Skip to content
Snippets Groups Projects
Commit 764bccc4 authored by David Seus's avatar David Seus
Browse files

uiae

parent b607b410
Branches
Tags
No related merge requests found
#!/usr/bin/python3
import dolfin as df
import mshr
import numpy as np
import sympy as sym
import typing as tp
import domainPatch as dp
import LDDsimulation as ldd
import functools as ft
#import ufl as ufl
# init sympy session
sym.init_printing()
##### Domain and Interface ####
# global simulation domain domain
sub_domain0_vertices = [df.Point(-1.0,-1.0), #
df.Point(1.0,-1.0),#
df.Point(1.0,1.0),#
df.Point(-1.0,1.0)]
# interface between subdomain1 and subdomain2
interface12_vertices = [df.Point(-1.0, 0.0),
df.Point(1.0, 0.0) ]
# subdomain1.
sub_domain1_vertices = [interface12_vertices[0],
interface12_vertices[1],
sub_domain0_vertices[2],
sub_domain0_vertices[3] ]
# vertex coordinates of the outer boundaries. If it can not be specified as a
# polygon, use an entry per boundary polygon. This information is used for defining
# the Dirichlet boundary conditions. If a domain is completely internal, the
# dictionary entry should be 0: None
subdomain1_outer_boundary_verts = {
0: [interface12_vertices[1],
sub_domain0_vertices[2],
sub_domain0_vertices[3], #
interface12_vertices[0]]
}
# subdomain2
sub_domain2_vertices = [sub_domain0_vertices[0],
sub_domain0_vertices[1],
interface12_vertices[1],
interface12_vertices[0] ]
subdomain2_outer_boundary_verts = {
0: [interface12_vertices[0], #
sub_domain0_vertices[0],
sub_domain0_vertices[1],
interface12_vertices[1]]
}
# list of subdomains given by the boundary polygon vertices.
# Subdomains are given as a list of dolfin points forming
# a closed polygon, such that mshr.Polygon(subdomain_def_points[i]) can be used
# to create the subdomain. subdomain_def_points[0] contains the
# vertices of the global simulation domain and subdomain_def_points[i] contains the
# vertices of the subdomain i.
subdomain_def_points = [sub_domain0_vertices,#
sub_domain1_vertices,#
sub_domain2_vertices]
# in the below list, index 0 corresponds to the 12 interface which has index 1
interface_def_points = [interface12_vertices]
# if a subdomain has no outer boundary write None instead, i.e.
# i: None
# if i is the index of the inner subdomain.
outer_boundary_def_points = {
# subdomain number
1 : subdomain1_outer_boundary_verts,
2 : subdomain2_outer_boundary_verts
}
# adjacent_subdomains[i] contains the indices of the subdomains sharing the
# interface i (i.e. given by interface_def_points[i]).
adjacent_subdomains = [[1,2]]
isRichards = {
1: False, #
2: False
}
############ GRID #######################ü
mesh_resolution = 41
timestep_size = 0.01
number_of_timesteps = 100
# decide how many timesteps you want analysed. Analysed means, that we write out
# subsequent errors of the L-iteration within the timestep.
number_of_timesteps_to_analyse = 11
starttime = 0
viscosity = {#
# subdom_num : viscosity
1 : {'wetting' :1,
'nonwetting': 1}, #
2 : {'wetting' :1,
'nonwetting': 1}
}
densities = {
1: {'wetting': 1,
'nonwetting': 1},
2: {'wetting': 1,
'nonwetting': 1},
# 3: {'wetting': 1},
# 4: {'wetting': 1}
}
gravity_acceleration = 9.81
porosity = {#
# subdom_num : porosity
1 : 1,#
2 : 1
}
L = {#
# subdom_num : subdomain L for L-scheme
1 : {'wetting' :0.25,
'nonwetting': 0.25},#
2 : {'wetting' :0.25,
'nonwetting': 0.25}
}
l_param = 40
lambda_param = {#
# subdom_num : lambda parameter for the L-scheme
1 : {'wetting' :l_param,
'nonwetting': l_param},#
2 : {'wetting' :l_param,
'nonwetting': l_param}
}
## relative permeabilty functions on subdomain 1
def rel_perm1w(s):
# relative permeabilty wetting on subdomain1
return s**2
def rel_perm1nw(s):
# relative permeabilty nonwetting on subdomain1
return (1-s)**2
_rel_perm1w = ft.partial(rel_perm1w)
_rel_perm1nw = ft.partial(rel_perm1nw)
subdomain1_rel_perm = {
'wetting': _rel_perm1w,#
'nonwetting': _rel_perm1nw
}
## relative permeabilty functions on subdomain 2
def rel_perm2w(s):
# relative permeabilty wetting on subdomain2
return s**2
def rel_perm2nw(s):
# relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2
return (1-s)**2
_rel_perm2w = ft.partial(rel_perm2w)
_rel_perm2nw = ft.partial(rel_perm2nw)
subdomain2_rel_perm = {
'wetting': _rel_perm2w,#
'nonwetting': _rel_perm2nw
}
## dictionary of relative permeabilties on all domains.
relative_permeability = {#
1: subdomain1_rel_perm,
2: subdomain2_rel_perm
}
# definition of the derivatives of the relative permeabilities
# relative permeabilty functions on subdomain 1
def rel_perm1w_prime(s):
# relative permeabilty on subdomain1
return 2*s
def rel_perm1nw_prime(s):
# relative permeabilty on subdomain1
return 2*(1-s)
# # definition of the derivatives of the relative permeabilities
# # relative permeabilty functions on subdomain 1
# def rel_perm2w_prime(s):
# # relative permeabilty on subdomain1
# return 3*s**2
#
# def rel_perm2nw_prime(s):
# # relative permeabilty on subdomain1
# return 2*(l_param_w1-s)
_rel_perm1w_prime = ft.partial(rel_perm1w_prime)
_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime)
# _rel_perm2w_prime = ft.partial(rel_perm2w_prime)
# _rel_perm2nw_prime = ft.partial(rel_perm2nw_prime)
subdomain1_rel_perm_prime = {
'wetting': _rel_perm1w_prime,
'nonwetting': _rel_perm1nw_prime
}
# subdomain2_rel_perm_prime = {
# 'wetting': _rel_perm2w_prime,
# 'nonwetting': _rel_perm2nw_prime
# }
# dictionary of relative permeabilties on all domains.
ka_prime = {
1: subdomain1_rel_perm_prime,
2: subdomain1_rel_perm_prime,
}
def saturation(pc, n_index, alpha):
# inverse capillary pressure-saturation-relationship
return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1)
# S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where
# we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw
def saturation_sym(pc, n_index, alpha):
# inverse capillary pressure-saturation-relationship
#df.conditional(pc > 0,
return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index))
# derivative of S-pc relationship with respect to pc. This is needed for the
# construction of a analytic solution.
def saturation_sym_prime(pc, n_index, alpha):
# inverse capillary pressure-saturation-relationship
return -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1)) / ( (1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index) )
# note that the conditional definition of S-pc in the nonsymbolic part will be
# incorporated in the construction of the exact solution below.
S_pc_sym = {
1: ft.partial(saturation_sym, n_index=3, alpha=0.001),
2: ft.partial(saturation_sym, n_index=3, alpha=0.001),
# 3: ft.partial(saturation_sym, n_index=3, alpha=0.001),
# 4: ft.partial(saturation_sym, n_index=3, alpha=0.001),
# 5: ft.partial(saturation_sym, n_index=3, alpha=0.001),
# 6: ft.partial(saturation_sym, n_index=3, alpha=0.001)
}
S_pc_sym_prime = {
1: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
2: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
# 3: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
# 4: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
# 5: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
# 6: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001)
}
sat_pressure_relationship = {
1: ft.partial(saturation, n_index=3, alpha=0.001),
2: ft.partial(saturation, n_index=3, alpha=0.001),
# 3: ft.partial(saturation, n_index=3, alpha=0.001),
# 4: ft.partial(saturation, n_index=3, alpha=0.001),
# 5: ft.partial(saturation, n_index=3, alpha=0.001),
# 6: ft.partial(saturation, n_index=3, alpha=0.001)
}
# S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where
# we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw
# def saturation(pc, n_index, alpha):
# # inverse capillary pressure-saturation-relationship
# return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1)
#
# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where
# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw
# def saturation_sym(pc, n_index, alpha):
# # inverse capillary pressure-saturation-relationship
# #df.conditional(capillary_pressure > 0,
# return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index))
#
# S_pc_rel = {#
# 1: ft.partial(saturation_sym, n_index = 3, alpha=0.001),# n= 3 stands for non-uniform porous media
# 2: ft.partial(saturation_sym, n_index = 6, alpha=0.001) # n=6 stands for uniform porous media matrix (siehe Helmig)
# }
# S_pc_rel_sym = {#
# 1: ft.partial(saturation_sym, n_index = sym.Symbol('n'), alpha = sym.Symbol('a')),# n= 3 stands for non-uniform porous media
# 2: ft.partial(saturation_sym, n_index = sym.Symbol('n'), alpha = sym.Symbol('a')) # n=6 stands for uniform porous media matrix (siehe Helmig)
# }
# # this function needs to be monotonically decreasing in the capillary_pressure.
# # since in the richards case pc=-pw, this becomes as a function of pw a mono
# # tonically INCREASING function like in our Richards-Richards paper. However
# # since we unify the treatment in the code for Richards and two-phase, we need
# # the same requierment
# # for both cases, two-phase and Richards.
# def saturation(pc, index):
# # inverse capillary pressure-saturation-relationship
# return df.conditional(pc > 0, 1/((1 + pc)**(1/(index + 1))), 1)
#
#
# def saturation_sym(pc, index):
# # inverse capillary pressure-saturation-relationship
# return 1/((1 + pc)**(1/(index + 1)))
#
#
# # derivative of S-pc relationship with respect to pc. This is needed for the
# # construction of a analytic solution.
# def saturation_sym_prime(pc, index):
# # inverse capillary pressure-saturation-relationship
# return -1/((index+1)*(1 + pc)**((index+2)/(index+1)))
#
#
# # note that the conditional definition of S-pc in the nonsymbolic part will be
# # incorporated in the construction of the exact solution below.
# S_pc_sym = {
# 1: ft.partial(saturation_sym, index=1),
# 2: ft.partial(saturation_sym, index=2),
# # 3: ft.partial(saturation_sym, index=2),
# # 4: ft.partial(saturation_sym, index=2),
# # 5: ft.partial(saturation_sym, index=1)
# }
#
# S_pc_sym_prime = {
# 1: ft.partial(saturation_sym_prime, index=1),
# 2: ft.partial(saturation_sym_prime, index=2),
# # 3: ft.partial(saturation_sym_prime, index=2),
# # 4: ft.partial(saturation_sym_prime, index=2),
# # 5: ft.partial(saturation_sym_prime, index=1)
# }
#
# sat_pressure_relationship = {
# 1: ft.partial(saturation, index=1),
# 2: ft.partial(saturation, index=2),
# # 3: ft.partial(saturation, index=2),
# # 4: ft.partial(saturation, index=2),
# # 5: ft.partial(saturation, index=1)
# }
# exact_solution = {
# 1: {'wetting': '1.0 - (1.0 + t*t)*(1.0 + x[0]*x[0] + x[1]*x[1])'},
# 2: {'wetting': '1.0 - (1.0 + t*t)*(1.0 + x[0]*x[0])'},
# 3: {'wetting': '1.0 - (1.0 + t*t)*(1.0 + x[0]*x[0])'},
# 4: {'wetting': '1.0 - (1.0 + t*t)*(1.0 + x[0]*x[0])'},
# 5: {'wetting': '1.0 - (1.0 + t*t)*(1.0 + x[0]*x[0] + x[1]*x[1])'}
# }
#
# initial_condition = {
# 1: {'wetting': '-(x[0]*x[0] + x[1]*x[1])'},
# 2: {'wetting': '-x[0]*x[0]'},
# 3: {'wetting': '-x[0]*x[0]'},
# 4: {'wetting': '-x[0]*x[0]'},
# 5: {'wetting': '-(x[0]*x[0] + x[1]*x[1])'}
# }
#############################################
# Manufacture source expressions with sympy #
#############################################
x, y = sym.symbols('x[0], x[1]') # needed by UFL
t = sym.symbols('t', positive=True)
p_e_sym = {
1: {'wetting': -3 + 0*t,
'nonwetting': -1+ 0*t},
2: {'wetting': -3+ 0*t,
'nonwetting': -1+ 0*t},
# 3: {'wetting': 1.0 - (1.0 + t*t)*(1.0 + x*x)},
# 4: {'wetting': 1.0 - (1.0 + t*t)*(1.0 + x*x)},
# 5: {'wetting': 1.0 - (1.0 + t*t)*(1.0 + x*x + y*y)}
}
# pc_e_sym = {
# 1: -1*p_e_sym[1]['wetting'],
# 2: -1*p_e_sym[2]['wetting'],
# # 3: -1*p_e_sym[3]['wetting'],
# # 4: -1*p_e_sym[4]['wetting'],
# # 5: -1*p_e_sym[5]['wetting']
# }
pc_e_sym = {
1: p_e_sym[1]['nonwetting'] - p_e_sym[1]['wetting'],
2: p_e_sym[2]['nonwetting'] - p_e_sym[2]['wetting'],
# 3: -1*p_e_sym[3]['wetting'],
# 4: -1*p_e_sym[4]['wetting'],
# 5: -1*p_e_sym[5]['wetting']
}
# #### Manufacture source expressions with sympy
# ###############################################################################
# ## subdomain1
# x, y = sym.symbols('x[0], x[1]') # needed by UFL
# t = sym.symbols('t', positive=True)
# #f = -sym.diff(u, x, 2) - sym.diff(u, y, 2) # -Laplace(u)
# #f = sym.simplify(f) # simplify f
# p1_w = 1 - (1+t**2)*(1 + x**2 + (y-0.5)**2)
# p1_nw = t*(1-(y-0.5) - x**2)**2 - sym.sqrt(2+t**2)*(1-(y-0.5))
#
# #dtS1_w = sym.diff(S_pc_rel_sym[1](p1_nw - p1_w), t, 1)
# #dtS1_nw = -sym.diff(S_pc_rel_sym[1](p1_nw - p1_w), t, 1)
# dtS1_w = porosity[1]*sym.diff(sym.Piecewise((S_pc_rel[1](p1_nw - p1_w), (p1_nw - p1_w) > 0), (1, True) ), t, 1)
# dtS1_nw = -porosity[1]*sym.diff(sym.Piecewise((S_pc_rel[1](p1_nw - p1_w), (p1_nw - p1_w) > 0), (1, True) ), t, 1)
# print("dtS1_w = ", dtS1_w, "\n")
# print("dtS1_nw = ", dtS1_nw, "\n")
#
# #dxdxflux1_w = -sym.diff(relative_permeability[1]['wetting'](S_pc_rel_sym[1](p1_nw - p1_w))*sym.diff(p1_w, x, 1), x, 1)
# #dydyflux1_w = -sym.diff(relative_permeability[1]['wetting'](S_pc_rel_sym[1](p1_nw - p1_w))*sym.diff(p1_w, y, 1), y, 1)
# dxdxflux1_w = -1/viscosity[1]['wetting']*sym.diff(relative_permeability[1]['wetting'](sym.Piecewise((S_pc_rel[1](p1_nw - p1_w), (p1_nw - p1_w) > 0), (1, True) ))*sym.diff(p1_w, x, 1), x, 1)
# dydyflux1_w = -1/viscosity[1]['wetting']*sym.diff(relative_permeability[1]['wetting'](sym.Piecewise((S_pc_rel[1](p1_nw - p1_w), (p1_nw - p1_w) > 0), (1, True) ))*sym.diff(p1_w, y, 1), y, 1)
#
# rhs1_w = dtS1_w + dxdxflux1_w + dydyflux1_w
# rhs1_w = sym.printing.ccode(rhs1_w)
# print("rhs_w = ", rhs1_w, "\n")
# #rhs_w = sym.expand(rhs_w)
# #print("rhs_w", rhs_w, "\n")
# #rhs_w = sym.collect(rhs_w, x)
# #print("rhs_w", rhs_w, "\n")
#
# #dxdxflux1_nw = -sym.diff(relative_permeability[1]['nonwetting'](S_pc_rel_sym[1](p1_nw - p1_w))*sym.diff(p1_nw, x, 1), x, 1)
# #dydyflux1_nw = -sym.diff(relative_permeability[1]['nonwetting'](S_pc_rel_sym[1](p1_nw - p1_w))*sym.diff(p1_nw, y, 1), y, 1)
# dxdxflux1_nw = -1/viscosity[1]['nonwetting']*sym.diff(relative_permeability[1]['nonwetting'](1-sym.Piecewise((S_pc_rel[1](p1_nw - p1_w), (p1_nw - p1_w) > 0), (1, True) ))*sym.diff(p1_nw, x, 1), x, 1)
# dydyflux1_nw = -1/viscosity[1]['nonwetting']*sym.diff(relative_permeability[1]['nonwetting'](1-sym.Piecewise((S_pc_rel[1](p1_nw - p1_w), (p1_nw - p1_w) > 0), (1, True) ))*sym.diff(p1_nw, y, 1), y, 1)
#
# rhs1_nw = dtS1_nw + dxdxflux1_nw + dydyflux1_nw
# rhs1_nw = sym.printing.ccode(rhs1_nw)
# print("rhs_nw = ", rhs1_nw, "\n")
#
# ## subdomain2
# p2_w = 1 - (1+t**2)*(1 + x**2)
# p2_nw = t*(1- x**2)**2 - sym.sqrt(2+t**2)*(1-(y-0.5))
#
# #dtS2_w = sym.diff(S_pc_rel_sym[2](p2_nw - p2_w), t, 1)
# #dtS2_nw = -sym.diff(S_pc_rel_sym[2](p2_nw - p2_w), t, 1)
# dtS2_w = porosity[2]*sym.diff(sym.Piecewise((sym.Piecewise((S_pc_rel[2](p2_nw - p2_w), (p2_nw - p2_w) > 0), (1, True) ), (p2_nw - p2_w) > 0), (1, True) ), t, 1)
# dtS2_nw = -porosity[2]*sym.diff(sym.Piecewise((S_pc_rel[2](p2_nw - p2_w), (p2_nw - p2_w) > 0), (1, True) ), t, 1)
# print("dtS2_w = ", dtS2_w, "\n")
# print("dtS2_nw = ", dtS2_nw, "\n")
#
# #dxdxflux2_w = -sym.diff(relative_permeability[2]['wetting'](S_pc_rel_sym[2](p2_nw - p2_w))*sym.diff(p2_w, x, 1), x, 1)
# #dydyflux2_w = -sym.diff(relative_permeability[2]['wetting'](S_pc_rel_sym[2](p2_nw - p2_w))*sym.diff(p2_w, y, 1), y, 1)
# dxdxflux2_w = -1/viscosity[2]['wetting']*sym.diff(relative_permeability[2]['wetting'](sym.Piecewise((S_pc_rel[2](p2_nw - p2_w), (p2_nw - p2_w) > 0), (1, True) ))*sym.diff(p2_w, x, 1), x, 1)
# dydyflux2_w = -1/viscosity[2]['wetting']*sym.diff(relative_permeability[2]['wetting'](sym.Piecewise((S_pc_rel[2](p2_nw - p2_w), (p2_nw - p2_w) > 0), (1, True) ))*sym.diff(p2_w, y, 1), y, 1)
#
# rhs2_w = dtS2_w + dxdxflux2_w + dydyflux2_w
# rhs2_w = sym.printing.ccode(rhs2_w)
# print("rhs2_w = ", rhs2_w, "\n")
# #rhs_w = sym.expand(rhs_w)
# #print("rhs_w", rhs_w, "\n")
# #rhs_w = sym.collect(rhs_w, x)
# #print("rhs_w", rhs_w, "\n")
#
# #dxdxflux2_nw = -sym.diff(relative_permeability[2]['nonwetting'](S_pc_rel_sym[2](p2_nw - p2_w))*sym.diff(p2_nw, x, 1), x, 1)
# #dydyflux2_nw = -sym.diff(relative_permeability[2]['nonwetting'](S_pc_rel_sym[2](p2_nw - p2_w))*sym.diff(p2_nw, y, 1), y, 1)
# dxdxflux2_nw = -1/viscosity[2]['nonwetting']*sym.diff(relative_permeability[2]['nonwetting'](1-sym.Piecewise((S_pc_rel[2](p2_nw - p2_w), (p2_nw - p2_w) > 0), (1, True) ))*sym.diff(p2_nw, x, 1), x, 1)
# dydyflux2_nw = -1/viscosity[2]['nonwetting']*sym.diff(relative_permeability[2]['nonwetting'](1-sym.Piecewise((S_pc_rel[2](p2_nw - p2_w), (p2_nw - p2_w) > 0), (1, True) ))*sym.diff(p2_nw, y, 1), y, 1)
#
# rhs2_nw = dtS2_nw + dxdxflux2_nw + dydyflux2_nw
# rhs2_nw = sym.printing.ccode(rhs2_nw)
# print("rhs2_nw = ", rhs2_nw, "\n")
#
#
# ###############################################################################
#
# source_expression = {
# 1: {'wetting': rhs1_w,
# 'nonwetting': rhs1_nw},
# 2: {'wetting': rhs2_w,
# 'nonwetting': rhs2_nw}
# }
#
# p1_w_00 = p1_w.subs(t, 0)
# p1_nw_00 = p1_nw.subs(t, 0)
# p2_w_00 = p2_w.subs(t, 0)
# p2_nw_00 = p2_nw.subs(t, 0)
# # p1_w_00 = sym.printing.ccode(p1_w_00)
#
# initial_condition = {
# 1: {'wetting': sym.printing.ccode(p1_w_00),
# 'nonwetting': sym.printing.ccode(p1_nw_00)},#
# 2: {'wetting': sym.printing.ccode(p2_w_00),
# 'nonwetting': sym.printing.ccode(p2_nw_00)}
# }
#
# exact_solution = {
# 1: {'wetting': sym.printing.ccode(p1_w),
# 'nonwetting': sym.printing.ccode(p1_nw)},#
# 2: {'wetting': sym.printing.ccode(p2_w),
# 'nonwetting': sym.printing.ccode(p2_nw)}
# }
#
# # similary to the outer boundary dictionary, if a patch has no outer boundary
# # None should be written instead of an expression. This is a bit of a brainfuck:
# # dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind.
# # Since a domain patch can have several disjoint outer boundary parts, the expressions
# # need to get an enumaration index which starts at 0. So dirichletBC[ind][j] is
# # the dictionary of outer dirichlet conditions of subdomain ind and boundary part j.
# # finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting'] return
# # the actual expression needed for the dirichlet condition for both phases if present.
# dirichletBC = {
# #subdomain index: {outer boudary part index: {phase: expression}}
# 1: { 0: {'wetting': sym.printing.ccode(p1_w),
# 'nonwetting': sym.printing.ccode(p1_nw)}},
# 2: { 0: {'wetting': sym.printing.ccode(p2_w),
# 'nonwetting': sym.printing.ccode(p2_nw)}}
# }
# turn above symbolic code into exact solution for dolphin and
# construct the rhs that matches the above exact solution.
dtS = dict()
div_flux = dict()
source_expression = dict()
exact_solution = dict()
initial_condition = dict()
for subdomain, isR in isRichards.items():
dtS.update({subdomain: dict()})
div_flux.update({subdomain: dict()})
source_expression.update({subdomain: dict()})
exact_solution.update({subdomain: dict()})
initial_condition.update({subdomain: dict()})
if isR:
subdomain_has_phases = ["wetting"]
else:
subdomain_has_phases = ["wetting", "nonwetting"]
# conditional for S_pc_prime
pc = pc_e_sym[subdomain]
dtpc = sym.diff(pc, t, 1)
dxpc = sym.diff(pc, x, 1)
dypc = sym.diff(pc, y, 1)
S = sym.Piecewise((S_pc_sym[subdomain](pc), pc > 0), (1, True))
dS = sym.Piecewise((S_pc_sym_prime[subdomain](pc), pc > 0), (0, True))
for phase in subdomain_has_phases:
# Turn above symbolic expression for exact solution into c code
exact_solution[subdomain].update(
{phase: sym.printing.ccode(p_e_sym[subdomain][phase])}
)
# save the c code for initial conditions
initial_condition[subdomain].update(
{phase: sym.printing.ccode(p_e_sym[subdomain][phase].subs(t, 0))}
)
if phase == "nonwetting":
dtS[subdomain].update(
{phase: -porosity[subdomain]*dS*dtpc}
)
else:
dtS[subdomain].update(
{phase: porosity[subdomain]*dS*dtpc}
)
pa = p_e_sym[subdomain][phase]
dxpa = sym.diff(pa, x, 1)
dxdxpa = sym.diff(pa, x, 2)
dypa = sym.diff(pa, y, 1)
dydypa = sym.diff(pa, y, 2)
mu = viscosity[subdomain][phase]
ka = relative_permeability[subdomain][phase]
dka = ka_prime[subdomain][phase]
rho = densities[subdomain][phase]
g = gravity_acceleration
if phase == "nonwetting":
# x part of div(flux) for nonwetting
dxdxflux = -1/mu*dka(1-S)*dS*dxpc*dxpa + 1/mu*dxdxpa*ka(1-S)
# y part of div(flux) for nonwetting
dydyflux = -1/mu*dka(1-S)*dS*dypc*(dypa - rho*g) \
+ 1/mu*dydypa*ka(1-S)
else:
# x part of div(flux) for wetting
dxdxflux = 1/mu*dka(S)*dS*dxpc*dxpa + 1/mu*dxdxpa*ka(S)
# y part of div(flux) for wetting
dydyflux = 1/mu*dka(S)*dS*dypc*(dypa - rho*g) + 1/mu*dydypa*ka(S)
div_flux[subdomain].update({phase: dxdxflux + dydyflux})
contructed_rhs = dtS[subdomain][phase] - div_flux[subdomain][phase]
source_expression[subdomain].update(
{phase: sym.printing.ccode(contructed_rhs)}
)
# print(f"source_expression[{subdomain}][{phase}] =", source_expression[subdomain][phase])
# Dictionary of dirichlet boundary conditions.
dirichletBC = dict()
# similarly to the outer boundary dictionary, if a patch has no outer boundary
# None should be written instead of an expression.
# This is a bit of a brainfuck:
# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind.
# Since a domain patch can have several disjoint outer boundary parts, the
# expressions need to get an enumaration index which starts at 0.
# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of
# subdomain ind and boundary part j.
# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting']
# return the actual expression needed for the dirichlet condition for both
# phases if present.
# subdomain index: {outer boudary part index: {phase: expression}}
for subdomain in isRichards.keys():
# if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None
if outer_boundary_def_points[subdomain] is None:
dirichletBC.update({subdomain: None})
else:
dirichletBC.update({subdomain: dict()})
# set the dirichlet conditions to be the same code as exact solution on
# the subdomain.
for outer_boundary_ind in outer_boundary_def_points[subdomain].keys():
dirichletBC[subdomain].update(
{outer_boundary_ind: exact_solution[subdomain]}
)
# def saturation(pressure, subdomain_index):
# # inverse capillary pressure-saturation-relationship
# return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1)
#
# sa
write_to_file = {
'meshes_and_markers': True,
'L_iterations': True
}
# initialise LDD simulation class
simulation = ldd.LDDsimulation(tol = 1E-14, LDDsolver_tol = 1E-6, debug = False)
simulation.set_parameters(output_dir = "./output/",#
subdomain_def_points = subdomain_def_points,#
isRichards = isRichards,#
interface_def_points = interface_def_points,#
outer_boundary_def_points = outer_boundary_def_points,#
adjacent_subdomains = adjacent_subdomains,#
mesh_resolution = mesh_resolution,#
viscosity = viscosity,#
porosity = porosity,#
L = L,#
lambda_param = lambda_param,#
relative_permeability = relative_permeability,#
saturation = sat_pressure_relationship,#
starttime = starttime,#
number_of_timesteps = number_of_timesteps,
number_of_timesteps_to_analyse = number_of_timesteps_to_analyse,
timestep_size = timestep_size,#
sources = source_expression,#
initial_conditions = initial_condition,#
dirichletBC_expression_strings = dirichletBC,#
exact_solution = exact_solution,#
densities=densities,
include_gravity=True,
write2file = write_to_file,#
)
simulation.initialise()
# simulation.write_exact_solution_to_xdmf()
simulation.run()
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment