diff --git a/Two-phase-Richards/multi-patch/layered_soil_with_inner_patch/mesh_study/TP-R-layered_soil_with_inner_patch-pure-dd-mesh-study.py b/Two-phase-Richards/multi-patch/layered_soil_with_inner_patch/mesh_study/TP-R-layered_soil_with_inner_patch-pure-dd-mesh-study.py new file mode 100755 index 0000000000000000000000000000000000000000..1440ff51ee14c4e9a5869d37072473ebf8897ef4 --- /dev/null +++ b/Two-phase-Richards/multi-patch/layered_soil_with_inner_patch/mesh_study/TP-R-layered_soil_with_inner_patch-pure-dd-mesh-study.py @@ -0,0 +1,1003 @@ +#!/usr/bin/python3 +"""Layered soil simulation with inner patch. + +This program sets up an LDD simulation +""" + +import dolfin as df +import sympy as sym +import functools as ft +import LDDsimulation as ldd +import helpers as hlp +import datetime +import os +import pandas as pd + +# check if output directory exists +if not os.path.exists('./output'): + os.mkdir('./output') + print("Directory ", './output', " created ") +else: + print("Directory ", './output', " already exists. Will use as output \ + directory") + + +date = datetime.datetime.now() +datestr = date.strftime("%Y-%m-%d") + +# init sympy session +sym.init_printing() +# solver_tol = 6E-7 +use_case = "TP-R-layered-soil-with-inner-patch-pure-dd" +# name of this very file. Needed for log output. +thisfile = "TP-R-layered_soil_with_inner_patch-pure-dd-mesh-study.py" + +max_iter_num = 300 +FEM_Lagrange_degree = 1 +mesh_study = True +resolutions = { + 1: 5e-6, # h=2 + 2: 5e-6, # h=1.1180 + 4: 5e-6, # h=0.5590 + 8: 5e-6, # h=0.2814 + 16: 5e-6, # h=0.1412 + 32: 5e-6, + 64: 5e-6, + 128: 5e-6 + } + +# GRID ####################### +# mesh_resolution = 20 +timestep_size = 0.001 +number_of_timesteps = 800 +plot_timestep_every = 4 +# decide how many timesteps you want analysed. Analysed means, that we write +# out subsequent errors of the L-iteration within the timestep. +number_of_timesteps_to_analyse = 5 +starttimes = [0.0] + +Lw1 = 0.25 # /timestep_size +Lnw1 = Lw1 + +Lw2 = 0.25 # /timestep_size +Lnw2 = Lw2 + +Lw3 = 0.25 # /timestep_size +Lnw3 = Lw3 + +Lw4 = 0.25 # /timestep_size +Lnw4 = Lw4 + +Lw5 = 0.25 # /timestep_size +Lnw5 = Lw5 + +Lw6 = 0.25 # /timestep_size +Lnw6 = Lw6 + +lambda12_w = 4 +lambda12_nw = 4 + +lambda23_w = 4 +lambda23_nw = 4 + +lambda24_w = 4 +lambda24_nw= 4 + +lambda25_w= 4 +lambda25_nw= 4 + +lambda34_w = 4 +lambda34_nw = 4 + +lambda36_w = 4 +lambda36_nw = 4 + +lambda45_w = 4 +lambda45_nw = 4 + +lambda46_w = 4 +lambda46_nw = 4 + +lambda56_w = 4 +lambda56_nw = 4 + +include_gravity = False +debugflag = True +analyse_condition = True + +if mesh_study: + output_string = "./output/{}-{}_timesteps{}_P{}".format( + datestr, use_case, number_of_timesteps, FEM_Lagrange_degree + ) +else: + for tol in resolutions.values(): + solver_tol = tol + output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format( + datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol + ) + + +# toggle what should be written to files +if mesh_study: + write_to_file = { + 'space_errornorms': True, + 'meshes_and_markers': True, + 'L_iterations_per_timestep': True, + 'solutions': True, + 'absolute_differences': True, + 'condition_numbers': analyse_condition, + 'subsequent_errors': True + } +else: + write_to_file = { + 'space_errornorms': True, + 'meshes_and_markers': True, + 'L_iterations_per_timestep': True, + 'solutions': True, + 'absolute_differences': True, + 'condition_numbers': analyse_condition, + 'subsequent_errors': True + } + + +# global domain +subdomain0_vertices = [df.Point(-1.0,-1.0), # + df.Point(1.0,-1.0),# + df.Point(1.0,1.0),# + df.Point(-1.0,1.0)] + +interface12_vertices = [df.Point(-1.0, 0.8), + df.Point(0.3, 0.8), + df.Point(0.5, 0.9), + df.Point(0.8, 0.7), + df.Point(1.0, 0.65)] + + + # interface23 +interface23_vertices = [df.Point(-1.0, 0.0), + df.Point(-0.35, 0.0), + # df.Point(6.5, 4.5), + df.Point(0.0, 0.0)] + +interface24_vertices = [interface23_vertices[2], + df.Point(0.6, 0.0), + ] + +interface25_vertices = [interface24_vertices[1], + df.Point(1.0, 0.0) + ] + + +interface32_vertices = [interface23_vertices[2], + interface23_vertices[1], + interface23_vertices[0]] + + +interface36_vertices = [df.Point(-1.0, -0.6), + df.Point(-0.6, -0.45)] + + +interface46_vertices = [interface36_vertices[1], + df.Point(0.3, -0.25)] + +interface56_vertices = [interface46_vertices[1], + df.Point(0.65, -0.6), + df.Point(1.0, -0.7)] + + + + +interface34_vertices = [interface36_vertices[1], + interface23_vertices[2]] +# interface36 + +interface45_vertices = [interface56_vertices[0], + df.Point(0.7, -0.2), + interface25_vertices[0] + ] + + +# interface_vertices introduces a global numbering of interfaces. +interface_def_points = [interface12_vertices, + interface23_vertices, + interface24_vertices, + interface25_vertices, + interface34_vertices, + interface36_vertices, + interface45_vertices, + interface46_vertices, + interface56_vertices, + ] + +adjacent_subdomains = [[1,2], + [2,3], + [2,4], + [2,5], + [3,4], + [3,6], + [4,5], + [4,6], + [5,6] + ] + +# subdomain1. +subdomain1_vertices = [interface12_vertices[0], + interface12_vertices[1], + interface12_vertices[2], + interface12_vertices[3], + interface12_vertices[4], # southern boundary, 12 interface + subdomain0_vertices[2], # eastern boundary, outer boundary + subdomain0_vertices[3]] # northern boundary, outer on_boundary + +# vertex coordinates of the outer boundaries. If it can not be specified as a +# polygon, use an entry per boundary polygon. +# This information is used for defining +# the Dirichlet boundary conditions. If a domain is completely internal, the +# dictionary entry should be 0: None +subdomain1_outer_boundary_verts = { + 0: [subdomain1_vertices[4], + subdomain1_vertices[5], # eastern boundary, outer boundary + subdomain1_vertices[6], + subdomain1_vertices[0]] +} + +#subdomain1 +subdomain2_vertices = [interface23_vertices[0], + interface23_vertices[1], + interface23_vertices[2], + interface24_vertices[1], + interface25_vertices[1], # southern boundary, 23 interface + subdomain1_vertices[4], # eastern boundary, outer boundary + subdomain1_vertices[3], + subdomain1_vertices[2], + subdomain1_vertices[1], + subdomain1_vertices[0] ] # northern boundary, 12 interface + +subdomain2_outer_boundary_verts = { + 0: [subdomain2_vertices[9], + subdomain2_vertices[0]], + 1: [subdomain2_vertices[4], + subdomain2_vertices[5]] +} + + +subdomain3_vertices = [interface36_vertices[0], + interface36_vertices[1], + # interface34_vertices[0], + interface34_vertices[1], + # interface32_vertices[0], + interface32_vertices[1], + interface32_vertices[2] + ] + +subdomain3_outer_boundary_verts = { + 0: [subdomain3_vertices[4], + subdomain3_vertices[0]] +} + + +# subdomain3 +subdomain4_vertices = [interface46_vertices[0], + interface46_vertices[1], + interface45_vertices[1], + interface24_vertices[1], + interface24_vertices[0], + interface34_vertices[1] + ] + +subdomain4_outer_boundary_verts = None + +subdomain5_vertices = [interface56_vertices[0], + interface56_vertices[1], + interface56_vertices[2], + interface25_vertices[1], + interface25_vertices[0], + interface45_vertices[1], + interface45_vertices[0] +] + +subdomain5_outer_boundary_verts = { + 0: [subdomain5_vertices[2], + subdomain5_vertices[3]] +} + + + +subdomain6_vertices = [subdomain0_vertices[0], + subdomain0_vertices[1], # southern boundary, outer boundary + interface56_vertices[2], + interface56_vertices[1], + interface56_vertices[0], + interface36_vertices[1], + interface36_vertices[0] + ] + +subdomain6_outer_boundary_verts = { + 0: [subdomain6_vertices[6], + subdomain6_vertices[0], + subdomain6_vertices[1], + subdomain6_vertices[2]] +} + + +subdomain_def_points = [subdomain0_vertices,# + subdomain1_vertices,# + subdomain2_vertices,# + subdomain3_vertices,# + subdomain4_vertices, + subdomain5_vertices, + subdomain6_vertices + ] + + +# if a subdomain has no outer boundary write None instead, i.e. +# i: None +# if i is the index of the inner subdomain. +outer_boundary_def_points = { + # subdomain number + 1: subdomain1_outer_boundary_verts, + 2: subdomain2_outer_boundary_verts, + 3: subdomain3_outer_boundary_verts, + 4: subdomain4_outer_boundary_verts, + 5: subdomain5_outer_boundary_verts, + 6: subdomain6_outer_boundary_verts +} + + +isRichards = { + 1: True, + 2: True, + 3: False, + 4: False, + 5: False, + 6: False + } + +# isRichards = { +# 1: True, +# 2: True, +# 3: True, +# 4: True, +# 5: True, +# 6: True +# } + +# Dict of the form: { subdom_num : viscosity } +viscosity = { + 1: {'wetting' :1, + 'nonwetting': 1}, + 2: {'wetting' :1, + 'nonwetting': 1}, + 3: {'wetting' :1, + 'nonwetting': 1}, + 4: {'wetting' :1, + 'nonwetting': 1}, + 5: {'wetting' :1, + 'nonwetting': 1}, + 6: {'wetting' :1, + 'nonwetting': 1}, +} + +# Dict of the form: { subdom_num : density } +densities = { + 1: {'wetting': 1, #997 + 'nonwetting': 1}, #1}, #1.225}, + 2: {'wetting': 1, #997 + 'nonwetting': 1}, #1.225}, + 3: {'wetting': 1, #997 + 'nonwetting': 1}, #1.225}, + 4: {'wetting': 1, #997 + 'nonwetting': 1}, #1.225} + 5: {'wetting': 1, #997 + 'nonwetting': 1}, #1.225}, + 6: {'wetting': 1, #997 + 'nonwetting': 1} #1.225} +} + +gravity_acceleration = 9.81 +# porosities taken from +# https://www.geotechdata.info/parameter/soil-porosity.html +# Dict of the form: { subdom_num : porosity } +porosity = { + 1: 1, #0.2, # Clayey gravels, clayey sandy gravels + 2: 1, #0.22, # Silty gravels, silty sandy gravels + 3: 1, #0.37, # Clayey sands + 4: 1, #0.2 # Silty or sandy clay + 5: 1, # + 6: 1, # +} + +# subdom_num : subdomain L for L-scheme +L = { + 1: {'wetting' :Lw1, + 'nonwetting': Lnw1}, + 2: {'wetting' :Lw2, + 'nonwetting': Lnw2}, + 3: {'wetting' :Lw3, + 'nonwetting': Lnw3}, + 4: {'wetting' :Lw4, + 'nonwetting': Lnw4}, + 5: {'wetting' :Lw5, + 'nonwetting': Lnw5}, + 6: {'wetting' :Lw6, + 'nonwetting': Lnw6} +} + + +# interface_num : lambda parameter for the L-scheme on that interface. +# Note that interfaces are numbered starting from 0, because +# adjacent_subdomains is a list and not a dict. Historic fuckup, I know +# We have defined above as interfaces +# # interface_vertices introduces a global numbering of interfaces. +# interface_def_points = [interface12_vertices, +# interface23_vertices, +# interface24_vertices, +# interface25_vertices, +# interface34_vertices, +# interface36_vertices, +# interface45_vertices, +# interface46_vertices, +# interface56_vertices, +# ] +lambda_param = { + 0: {'wetting': lambda12_w, + 'nonwetting': lambda12_nw},# + 1: {'wetting': lambda23_w, + 'nonwetting': lambda23_nw},# + 2: {'wetting': lambda24_w, + 'nonwetting': lambda24_nw},# + 3: {'wetting': lambda25_w, + 'nonwetting': lambda25_nw},# + 4: {'wetting': lambda34_w, + 'nonwetting': lambda34_nw},# + 5: {'wetting': lambda36_w, + 'nonwetting': lambda36_nw},# + 6: {'wetting': lambda45_w, + 'nonwetting': lambda45_nw},# + 7: {'wetting': lambda46_w, + 'nonwetting': lambda46_nw},# + 8: {'wetting': lambda56_w, + 'nonwetting': lambda56_nw},# +} + + +# after Lewis, see pdf file +intrinsic_permeability = { + 1: 1, # sand + 2: 1, # sand, there is a range + 3: 1, #10e-2, # clay has a range + 4: 1, #10e-3 + 5: 1, #10e-2, # clay has a range + 6: 1, #10e-3 +} + + +# relative permeabilty functions on subdomain 1 +def rel_perm1w(s): + # relative permeabilty wetting on subdomain1 + return intrinsic_permeability[1]*s**2 + + +def rel_perm1nw(s): + # relative permeabilty nonwetting on subdomain1 + return intrinsic_permeability[1]*(1-s)**2 + + +# relative permeabilty functions on subdomain 2 +def rel_perm2w(s): + # relative permeabilty wetting on subdomain2 + return intrinsic_permeability[2]*s**2 + + +def rel_perm2nw(s): + # relative permeabilty nonwetting on subdomain2 + return intrinsic_permeability[2]*(1-s)**2 + + +# relative permeabilty functions on subdomain 3 +def rel_perm3w(s): + # relative permeabilty wetting on subdomain3 + return intrinsic_permeability[3]*s**3 + + +def rel_perm3nw(s): + # relative permeabilty nonwetting on subdomain3 + return intrinsic_permeability[3]*(1-s)**3 + + +# relative permeabilty functions on subdomain 4 +def rel_perm4w(s): + # relative permeabilty wetting on subdomain4 + return intrinsic_permeability[4]*s**3 + + +def rel_perm4nw(s): + # relative permeabilty nonwetting on subdomain4 + return intrinsic_permeability[4]*(1-s)**3 + + +# relative permeabilty functions on subdomain 5 +def rel_perm5w(s): + # relative permeabilty wetting on subdomain5 + return intrinsic_permeability[5]*s**3 + + +def rel_perm5nw(s): + # relative permeabilty nonwetting on subdomain5 + return intrinsic_permeability[5]*(1-s)**3 + + +# relative permeabilty functions on subdomain 6 +def rel_perm6w(s): + # relative permeabilty wetting on subdomain6 + return intrinsic_permeability[6]*s**3 + + +def rel_perm6nw(s): + # relative permeabilty nonwetting on subdomain6 + return intrinsic_permeability[6]*(1-s)**3 + + +_rel_perm1w = ft.partial(rel_perm1w) +_rel_perm1nw = ft.partial(rel_perm1nw) + +_rel_perm2w = ft.partial(rel_perm2w) +_rel_perm2nw = ft.partial(rel_perm2nw) + +_rel_perm3w = ft.partial(rel_perm3w) +_rel_perm3nw = ft.partial(rel_perm3nw) + +_rel_perm4w = ft.partial(rel_perm4w) +_rel_perm4nw = ft.partial(rel_perm4nw) + +_rel_perm5w = ft.partial(rel_perm5w) +_rel_perm5nw = ft.partial(rel_perm5nw) + +_rel_perm6w = ft.partial(rel_perm6w) +_rel_perm6nw = ft.partial(rel_perm6nw) + +subdomain1_rel_perm = { + 'wetting': _rel_perm1w, + 'nonwetting': _rel_perm1nw +} + +subdomain2_rel_perm = { + 'wetting': _rel_perm2w, + 'nonwetting': _rel_perm2nw +} + +subdomain3_rel_perm = { + 'wetting': _rel_perm3w, + 'nonwetting': _rel_perm3nw +} + +subdomain4_rel_perm = { + 'wetting': _rel_perm4w, + 'nonwetting': _rel_perm4nw +} + +subdomain5_rel_perm = { + 'wetting': _rel_perm5w, + 'nonwetting': _rel_perm5nw +} + +subdomain6_rel_perm = { + 'wetting': _rel_perm6w, + 'nonwetting': _rel_perm6nw +} + +# dictionary of relative permeabilties on all domains. +relative_permeability = { + 1: subdomain1_rel_perm, + 2: subdomain2_rel_perm, + 3: subdomain3_rel_perm, + 4: subdomain4_rel_perm, + 5: subdomain5_rel_perm, + 6: subdomain6_rel_perm +} + + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 1 +def rel_perm1w_prime(s): + # relative permeabilty on subdomain1 + return intrinsic_permeability[1]*2*s + + +def rel_perm1nw_prime(s): + # relative permeabilty on subdomain1 + return -1*intrinsic_permeability[1]*2*(1-s) + + +def rel_perm2w_prime(s): + # relative permeabilty on subdomain2 + return intrinsic_permeability[2]*2*s + + +def rel_perm2nw_prime(s): + # relative permeabilty on subdomain2 + return -1*intrinsic_permeability[2]*2*(1-s) + + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 3 +def rel_perm3w_prime(s): + # relative permeabilty on subdomain3 + return intrinsic_permeability[3]*3*s**2 + + +def rel_perm3nw_prime(s): + # relative permeabilty on subdomain3 + return -1*intrinsic_permeability[3]*3*(1-s)**2 + + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 4 +def rel_perm4w_prime(s): + # relative permeabilty on subdomain4 + return intrinsic_permeability[4]*3*s**2 + + +def rel_perm4nw_prime(s): + # relative permeabilty on subdomain4 + return -1*intrinsic_permeability[4]*3*(1-s)**2 + + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 5 +def rel_perm5w_prime(s): + # relative permeabilty on subdomain5 + return intrinsic_permeability[5]*3*s**2 + + +def rel_perm5nw_prime(s): + # relative permeabilty on subdomain5 + return -1*intrinsic_permeability[5]*3*(1-s)**2 + + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 6 +def rel_perm6w_prime(s): + # relative permeabilty on subdomain6 + return intrinsic_permeability[6]*3*s**2 + + +def rel_perm6nw_prime(s): + # relative permeabilty on subdomain6 + return -1*intrinsic_permeability[6]*3*(1-s)**2 + + +_rel_perm1w_prime = ft.partial(rel_perm1w_prime) +_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime) +_rel_perm2w_prime = ft.partial(rel_perm2w_prime) +_rel_perm2nw_prime = ft.partial(rel_perm2nw_prime) +_rel_perm3w_prime = ft.partial(rel_perm3w_prime) +_rel_perm3nw_prime = ft.partial(rel_perm3nw_prime) +_rel_perm4w_prime = ft.partial(rel_perm4w_prime) +_rel_perm4nw_prime = ft.partial(rel_perm4nw_prime) +_rel_perm5w_prime = ft.partial(rel_perm5w_prime) +_rel_perm5nw_prime = ft.partial(rel_perm5nw_prime) +_rel_perm6w_prime = ft.partial(rel_perm6w_prime) +_rel_perm6nw_prime = ft.partial(rel_perm6nw_prime) + +subdomain1_rel_perm_prime = { + 'wetting': _rel_perm1w_prime, + 'nonwetting': _rel_perm1nw_prime +} + + +subdomain2_rel_perm_prime = { + 'wetting': _rel_perm2w_prime, + 'nonwetting': _rel_perm2nw_prime +} + +subdomain3_rel_perm_prime = { + 'wetting': _rel_perm3w_prime, + 'nonwetting': _rel_perm3nw_prime +} + + +subdomain4_rel_perm_prime = { + 'wetting': _rel_perm4w_prime, + 'nonwetting': _rel_perm4nw_prime +} + +subdomain5_rel_perm_prime = { + 'wetting': _rel_perm5w_prime, + 'nonwetting': _rel_perm5nw_prime +} + +subdomain6_rel_perm_prime = { + 'wetting': _rel_perm6w_prime, + 'nonwetting': _rel_perm6nw_prime +} + + +# dictionary of relative permeabilties on all domains. +ka_prime = { + 1: subdomain1_rel_perm_prime, + 2: subdomain2_rel_perm_prime, + 3: subdomain3_rel_perm_prime, + 4: subdomain4_rel_perm_prime, + 5: subdomain5_rel_perm_prime, + 6: subdomain6_rel_perm_prime, +} + + + +# S-pc-relation ship. We use the van Genuchten approach, i.e. +# pc = 1/alpha*(S^{-1/m} -1)^1/n, where we set alpha = 0, assume +# m = 1-1/n (see Helmig) and assume that residual saturation is Sw +# this function needs to be monotonically decreasing in the capillary pressure +# pc. +# Since in the richards case pc=-pw, this becomes as a function of pw a mono +# tonically INCREASING function like in our Richards-Richards paper. However +# since we unify the treatment in the code for Richards and two-phase, we need +# the same requierment +# for both cases, two-phase and Richards. +# def saturation(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1) +# +# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where +# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw +# def saturation_sym(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# #df.conditional(pc > 0, +# return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)) +# +# +# # derivative of S-pc relationship with respect to pc. This is needed for the +# # construction of a analytic solution. +# def saturation_sym_prime(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# return -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1)) / ( (1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index) ) +## +# # note that the conditional definition of S-pc in the nonsymbolic part will be +# # incorporated in the construction of the exact solution below. +# S_pc_sym = { +# 1: ft.partial(saturation_sym, n_index=3, alpha=0.001), +# 2: ft.partial(saturation_sym, n_index=3, alpha=0.001), +# 3: ft.partial(saturation_sym, n_index=3, alpha=0.001), +# 4: ft.partial(saturation_sym, n_index=3, alpha=0.001), +# 5: ft.partial(saturation_sym, n_index=3, alpha=0.001), +# 6: ft.partial(saturation_sym, n_index=3, alpha=0.001) +# } +# +# S_pc_sym_prime = { +# 1: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), +# 2: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), +# 3: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), +# 4: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), +# 5: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), +# 6: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001) +# } +# +# sat_pressure_relationship = { +# 1: ft.partial(saturation, n_index=3, alpha=0.001), +# 2: ft.partial(saturation, n_index=3, alpha=0.001), +# 3: ft.partial(saturation, n_index=3, alpha=0.001), +# 4: ft.partial(saturation, n_index=3, alpha=0.001), +# 5: ft.partial(saturation, n_index=3, alpha=0.001), +# 6: ft.partial(saturation, n_index=3, alpha=0.001) +# } + +def saturation(pc, n_index): + # inverse capillary pressure-saturation-relationship + return df.conditional(pc > 0, 1/((1 + pc)**(1/(n_index + 1))), 1) + + +def saturation_sym(pc, n_index): + # inverse capillary pressure-saturation-relationship + return 1/((1 + pc)**(1/(n_index + 1))) + + +def saturation_sym_prime(pc, n_index): + # inverse capillary pressure-saturation-relationship + return -1/((n_index+1)*(1 + pc)**((n_index+2)/(n_index+1))) + + +S_pc_sym = { + 1: ft.partial(saturation_sym, n_index=1), + 2: ft.partial(saturation_sym, n_index=1), + 3: ft.partial(saturation_sym, n_index=2), + 4: ft.partial(saturation_sym, n_index=2), + 5: ft.partial(saturation_sym, n_index=2), + 6: ft.partial(saturation_sym, n_index=2) +} + +S_pc_sym_prime = { + 1: ft.partial(saturation_sym_prime, n_index=1), + 2: ft.partial(saturation_sym_prime, n_index=1), + 3: ft.partial(saturation_sym_prime, n_index=2), + 4: ft.partial(saturation_sym_prime, n_index=2), + 5: ft.partial(saturation_sym_prime, n_index=2), + 6: ft.partial(saturation_sym_prime, n_index=2) +} + +sat_pressure_relationship = { + 1: ft.partial(saturation, n_index=1), + 2: ft.partial(saturation, n_index=1), + 3: ft.partial(saturation, n_index=2), + 4: ft.partial(saturation, n_index=2), + 5: ft.partial(saturation, n_index=2), + 6: ft.partial(saturation, n_index=2) +} + +############################################# +# Manufacture source expressions with sympy # +############################################# +x, y = sym.symbols('x[0], x[1]') # needed by UFL +t = sym.symbols('t', positive=True) + + +p_e_sym = { + 1: {'wetting': (-7.0 - (1.0 + t*t)*(1.0 + x*x + y*y)), + 'nonwetting': 0.0*t }, + 2: {'wetting': (-7.0 - (1.0 + t*t)*(1.0 + x*x + y*y)), + 'nonwetting': 0.0*t }, + 3: {'wetting': (-7.0 - (1.0 + t*t)*(1.0 + x*x + y*y)), + 'nonwetting': (-1 -t*(1 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2)*y**2 }, + 4: {'wetting': (-7.0 - (1.0 + t*t)*(1.0 + x*x + y*y)), + 'nonwetting': (-1 -t*(1 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2)*y**2 }, + 5: {'wetting': (-7.0 - (1.0 + t*t)*(1.0 + x*x + y*y)), + 'nonwetting': (-1 -t*(1 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2)*y**2 }, + 6: {'wetting': (-7.0 - (1.0 + t*t)*(1.0 + x*x + y*y)), + 'nonwetting': (-1 -t*(1 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2)*y**2 }, +} + +pc_e_sym = dict() +for subdomain, isR in isRichards.items(): + if isR: + pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']}) + else: + pc_e_sym.update( + {subdomain: p_e_sym[subdomain]['nonwetting'] + - p_e_sym[subdomain]['wetting']} + ) + + +symbols = {"x": x, + "y": y, + "t": t} +# turn above symbolic code into exact solution for dolphin and +# construct the rhs that matches the above exact solution. +exact_solution_example = hlp.generate_exact_solution_expressions( + symbols=symbols, + isRichards=isRichards, + symbolic_pressure=p_e_sym, + symbolic_capillary_pressure=pc_e_sym, + saturation_pressure_relationship=S_pc_sym, + saturation_pressure_relationship_prime=S_pc_sym_prime, + viscosity=viscosity, + porosity=porosity, + relative_permeability=relative_permeability, + relative_permeability_prime=ka_prime, + densities=densities, + gravity_acceleration=gravity_acceleration, + include_gravity=include_gravity, + ) +source_expression = exact_solution_example['source'] +exact_solution = exact_solution_example['exact_solution'] +initial_condition = exact_solution_example['initial_condition'] + +# Dictionary of dirichlet boundary conditions. +dirichletBC = dict() +# similarly to the outer boundary dictionary, if a patch has no outer boundary +# None should be written instead of an expression. +# This is a bit of a brainfuck: +# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind. +# Since a domain patch can have several disjoint outer boundary parts, the +# expressions need to get an enumaration index which starts at 0. +# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of +# subdomain ind and boundary part j. +# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting'] +# return the actual expression needed for the dirichlet condition for both +# phases if present. + +# subdomain index: {outer boudary part index: {phase: expression}} +for subdomain in isRichards.keys(): + # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] + # is None + if outer_boundary_def_points[subdomain] is None: + dirichletBC.update({subdomain: None}) + else: + dirichletBC.update({subdomain: dict()}) + # set the dirichlet conditions to be the same code as exact solution on + # the subdomain. + for outer_boundary_ind in outer_boundary_def_points[subdomain].keys(): + dirichletBC[subdomain].update( + {outer_boundary_ind: exact_solution[subdomain]} + ) + + +# read this file and print it to std out. This way the simulation can produce a +# log file with ./TP-R-layered_soil.py | tee simulation.log +f = open(thisfile, 'r') +print(f.read()) +f.close() + + +for starttime in starttimes: + for mesh_resolution, solver_tol in resolutions.items(): + # initialise LDD simulation class + simulation = ldd.LDDsimulation( + tol=1E-14, + LDDsolver_tol=solver_tol, + debug=debugflag, + max_iter_num=max_iter_num, + FEM_Lagrange_degree=FEM_Lagrange_degree, + mesh_study=mesh_study + ) + + simulation.set_parameters( + use_case=use_case, + output_dir=output_string, + subdomain_def_points=subdomain_def_points, + isRichards=isRichards, + interface_def_points=interface_def_points, + outer_boundary_def_points=outer_boundary_def_points, + adjacent_subdomains=adjacent_subdomains, + mesh_resolution=mesh_resolution, + viscosity=viscosity, + porosity=porosity, + L=L, + lambda_param=lambda_param, + relative_permeability=relative_permeability, + saturation=sat_pressure_relationship, + starttime=starttime, + number_of_timesteps=number_of_timesteps, + number_of_timesteps_to_analyse=number_of_timesteps_to_analyse, + plot_timestep_every=plot_timestep_every, + timestep_size=timestep_size, + sources=source_expression, + initial_conditions=initial_condition, + dirichletBC_expression_strings=dirichletBC, + exact_solution=exact_solution, + densities=densities, + include_gravity=include_gravity, + write2file=write_to_file, + ) + + simulation.initialise() + output_dir = simulation.output_dir + # simulation.write_exact_solution_to_xdmf() + output = simulation.run(analyse_condition=analyse_condition) + for subdomain_index, subdomain_output in output.items(): + mesh_h = subdomain_output['mesh_size'] + for phase, error_dict in subdomain_output['errornorm'].items(): + filename = output_dir \ + + "subdomain{}".format(subdomain_index)\ + + "-space-time-errornorm-{}-phase.csv".format(phase) + # for errortype, errornorm in error_dict.items(): + + # eocfile = open("eoc_filename", "a") + # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" ) + # eocfile.close() + # if subdomain.isRichards:mesh_h + data_dict = { + 'mesh_parameter': mesh_resolution, + 'mesh_h': mesh_h, + } + for norm_type, errornorm in error_dict.items(): + data_dict.update( + {norm_type: errornorm} + ) + errors = pd.DataFrame(data_dict, index=[mesh_resolution]) + # check if file exists + if os.path.isfile(filename) is True: + with open(filename, 'a') as f: + errors.to_csv( + f, + header=False, + sep='\t', + encoding='utf-8', + index=False + ) + else: + errors.to_csv( + filename, + sep='\t', + encoding='utf-8', + index=False + )