Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
L
LDD-for-two-phase-flow-systems
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
David Seus
LDD-for-two-phase-flow-systems
Commits
764bccc4
Commit
764bccc4
authored
5 years ago
by
David Seus
Browse files
Options
Downloads
Patches
Plain Diff
uiae
parent
b607b410
Branches
Branches containing commit
Tags
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
TP-TP-2-patch-constant-solution/TP-TP-2-patch-constant-solution.py
+644
-0
644 additions, 0 deletions
...atch-constant-solution/TP-TP-2-patch-constant-solution.py
with
644 additions
and
0 deletions
TP-TP-2-patch-constant-solution/TP-TP-2-patch-constant-solution.py
0 → 100755
+
644
−
0
View file @
764bccc4
#!/usr/bin/python3
import
dolfin
as
df
import
mshr
import
numpy
as
np
import
sympy
as
sym
import
typing
as
tp
import
domainPatch
as
dp
import
LDDsimulation
as
ldd
import
functools
as
ft
#import ufl as ufl
# init sympy session
sym
.
init_printing
()
##### Domain and Interface ####
# global simulation domain domain
sub_domain0_vertices
=
[
df
.
Point
(
-
1.0
,
-
1.0
),
#
df
.
Point
(
1.0
,
-
1.0
),
#
df
.
Point
(
1.0
,
1.0
),
#
df
.
Point
(
-
1.0
,
1.0
)]
# interface between subdomain1 and subdomain2
interface12_vertices
=
[
df
.
Point
(
-
1.0
,
0.0
),
df
.
Point
(
1.0
,
0.0
)
]
# subdomain1.
sub_domain1_vertices
=
[
interface12_vertices
[
0
],
interface12_vertices
[
1
],
sub_domain0_vertices
[
2
],
sub_domain0_vertices
[
3
]
]
# vertex coordinates of the outer boundaries. If it can not be specified as a
# polygon, use an entry per boundary polygon. This information is used for defining
# the Dirichlet boundary conditions. If a domain is completely internal, the
# dictionary entry should be 0: None
subdomain1_outer_boundary_verts
=
{
0
:
[
interface12_vertices
[
1
],
sub_domain0_vertices
[
2
],
sub_domain0_vertices
[
3
],
#
interface12_vertices
[
0
]]
}
# subdomain2
sub_domain2_vertices
=
[
sub_domain0_vertices
[
0
],
sub_domain0_vertices
[
1
],
interface12_vertices
[
1
],
interface12_vertices
[
0
]
]
subdomain2_outer_boundary_verts
=
{
0
:
[
interface12_vertices
[
0
],
#
sub_domain0_vertices
[
0
],
sub_domain0_vertices
[
1
],
interface12_vertices
[
1
]]
}
# list of subdomains given by the boundary polygon vertices.
# Subdomains are given as a list of dolfin points forming
# a closed polygon, such that mshr.Polygon(subdomain_def_points[i]) can be used
# to create the subdomain. subdomain_def_points[0] contains the
# vertices of the global simulation domain and subdomain_def_points[i] contains the
# vertices of the subdomain i.
subdomain_def_points
=
[
sub_domain0_vertices
,
#
sub_domain1_vertices
,
#
sub_domain2_vertices
]
# in the below list, index 0 corresponds to the 12 interface which has index 1
interface_def_points
=
[
interface12_vertices
]
# if a subdomain has no outer boundary write None instead, i.e.
# i: None
# if i is the index of the inner subdomain.
outer_boundary_def_points
=
{
# subdomain number
1
:
subdomain1_outer_boundary_verts
,
2
:
subdomain2_outer_boundary_verts
}
# adjacent_subdomains[i] contains the indices of the subdomains sharing the
# interface i (i.e. given by interface_def_points[i]).
adjacent_subdomains
=
[[
1
,
2
]]
isRichards
=
{
1
:
False
,
#
2
:
False
}
############ GRID #######################ü
mesh_resolution
=
41
timestep_size
=
0.01
number_of_timesteps
=
100
# decide how many timesteps you want analysed. Analysed means, that we write out
# subsequent errors of the L-iteration within the timestep.
number_of_timesteps_to_analyse
=
11
starttime
=
0
viscosity
=
{
#
# subdom_num : viscosity
1
:
{
'
wetting
'
:
1
,
'
nonwetting
'
:
1
},
#
2
:
{
'
wetting
'
:
1
,
'
nonwetting
'
:
1
}
}
densities
=
{
1
:
{
'
wetting
'
:
1
,
'
nonwetting
'
:
1
},
2
:
{
'
wetting
'
:
1
,
'
nonwetting
'
:
1
},
# 3: {'wetting': 1},
# 4: {'wetting': 1}
}
gravity_acceleration
=
9.81
porosity
=
{
#
# subdom_num : porosity
1
:
1
,
#
2
:
1
}
L
=
{
#
# subdom_num : subdomain L for L-scheme
1
:
{
'
wetting
'
:
0.25
,
'
nonwetting
'
:
0.25
},
#
2
:
{
'
wetting
'
:
0.25
,
'
nonwetting
'
:
0.25
}
}
l_param
=
40
lambda_param
=
{
#
# subdom_num : lambda parameter for the L-scheme
1
:
{
'
wetting
'
:
l_param
,
'
nonwetting
'
:
l_param
},
#
2
:
{
'
wetting
'
:
l_param
,
'
nonwetting
'
:
l_param
}
}
## relative permeabilty functions on subdomain 1
def
rel_perm1w
(
s
):
# relative permeabilty wetting on subdomain1
return
s
**
2
def
rel_perm1nw
(
s
):
# relative permeabilty nonwetting on subdomain1
return
(
1
-
s
)
**
2
_rel_perm1w
=
ft
.
partial
(
rel_perm1w
)
_rel_perm1nw
=
ft
.
partial
(
rel_perm1nw
)
subdomain1_rel_perm
=
{
'
wetting
'
:
_rel_perm1w
,
#
'
nonwetting
'
:
_rel_perm1nw
}
## relative permeabilty functions on subdomain 2
def
rel_perm2w
(
s
):
# relative permeabilty wetting on subdomain2
return
s
**
2
def
rel_perm2nw
(
s
):
# relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2
return
(
1
-
s
)
**
2
_rel_perm2w
=
ft
.
partial
(
rel_perm2w
)
_rel_perm2nw
=
ft
.
partial
(
rel_perm2nw
)
subdomain2_rel_perm
=
{
'
wetting
'
:
_rel_perm2w
,
#
'
nonwetting
'
:
_rel_perm2nw
}
## dictionary of relative permeabilties on all domains.
relative_permeability
=
{
#
1
:
subdomain1_rel_perm
,
2
:
subdomain2_rel_perm
}
# definition of the derivatives of the relative permeabilities
# relative permeabilty functions on subdomain 1
def
rel_perm1w_prime
(
s
):
# relative permeabilty on subdomain1
return
2
*
s
def
rel_perm1nw_prime
(
s
):
# relative permeabilty on subdomain1
return
2
*
(
1
-
s
)
# # definition of the derivatives of the relative permeabilities
# # relative permeabilty functions on subdomain 1
# def rel_perm2w_prime(s):
# # relative permeabilty on subdomain1
# return 3*s**2
#
# def rel_perm2nw_prime(s):
# # relative permeabilty on subdomain1
# return 2*(l_param_w1-s)
_rel_perm1w_prime
=
ft
.
partial
(
rel_perm1w_prime
)
_rel_perm1nw_prime
=
ft
.
partial
(
rel_perm1nw_prime
)
# _rel_perm2w_prime = ft.partial(rel_perm2w_prime)
# _rel_perm2nw_prime = ft.partial(rel_perm2nw_prime)
subdomain1_rel_perm_prime
=
{
'
wetting
'
:
_rel_perm1w_prime
,
'
nonwetting
'
:
_rel_perm1nw_prime
}
# subdomain2_rel_perm_prime = {
# 'wetting': _rel_perm2w_prime,
# 'nonwetting': _rel_perm2nw_prime
# }
# dictionary of relative permeabilties on all domains.
ka_prime
=
{
1
:
subdomain1_rel_perm_prime
,
2
:
subdomain1_rel_perm_prime
,
}
def
saturation
(
pc
,
n_index
,
alpha
):
# inverse capillary pressure-saturation-relationship
return
df
.
conditional
(
pc
>
0
,
1
/
((
1
+
(
alpha
*
pc
)
**
n_index
)
**
((
n_index
-
1
)
/
n_index
)),
1
)
# S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where
# we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw
def
saturation_sym
(
pc
,
n_index
,
alpha
):
# inverse capillary pressure-saturation-relationship
#df.conditional(pc > 0,
return
1
/
((
1
+
(
alpha
*
pc
)
**
n_index
)
**
((
n_index
-
1
)
/
n_index
))
# derivative of S-pc relationship with respect to pc. This is needed for the
# construction of a analytic solution.
def
saturation_sym_prime
(
pc
,
n_index
,
alpha
):
# inverse capillary pressure-saturation-relationship
return
-
(
alpha
*
(
n_index
-
1
)
*
(
alpha
*
pc
)
**
(
n_index
-
1
))
/
(
(
1
+
(
alpha
*
pc
)
**
n_index
)
**
((
2
*
n_index
-
1
)
/
n_index
)
)
# note that the conditional definition of S-pc in the nonsymbolic part will be
# incorporated in the construction of the exact solution below.
S_pc_sym
=
{
1
:
ft
.
partial
(
saturation_sym
,
n_index
=
3
,
alpha
=
0.001
),
2
:
ft
.
partial
(
saturation_sym
,
n_index
=
3
,
alpha
=
0.001
),
# 3: ft.partial(saturation_sym, n_index=3, alpha=0.001),
# 4: ft.partial(saturation_sym, n_index=3, alpha=0.001),
# 5: ft.partial(saturation_sym, n_index=3, alpha=0.001),
# 6: ft.partial(saturation_sym, n_index=3, alpha=0.001)
}
S_pc_sym_prime
=
{
1
:
ft
.
partial
(
saturation_sym_prime
,
n_index
=
3
,
alpha
=
0.001
),
2
:
ft
.
partial
(
saturation_sym_prime
,
n_index
=
3
,
alpha
=
0.001
),
# 3: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
# 4: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
# 5: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
# 6: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001)
}
sat_pressure_relationship
=
{
1
:
ft
.
partial
(
saturation
,
n_index
=
3
,
alpha
=
0.001
),
2
:
ft
.
partial
(
saturation
,
n_index
=
3
,
alpha
=
0.001
),
# 3: ft.partial(saturation, n_index=3, alpha=0.001),
# 4: ft.partial(saturation, n_index=3, alpha=0.001),
# 5: ft.partial(saturation, n_index=3, alpha=0.001),
# 6: ft.partial(saturation, n_index=3, alpha=0.001)
}
# S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where
# we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw
# def saturation(pc, n_index, alpha):
# # inverse capillary pressure-saturation-relationship
# return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1)
#
# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where
# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw
# def saturation_sym(pc, n_index, alpha):
# # inverse capillary pressure-saturation-relationship
# #df.conditional(capillary_pressure > 0,
# return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index))
#
# S_pc_rel = {#
# 1: ft.partial(saturation_sym, n_index = 3, alpha=0.001),# n= 3 stands for non-uniform porous media
# 2: ft.partial(saturation_sym, n_index = 6, alpha=0.001) # n=6 stands for uniform porous media matrix (siehe Helmig)
# }
# S_pc_rel_sym = {#
# 1: ft.partial(saturation_sym, n_index = sym.Symbol('n'), alpha = sym.Symbol('a')),# n= 3 stands for non-uniform porous media
# 2: ft.partial(saturation_sym, n_index = sym.Symbol('n'), alpha = sym.Symbol('a')) # n=6 stands for uniform porous media matrix (siehe Helmig)
# }
# # this function needs to be monotonically decreasing in the capillary_pressure.
# # since in the richards case pc=-pw, this becomes as a function of pw a mono
# # tonically INCREASING function like in our Richards-Richards paper. However
# # since we unify the treatment in the code for Richards and two-phase, we need
# # the same requierment
# # for both cases, two-phase and Richards.
# def saturation(pc, index):
# # inverse capillary pressure-saturation-relationship
# return df.conditional(pc > 0, 1/((1 + pc)**(1/(index + 1))), 1)
#
#
# def saturation_sym(pc, index):
# # inverse capillary pressure-saturation-relationship
# return 1/((1 + pc)**(1/(index + 1)))
#
#
# # derivative of S-pc relationship with respect to pc. This is needed for the
# # construction of a analytic solution.
# def saturation_sym_prime(pc, index):
# # inverse capillary pressure-saturation-relationship
# return -1/((index+1)*(1 + pc)**((index+2)/(index+1)))
#
#
# # note that the conditional definition of S-pc in the nonsymbolic part will be
# # incorporated in the construction of the exact solution below.
# S_pc_sym = {
# 1: ft.partial(saturation_sym, index=1),
# 2: ft.partial(saturation_sym, index=2),
# # 3: ft.partial(saturation_sym, index=2),
# # 4: ft.partial(saturation_sym, index=2),
# # 5: ft.partial(saturation_sym, index=1)
# }
#
# S_pc_sym_prime = {
# 1: ft.partial(saturation_sym_prime, index=1),
# 2: ft.partial(saturation_sym_prime, index=2),
# # 3: ft.partial(saturation_sym_prime, index=2),
# # 4: ft.partial(saturation_sym_prime, index=2),
# # 5: ft.partial(saturation_sym_prime, index=1)
# }
#
# sat_pressure_relationship = {
# 1: ft.partial(saturation, index=1),
# 2: ft.partial(saturation, index=2),
# # 3: ft.partial(saturation, index=2),
# # 4: ft.partial(saturation, index=2),
# # 5: ft.partial(saturation, index=1)
# }
# exact_solution = {
# 1: {'wetting': '1.0 - (1.0 + t*t)*(1.0 + x[0]*x[0] + x[1]*x[1])'},
# 2: {'wetting': '1.0 - (1.0 + t*t)*(1.0 + x[0]*x[0])'},
# 3: {'wetting': '1.0 - (1.0 + t*t)*(1.0 + x[0]*x[0])'},
# 4: {'wetting': '1.0 - (1.0 + t*t)*(1.0 + x[0]*x[0])'},
# 5: {'wetting': '1.0 - (1.0 + t*t)*(1.0 + x[0]*x[0] + x[1]*x[1])'}
# }
#
# initial_condition = {
# 1: {'wetting': '-(x[0]*x[0] + x[1]*x[1])'},
# 2: {'wetting': '-x[0]*x[0]'},
# 3: {'wetting': '-x[0]*x[0]'},
# 4: {'wetting': '-x[0]*x[0]'},
# 5: {'wetting': '-(x[0]*x[0] + x[1]*x[1])'}
# }
#############################################
# Manufacture source expressions with sympy #
#############################################
x
,
y
=
sym
.
symbols
(
'
x[0], x[1]
'
)
# needed by UFL
t
=
sym
.
symbols
(
'
t
'
,
positive
=
True
)
p_e_sym
=
{
1
:
{
'
wetting
'
:
-
3
+
0
*
t
,
'
nonwetting
'
:
-
1
+
0
*
t
},
2
:
{
'
wetting
'
:
-
3
+
0
*
t
,
'
nonwetting
'
:
-
1
+
0
*
t
},
# 3: {'wetting': 1.0 - (1.0 + t*t)*(1.0 + x*x)},
# 4: {'wetting': 1.0 - (1.0 + t*t)*(1.0 + x*x)},
# 5: {'wetting': 1.0 - (1.0 + t*t)*(1.0 + x*x + y*y)}
}
# pc_e_sym = {
# 1: -1*p_e_sym[1]['wetting'],
# 2: -1*p_e_sym[2]['wetting'],
# # 3: -1*p_e_sym[3]['wetting'],
# # 4: -1*p_e_sym[4]['wetting'],
# # 5: -1*p_e_sym[5]['wetting']
# }
pc_e_sym
=
{
1
:
p_e_sym
[
1
][
'
nonwetting
'
]
-
p_e_sym
[
1
][
'
wetting
'
],
2
:
p_e_sym
[
2
][
'
nonwetting
'
]
-
p_e_sym
[
2
][
'
wetting
'
],
# 3: -1*p_e_sym[3]['wetting'],
# 4: -1*p_e_sym[4]['wetting'],
# 5: -1*p_e_sym[5]['wetting']
}
# #### Manufacture source expressions with sympy
# ###############################################################################
# ## subdomain1
# x, y = sym.symbols('x[0], x[1]') # needed by UFL
# t = sym.symbols('t', positive=True)
# #f = -sym.diff(u, x, 2) - sym.diff(u, y, 2) # -Laplace(u)
# #f = sym.simplify(f) # simplify f
# p1_w = 1 - (1+t**2)*(1 + x**2 + (y-0.5)**2)
# p1_nw = t*(1-(y-0.5) - x**2)**2 - sym.sqrt(2+t**2)*(1-(y-0.5))
#
# #dtS1_w = sym.diff(S_pc_rel_sym[1](p1_nw - p1_w), t, 1)
# #dtS1_nw = -sym.diff(S_pc_rel_sym[1](p1_nw - p1_w), t, 1)
# dtS1_w = porosity[1]*sym.diff(sym.Piecewise((S_pc_rel[1](p1_nw - p1_w), (p1_nw - p1_w) > 0), (1, True) ), t, 1)
# dtS1_nw = -porosity[1]*sym.diff(sym.Piecewise((S_pc_rel[1](p1_nw - p1_w), (p1_nw - p1_w) > 0), (1, True) ), t, 1)
# print("dtS1_w = ", dtS1_w, "\n")
# print("dtS1_nw = ", dtS1_nw, "\n")
#
# #dxdxflux1_w = -sym.diff(relative_permeability[1]['wetting'](S_pc_rel_sym[1](p1_nw - p1_w))*sym.diff(p1_w, x, 1), x, 1)
# #dydyflux1_w = -sym.diff(relative_permeability[1]['wetting'](S_pc_rel_sym[1](p1_nw - p1_w))*sym.diff(p1_w, y, 1), y, 1)
# dxdxflux1_w = -1/viscosity[1]['wetting']*sym.diff(relative_permeability[1]['wetting'](sym.Piecewise((S_pc_rel[1](p1_nw - p1_w), (p1_nw - p1_w) > 0), (1, True) ))*sym.diff(p1_w, x, 1), x, 1)
# dydyflux1_w = -1/viscosity[1]['wetting']*sym.diff(relative_permeability[1]['wetting'](sym.Piecewise((S_pc_rel[1](p1_nw - p1_w), (p1_nw - p1_w) > 0), (1, True) ))*sym.diff(p1_w, y, 1), y, 1)
#
# rhs1_w = dtS1_w + dxdxflux1_w + dydyflux1_w
# rhs1_w = sym.printing.ccode(rhs1_w)
# print("rhs_w = ", rhs1_w, "\n")
# #rhs_w = sym.expand(rhs_w)
# #print("rhs_w", rhs_w, "\n")
# #rhs_w = sym.collect(rhs_w, x)
# #print("rhs_w", rhs_w, "\n")
#
# #dxdxflux1_nw = -sym.diff(relative_permeability[1]['nonwetting'](S_pc_rel_sym[1](p1_nw - p1_w))*sym.diff(p1_nw, x, 1), x, 1)
# #dydyflux1_nw = -sym.diff(relative_permeability[1]['nonwetting'](S_pc_rel_sym[1](p1_nw - p1_w))*sym.diff(p1_nw, y, 1), y, 1)
# dxdxflux1_nw = -1/viscosity[1]['nonwetting']*sym.diff(relative_permeability[1]['nonwetting'](1-sym.Piecewise((S_pc_rel[1](p1_nw - p1_w), (p1_nw - p1_w) > 0), (1, True) ))*sym.diff(p1_nw, x, 1), x, 1)
# dydyflux1_nw = -1/viscosity[1]['nonwetting']*sym.diff(relative_permeability[1]['nonwetting'](1-sym.Piecewise((S_pc_rel[1](p1_nw - p1_w), (p1_nw - p1_w) > 0), (1, True) ))*sym.diff(p1_nw, y, 1), y, 1)
#
# rhs1_nw = dtS1_nw + dxdxflux1_nw + dydyflux1_nw
# rhs1_nw = sym.printing.ccode(rhs1_nw)
# print("rhs_nw = ", rhs1_nw, "\n")
#
# ## subdomain2
# p2_w = 1 - (1+t**2)*(1 + x**2)
# p2_nw = t*(1- x**2)**2 - sym.sqrt(2+t**2)*(1-(y-0.5))
#
# #dtS2_w = sym.diff(S_pc_rel_sym[2](p2_nw - p2_w), t, 1)
# #dtS2_nw = -sym.diff(S_pc_rel_sym[2](p2_nw - p2_w), t, 1)
# dtS2_w = porosity[2]*sym.diff(sym.Piecewise((sym.Piecewise((S_pc_rel[2](p2_nw - p2_w), (p2_nw - p2_w) > 0), (1, True) ), (p2_nw - p2_w) > 0), (1, True) ), t, 1)
# dtS2_nw = -porosity[2]*sym.diff(sym.Piecewise((S_pc_rel[2](p2_nw - p2_w), (p2_nw - p2_w) > 0), (1, True) ), t, 1)
# print("dtS2_w = ", dtS2_w, "\n")
# print("dtS2_nw = ", dtS2_nw, "\n")
#
# #dxdxflux2_w = -sym.diff(relative_permeability[2]['wetting'](S_pc_rel_sym[2](p2_nw - p2_w))*sym.diff(p2_w, x, 1), x, 1)
# #dydyflux2_w = -sym.diff(relative_permeability[2]['wetting'](S_pc_rel_sym[2](p2_nw - p2_w))*sym.diff(p2_w, y, 1), y, 1)
# dxdxflux2_w = -1/viscosity[2]['wetting']*sym.diff(relative_permeability[2]['wetting'](sym.Piecewise((S_pc_rel[2](p2_nw - p2_w), (p2_nw - p2_w) > 0), (1, True) ))*sym.diff(p2_w, x, 1), x, 1)
# dydyflux2_w = -1/viscosity[2]['wetting']*sym.diff(relative_permeability[2]['wetting'](sym.Piecewise((S_pc_rel[2](p2_nw - p2_w), (p2_nw - p2_w) > 0), (1, True) ))*sym.diff(p2_w, y, 1), y, 1)
#
# rhs2_w = dtS2_w + dxdxflux2_w + dydyflux2_w
# rhs2_w = sym.printing.ccode(rhs2_w)
# print("rhs2_w = ", rhs2_w, "\n")
# #rhs_w = sym.expand(rhs_w)
# #print("rhs_w", rhs_w, "\n")
# #rhs_w = sym.collect(rhs_w, x)
# #print("rhs_w", rhs_w, "\n")
#
# #dxdxflux2_nw = -sym.diff(relative_permeability[2]['nonwetting'](S_pc_rel_sym[2](p2_nw - p2_w))*sym.diff(p2_nw, x, 1), x, 1)
# #dydyflux2_nw = -sym.diff(relative_permeability[2]['nonwetting'](S_pc_rel_sym[2](p2_nw - p2_w))*sym.diff(p2_nw, y, 1), y, 1)
# dxdxflux2_nw = -1/viscosity[2]['nonwetting']*sym.diff(relative_permeability[2]['nonwetting'](1-sym.Piecewise((S_pc_rel[2](p2_nw - p2_w), (p2_nw - p2_w) > 0), (1, True) ))*sym.diff(p2_nw, x, 1), x, 1)
# dydyflux2_nw = -1/viscosity[2]['nonwetting']*sym.diff(relative_permeability[2]['nonwetting'](1-sym.Piecewise((S_pc_rel[2](p2_nw - p2_w), (p2_nw - p2_w) > 0), (1, True) ))*sym.diff(p2_nw, y, 1), y, 1)
#
# rhs2_nw = dtS2_nw + dxdxflux2_nw + dydyflux2_nw
# rhs2_nw = sym.printing.ccode(rhs2_nw)
# print("rhs2_nw = ", rhs2_nw, "\n")
#
#
# ###############################################################################
#
# source_expression = {
# 1: {'wetting': rhs1_w,
# 'nonwetting': rhs1_nw},
# 2: {'wetting': rhs2_w,
# 'nonwetting': rhs2_nw}
# }
#
# p1_w_00 = p1_w.subs(t, 0)
# p1_nw_00 = p1_nw.subs(t, 0)
# p2_w_00 = p2_w.subs(t, 0)
# p2_nw_00 = p2_nw.subs(t, 0)
# # p1_w_00 = sym.printing.ccode(p1_w_00)
#
# initial_condition = {
# 1: {'wetting': sym.printing.ccode(p1_w_00),
# 'nonwetting': sym.printing.ccode(p1_nw_00)},#
# 2: {'wetting': sym.printing.ccode(p2_w_00),
# 'nonwetting': sym.printing.ccode(p2_nw_00)}
# }
#
# exact_solution = {
# 1: {'wetting': sym.printing.ccode(p1_w),
# 'nonwetting': sym.printing.ccode(p1_nw)},#
# 2: {'wetting': sym.printing.ccode(p2_w),
# 'nonwetting': sym.printing.ccode(p2_nw)}
# }
#
# # similary to the outer boundary dictionary, if a patch has no outer boundary
# # None should be written instead of an expression. This is a bit of a brainfuck:
# # dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind.
# # Since a domain patch can have several disjoint outer boundary parts, the expressions
# # need to get an enumaration index which starts at 0. So dirichletBC[ind][j] is
# # the dictionary of outer dirichlet conditions of subdomain ind and boundary part j.
# # finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting'] return
# # the actual expression needed for the dirichlet condition for both phases if present.
# dirichletBC = {
# #subdomain index: {outer boudary part index: {phase: expression}}
# 1: { 0: {'wetting': sym.printing.ccode(p1_w),
# 'nonwetting': sym.printing.ccode(p1_nw)}},
# 2: { 0: {'wetting': sym.printing.ccode(p2_w),
# 'nonwetting': sym.printing.ccode(p2_nw)}}
# }
# turn above symbolic code into exact solution for dolphin and
# construct the rhs that matches the above exact solution.
dtS
=
dict
()
div_flux
=
dict
()
source_expression
=
dict
()
exact_solution
=
dict
()
initial_condition
=
dict
()
for
subdomain
,
isR
in
isRichards
.
items
():
dtS
.
update
({
subdomain
:
dict
()})
div_flux
.
update
({
subdomain
:
dict
()})
source_expression
.
update
({
subdomain
:
dict
()})
exact_solution
.
update
({
subdomain
:
dict
()})
initial_condition
.
update
({
subdomain
:
dict
()})
if
isR
:
subdomain_has_phases
=
[
"
wetting
"
]
else
:
subdomain_has_phases
=
[
"
wetting
"
,
"
nonwetting
"
]
# conditional for S_pc_prime
pc
=
pc_e_sym
[
subdomain
]
dtpc
=
sym
.
diff
(
pc
,
t
,
1
)
dxpc
=
sym
.
diff
(
pc
,
x
,
1
)
dypc
=
sym
.
diff
(
pc
,
y
,
1
)
S
=
sym
.
Piecewise
((
S_pc_sym
[
subdomain
](
pc
),
pc
>
0
),
(
1
,
True
))
dS
=
sym
.
Piecewise
((
S_pc_sym_prime
[
subdomain
](
pc
),
pc
>
0
),
(
0
,
True
))
for
phase
in
subdomain_has_phases
:
# Turn above symbolic expression for exact solution into c code
exact_solution
[
subdomain
].
update
(
{
phase
:
sym
.
printing
.
ccode
(
p_e_sym
[
subdomain
][
phase
])}
)
# save the c code for initial conditions
initial_condition
[
subdomain
].
update
(
{
phase
:
sym
.
printing
.
ccode
(
p_e_sym
[
subdomain
][
phase
].
subs
(
t
,
0
))}
)
if
phase
==
"
nonwetting
"
:
dtS
[
subdomain
].
update
(
{
phase
:
-
porosity
[
subdomain
]
*
dS
*
dtpc
}
)
else
:
dtS
[
subdomain
].
update
(
{
phase
:
porosity
[
subdomain
]
*
dS
*
dtpc
}
)
pa
=
p_e_sym
[
subdomain
][
phase
]
dxpa
=
sym
.
diff
(
pa
,
x
,
1
)
dxdxpa
=
sym
.
diff
(
pa
,
x
,
2
)
dypa
=
sym
.
diff
(
pa
,
y
,
1
)
dydypa
=
sym
.
diff
(
pa
,
y
,
2
)
mu
=
viscosity
[
subdomain
][
phase
]
ka
=
relative_permeability
[
subdomain
][
phase
]
dka
=
ka_prime
[
subdomain
][
phase
]
rho
=
densities
[
subdomain
][
phase
]
g
=
gravity_acceleration
if
phase
==
"
nonwetting
"
:
# x part of div(flux) for nonwetting
dxdxflux
=
-
1
/
mu
*
dka
(
1
-
S
)
*
dS
*
dxpc
*
dxpa
+
1
/
mu
*
dxdxpa
*
ka
(
1
-
S
)
# y part of div(flux) for nonwetting
dydyflux
=
-
1
/
mu
*
dka
(
1
-
S
)
*
dS
*
dypc
*
(
dypa
-
rho
*
g
)
\
+
1
/
mu
*
dydypa
*
ka
(
1
-
S
)
else
:
# x part of div(flux) for wetting
dxdxflux
=
1
/
mu
*
dka
(
S
)
*
dS
*
dxpc
*
dxpa
+
1
/
mu
*
dxdxpa
*
ka
(
S
)
# y part of div(flux) for wetting
dydyflux
=
1
/
mu
*
dka
(
S
)
*
dS
*
dypc
*
(
dypa
-
rho
*
g
)
+
1
/
mu
*
dydypa
*
ka
(
S
)
div_flux
[
subdomain
].
update
({
phase
:
dxdxflux
+
dydyflux
})
contructed_rhs
=
dtS
[
subdomain
][
phase
]
-
div_flux
[
subdomain
][
phase
]
source_expression
[
subdomain
].
update
(
{
phase
:
sym
.
printing
.
ccode
(
contructed_rhs
)}
)
# print(f"source_expression[{subdomain}][{phase}] =", source_expression[subdomain][phase])
# Dictionary of dirichlet boundary conditions.
dirichletBC
=
dict
()
# similarly to the outer boundary dictionary, if a patch has no outer boundary
# None should be written instead of an expression.
# This is a bit of a brainfuck:
# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind.
# Since a domain patch can have several disjoint outer boundary parts, the
# expressions need to get an enumaration index which starts at 0.
# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of
# subdomain ind and boundary part j.
# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting']
# return the actual expression needed for the dirichlet condition for both
# phases if present.
# subdomain index: {outer boudary part index: {phase: expression}}
for
subdomain
in
isRichards
.
keys
():
# if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None
if
outer_boundary_def_points
[
subdomain
]
is
None
:
dirichletBC
.
update
({
subdomain
:
None
})
else
:
dirichletBC
.
update
({
subdomain
:
dict
()})
# set the dirichlet conditions to be the same code as exact solution on
# the subdomain.
for
outer_boundary_ind
in
outer_boundary_def_points
[
subdomain
].
keys
():
dirichletBC
[
subdomain
].
update
(
{
outer_boundary_ind
:
exact_solution
[
subdomain
]}
)
# def saturation(pressure, subdomain_index):
# # inverse capillary pressure-saturation-relationship
# return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1)
#
# sa
write_to_file
=
{
'
meshes_and_markers
'
:
True
,
'
L_iterations
'
:
True
}
# initialise LDD simulation class
simulation
=
ldd
.
LDDsimulation
(
tol
=
1E-14
,
LDDsolver_tol
=
1E-6
,
debug
=
False
)
simulation
.
set_parameters
(
output_dir
=
"
./output/
"
,
#
subdomain_def_points
=
subdomain_def_points
,
#
isRichards
=
isRichards
,
#
interface_def_points
=
interface_def_points
,
#
outer_boundary_def_points
=
outer_boundary_def_points
,
#
adjacent_subdomains
=
adjacent_subdomains
,
#
mesh_resolution
=
mesh_resolution
,
#
viscosity
=
viscosity
,
#
porosity
=
porosity
,
#
L
=
L
,
#
lambda_param
=
lambda_param
,
#
relative_permeability
=
relative_permeability
,
#
saturation
=
sat_pressure_relationship
,
#
starttime
=
starttime
,
#
number_of_timesteps
=
number_of_timesteps
,
number_of_timesteps_to_analyse
=
number_of_timesteps_to_analyse
,
timestep_size
=
timestep_size
,
#
sources
=
source_expression
,
#
initial_conditions
=
initial_condition
,
#
dirichletBC_expression_strings
=
dirichletBC
,
#
exact_solution
=
exact_solution
,
#
densities
=
densities
,
include_gravity
=
True
,
write2file
=
write_to_file
,
#
)
simulation
.
initialise
()
# simulation.write_exact_solution_to_xdmf()
simulation
.
run
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment