sym(pc, n_index):
# inverse capillary pressure-saturation-relationship
return 1/((1 + pc)**(1/(n_index + 1)))
def saturation_sym_prime(pc, n_index):
# inverse capillary pressure-saturation-relationship
return -1/((n_index+1)*(1 + pc)**((n_index+2)/(n_index+1)))
S_pc_sym = {
1: ft.partial(saturation_sym, n_index=1),
2: ft.partial(saturation_sym, n_index=1),
3: ft.partial(saturation_sym, n_index=2),
4: ft.partial(saturation_sym, n_index=2),
5: ft.partial(saturation_sym, n_index=2),
6: ft.partial(saturation_sym, n_index=2)
}
S_pc_sym_prime = {
1: ft.partial(saturation_sym_prime, n_index=1),
2: ft.partial(saturation_sym_prime, n_index=1),
3: ft.partial(saturation_sym_prime, n_index=2),
4: ft.partial(saturation_sym_prime, n_index=2),
5: ft.partial(saturation_sym_prime, n_index=2),
6: ft.partial(saturation_sym_prime, n_index=2)
}
sat_pressure_relationship = {
1: ft.partial(saturation, n_index=1),
2: ft.partial(saturation, n_index=1),
3: ft.partial(saturation, n_index=2),
4: ft.partial(saturation, n_index=2),
5: ft.partial(saturation, n_index=2),
6: ft.partial(saturation, n_index=2)
}
#############################################
# Manufacture source expressions with sympy #
#############################################
x, y = sym.symbols('x[0], x[1]') # needed by UFL
t = sym.symbols('t', positive=True)
p_e_sym = {
1: {'wetting': (-7.0 - (1.0 + t*t)*(1.0 + x*x + y*y)),
'nonwetting': 0.0*t },
2: {'wetting': (-7.0 - (1.0 + t*t)*(1.0 + x*x + y*y)),
'nonwetting': 0.0*t },
3: {'wetting': (-7.0 - (1.0 + t*t)*(1.0 + x*x + y*y)),
'nonwetting': (-1 -t*(1 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2)*y**2 },
4: {'wetting': (-7.0 - (1.0 + t*t)*(1.0 + x*x + y*y)),
'nonwetting': (-1 -t*(1 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2)*y**2 },
5: {'wetting': (-7.0 - (1.0 + t*t)*(1.0 + x*x + y*y)),
'nonwetting': (-1 -t*(1 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2)*y**2 },
6: {'wetting': (-7.0 - (1.0 + t*t)*(1.0 + x*x + y*y)),
'nonwetting': (-1 -t*(1 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2)*y**2 },
}
pc_e_sym = dict()
for subdomain, isR in isRichards.items():
if isR:
pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']})
else:
pc_e_sym.update(
{subdomain: p_e_sym[subdomain]['nonwetting']
- p_e_sym[subdomain]['wetting']}
)
symbols = {"x": x,
"y": y,
"t": t}
# turn above symbolic code into exact solution for dolphin and
# construct the rhs that matches the above exact solution.
exact_solution_example = hlp.generate_exact_solution_expressions(
symbols=symbols,
isRichards=isRichards,
symbolic_pressure=p_e_sym,
symbolic_capillary_pressure=pc_e_sym,
saturation_pressure_relationship=S_pc_sym,
saturation_pressure_relationship_prime=S_pc_sym_prime,
viscosity=viscosity,
porosity=porosity,
relative_permeability=relative_permeability,
relative_permeability_prime=ka_prime,
densities=densities,
gravity_acceleration=gravity_acceleration,
include_gravity=include_gravity,
)
source_expression = exact_solution_example['source']
exact_solution = exact_solution_example['exact_solution']
initial_condition = exact_solution_example['initial_condition']
# Dictionary of dirichlet boundary conditions.
dirichletBC = dict()
# similarly to the outer boundary dictionary, if a patch has no outer boundary
# None should be written instead of an expression.
# This is a bit of a brainfuck:
# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind.
# Since a domain patch can have several disjoint outer boundary parts, the
# expressions need to get an enumaration index which starts at 0.
# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of
# subdomain ind and boundary part j.
# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting']
# return the actual expression needed for the dirichlet condition for both
# phases if present.
# subdomain index: {outer boudary part index: {phase: expression}}
for subdomain in isRichards.keys():
# if subdomain has no outer boundary, outer_boundary_def_points[subdomain]
# is None
if outer_boundary_def_points[subdomain] is None:
dirichletBC.update({subdomain: None})
else:
dirichletBC.update({subdomain: dict()})
# set the dirichlet conditions to be the same code as exact solution on
# the subdomain.
for outer_boundary_ind in outer_boundary_def_points[subdomain].keys():
dirichletBC[subdomain].update(
{outer_boundary_ind: exact_solution[subdomain]}
)
# read this file and print it to std out. This way the simulation can produce a
# log file with ./TP-R-layered_soil.py | tee simulation.log
f = open(thisfile, 'r')
print(f.read())
f.close()
for starttime in starttimes:
for mesh_resolution, solver_tol in resolutions.items():
# initialise LDD simulation class
simulation = ldd.LDDsimulation(
tol=1E-14,
LDDsolver_tol=solver_tol,
debug=debugflag,
max_iter_num=max_iter_num,
FEM_Lagrange_degree=FEM_Lagrange_degree,
mesh_study=mesh_study
)
simulation.set_parameters(
use_case=use_case,
output_dir=output_string,
subdomain_def_points=subdomain_def_points,
isRichards=isRichards,
interface_def_points=interface_def_points,
outer_boundary_def_points=outer_boundary_def_points,
adjacent_subdomains=adjacent_subdomains,
mesh_resolution=mesh_resolution,
viscosity=viscosity,
porosity=porosity,
L=L,
lambda_param=lambda_param,
relative_permeability=relative_permeability,
saturation=sat_pressure_relationship,
starttime=starttime,
number_of_timesteps=number_of_timesteps,
number_of_timesteps_to_analyse=number_of_timesteps_to_analyse,
plot_timestep_every=plot_timestep_every,
timestep_size=timestep_size,
sources=source_expression,
initial_conditions=initial_condition,
dirichletBC_expression_strings=dirichletBC,
exact_solution=exact_solution,
densities=densities,
include_gravity=include_gravity,
write2file=write_to_file,
)
simulation.initialise()
output_dir = simulation.output_dir
# simulation.write_exact_solution_to_xdmf()
output = simulation.run(analyse_condition=analyse_condition)
for subdomain_index, subdomain_output in output.items():
mesh_h = subdomain_output['mesh_size']
for phase, error_dict in subdomain_output['errornorm'].items():
filename = output_dir \
+ "subdomain{}".format(subdomain_index)\
+ "-space-time-errornorm-{}-phase.csv".format(phase)
# for errortype, errornorm in error_dict.items():
# eocfile = open("eoc_filename", "a")
# eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" )
# eocfile.close()
# if subdomain.isRichards:mesh_h
data_dict = {
'mesh_parameter': mesh_resolution,
'mesh_h': mesh_h,
}
for norm_type, errornorm in error_dict.items():
data_dict.update(
{norm_type: errornorm}
)
errors = pd.DataFrame(data_dict, index=[mesh_resolution])
# check if file exists
if os.path.isfile(filename) is True:
with open(filename, 'a') as f:
errors.to_csv(
f,
header=False,
sep='\t',
encoding='utf-8',
index=False
)
else:
errors.to_csv(
filename,
sep='\t',
encoding='utf-8',
index=False
)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment