diff --git a/TP-TP-2-patch-constant-solution/TP-TP-2-patch-constant-solution.py b/TP-TP-2-patch-constant-solution/TP-TP-2-patch-constant-solution.py new file mode 100755 index 0000000000000000000000000000000000000000..b60c4a7e4231635b98f236ca0617fb6216ecc134 --- /dev/null +++ b/TP-TP-2-patch-constant-solution/TP-TP-2-patch-constant-solution.py @@ -0,0 +1,644 @@ +#!/usr/bin/python3 +import dolfin as df +import mshr +import numpy as np +import sympy as sym +import typing as tp +import domainPatch as dp +import LDDsimulation as ldd +import functools as ft +#import ufl as ufl + +# init sympy session +sym.init_printing() + +##### Domain and Interface #### +# global simulation domain domain +sub_domain0_vertices = [df.Point(-1.0,-1.0), # + df.Point(1.0,-1.0),# + df.Point(1.0,1.0),# + df.Point(-1.0,1.0)] +# interface between subdomain1 and subdomain2 +interface12_vertices = [df.Point(-1.0, 0.0), + df.Point(1.0, 0.0) ] +# subdomain1. +sub_domain1_vertices = [interface12_vertices[0], + interface12_vertices[1], + sub_domain0_vertices[2], + sub_domain0_vertices[3] ] + +# vertex coordinates of the outer boundaries. If it can not be specified as a +# polygon, use an entry per boundary polygon. This information is used for defining +# the Dirichlet boundary conditions. If a domain is completely internal, the +# dictionary entry should be 0: None +subdomain1_outer_boundary_verts = { + 0: [interface12_vertices[1], + sub_domain0_vertices[2], + sub_domain0_vertices[3], # + interface12_vertices[0]] +} +# subdomain2 +sub_domain2_vertices = [sub_domain0_vertices[0], + sub_domain0_vertices[1], + interface12_vertices[1], + interface12_vertices[0] ] + +subdomain2_outer_boundary_verts = { + 0: [interface12_vertices[0], # + sub_domain0_vertices[0], + sub_domain0_vertices[1], + interface12_vertices[1]] +} + +# list of subdomains given by the boundary polygon vertices. +# Subdomains are given as a list of dolfin points forming +# a closed polygon, such that mshr.Polygon(subdomain_def_points[i]) can be used +# to create the subdomain. subdomain_def_points[0] contains the +# vertices of the global simulation domain and subdomain_def_points[i] contains the +# vertices of the subdomain i. +subdomain_def_points = [sub_domain0_vertices,# + sub_domain1_vertices,# + sub_domain2_vertices] +# in the below list, index 0 corresponds to the 12 interface which has index 1 +interface_def_points = [interface12_vertices] + +# if a subdomain has no outer boundary write None instead, i.e. +# i: None +# if i is the index of the inner subdomain. +outer_boundary_def_points = { + # subdomain number + 1 : subdomain1_outer_boundary_verts, + 2 : subdomain2_outer_boundary_verts +} + +# adjacent_subdomains[i] contains the indices of the subdomains sharing the +# interface i (i.e. given by interface_def_points[i]). +adjacent_subdomains = [[1,2]] +isRichards = { + 1: False, # + 2: False + } + + +############ GRID #######################ΓΌ +mesh_resolution = 41 +timestep_size = 0.01 +number_of_timesteps = 100 +# decide how many timesteps you want analysed. Analysed means, that we write out +# subsequent errors of the L-iteration within the timestep. +number_of_timesteps_to_analyse = 11 +starttime = 0 + +viscosity = {# +# subdom_num : viscosity + 1 : {'wetting' :1, + 'nonwetting': 1}, # + 2 : {'wetting' :1, + 'nonwetting': 1} +} + +densities = { + 1: {'wetting': 1, + 'nonwetting': 1}, + 2: {'wetting': 1, + 'nonwetting': 1}, + # 3: {'wetting': 1}, + # 4: {'wetting': 1} +} + +gravity_acceleration = 9.81 + +porosity = {# +# subdom_num : porosity + 1 : 1,# + 2 : 1 +} + +L = {# +# subdom_num : subdomain L for L-scheme + 1 : {'wetting' :0.25, + 'nonwetting': 0.25},# + 2 : {'wetting' :0.25, + 'nonwetting': 0.25} +} + +l_param = 40 +lambda_param = {# +# subdom_num : lambda parameter for the L-scheme + 1 : {'wetting' :l_param, + 'nonwetting': l_param},# + 2 : {'wetting' :l_param, + 'nonwetting': l_param} +} + +## relative permeabilty functions on subdomain 1 +def rel_perm1w(s): + # relative permeabilty wetting on subdomain1 + return s**2 + +def rel_perm1nw(s): + # relative permeabilty nonwetting on subdomain1 + return (1-s)**2 + +_rel_perm1w = ft.partial(rel_perm1w) +_rel_perm1nw = ft.partial(rel_perm1nw) +subdomain1_rel_perm = { + 'wetting': _rel_perm1w,# + 'nonwetting': _rel_perm1nw +} +## relative permeabilty functions on subdomain 2 +def rel_perm2w(s): + # relative permeabilty wetting on subdomain2 + return s**2 +def rel_perm2nw(s): + # relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2 + return (1-s)**2 + +_rel_perm2w = ft.partial(rel_perm2w) +_rel_perm2nw = ft.partial(rel_perm2nw) + +subdomain2_rel_perm = { + 'wetting': _rel_perm2w,# + 'nonwetting': _rel_perm2nw +} + +## dictionary of relative permeabilties on all domains. +relative_permeability = {# + 1: subdomain1_rel_perm, + 2: subdomain2_rel_perm +} + + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 1 +def rel_perm1w_prime(s): + # relative permeabilty on subdomain1 + return 2*s + +def rel_perm1nw_prime(s): + # relative permeabilty on subdomain1 + return 2*(1-s) + +# # definition of the derivatives of the relative permeabilities +# # relative permeabilty functions on subdomain 1 +# def rel_perm2w_prime(s): +# # relative permeabilty on subdomain1 +# return 3*s**2 +# +# def rel_perm2nw_prime(s): +# # relative permeabilty on subdomain1 +# return 2*(l_param_w1-s) + +_rel_perm1w_prime = ft.partial(rel_perm1w_prime) +_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime) +# _rel_perm2w_prime = ft.partial(rel_perm2w_prime) +# _rel_perm2nw_prime = ft.partial(rel_perm2nw_prime) + +subdomain1_rel_perm_prime = { + 'wetting': _rel_perm1w_prime, + 'nonwetting': _rel_perm1nw_prime +} + + +# subdomain2_rel_perm_prime = { +# 'wetting': _rel_perm2w_prime, +# 'nonwetting': _rel_perm2nw_prime +# } + +# dictionary of relative permeabilties on all domains. +ka_prime = { + 1: subdomain1_rel_perm_prime, + 2: subdomain1_rel_perm_prime, +} + +def saturation(pc, n_index, alpha): + # inverse capillary pressure-saturation-relationship + return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1) + +# S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where +# we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw +def saturation_sym(pc, n_index, alpha): + # inverse capillary pressure-saturation-relationship + #df.conditional(pc > 0, + return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)) + + +# derivative of S-pc relationship with respect to pc. This is needed for the +# construction of a analytic solution. +def saturation_sym_prime(pc, n_index, alpha): + # inverse capillary pressure-saturation-relationship + return -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1)) / ( (1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index) ) + +# note that the conditional definition of S-pc in the nonsymbolic part will be +# incorporated in the construction of the exact solution below. +S_pc_sym = { + 1: ft.partial(saturation_sym, n_index=3, alpha=0.001), + 2: ft.partial(saturation_sym, n_index=3, alpha=0.001), + # 3: ft.partial(saturation_sym, n_index=3, alpha=0.001), + # 4: ft.partial(saturation_sym, n_index=3, alpha=0.001), + # 5: ft.partial(saturation_sym, n_index=3, alpha=0.001), + # 6: ft.partial(saturation_sym, n_index=3, alpha=0.001) +} + +S_pc_sym_prime = { + 1: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), + 2: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), + # 3: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), + # 4: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), + # 5: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), + # 6: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001) +} + +sat_pressure_relationship = { + 1: ft.partial(saturation, n_index=3, alpha=0.001), + 2: ft.partial(saturation, n_index=3, alpha=0.001), + # 3: ft.partial(saturation, n_index=3, alpha=0.001), + # 4: ft.partial(saturation, n_index=3, alpha=0.001), + # 5: ft.partial(saturation, n_index=3, alpha=0.001), + # 6: ft.partial(saturation, n_index=3, alpha=0.001) +} + + +# S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where +# we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw +# def saturation(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1) +# +# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where +# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw +# def saturation_sym(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# #df.conditional(capillary_pressure > 0, +# return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)) +# +# S_pc_rel = {# +# 1: ft.partial(saturation_sym, n_index = 3, alpha=0.001),# n= 3 stands for non-uniform porous media +# 2: ft.partial(saturation_sym, n_index = 6, alpha=0.001) # n=6 stands for uniform porous media matrix (siehe Helmig) +# } + +# S_pc_rel_sym = {# +# 1: ft.partial(saturation_sym, n_index = sym.Symbol('n'), alpha = sym.Symbol('a')),# n= 3 stands for non-uniform porous media +# 2: ft.partial(saturation_sym, n_index = sym.Symbol('n'), alpha = sym.Symbol('a')) # n=6 stands for uniform porous media matrix (siehe Helmig) +# } + + +# # this function needs to be monotonically decreasing in the capillary_pressure. +# # since in the richards case pc=-pw, this becomes as a function of pw a mono +# # tonically INCREASING function like in our Richards-Richards paper. However +# # since we unify the treatment in the code for Richards and two-phase, we need +# # the same requierment +# # for both cases, two-phase and Richards. +# def saturation(pc, index): +# # inverse capillary pressure-saturation-relationship +# return df.conditional(pc > 0, 1/((1 + pc)**(1/(index + 1))), 1) +# +# +# def saturation_sym(pc, index): +# # inverse capillary pressure-saturation-relationship +# return 1/((1 + pc)**(1/(index + 1))) +# +# +# # derivative of S-pc relationship with respect to pc. This is needed for the +# # construction of a analytic solution. +# def saturation_sym_prime(pc, index): +# # inverse capillary pressure-saturation-relationship +# return -1/((index+1)*(1 + pc)**((index+2)/(index+1))) +# +# +# # note that the conditional definition of S-pc in the nonsymbolic part will be +# # incorporated in the construction of the exact solution below. +# S_pc_sym = { +# 1: ft.partial(saturation_sym, index=1), +# 2: ft.partial(saturation_sym, index=2), +# # 3: ft.partial(saturation_sym, index=2), +# # 4: ft.partial(saturation_sym, index=2), +# # 5: ft.partial(saturation_sym, index=1) +# } +# +# S_pc_sym_prime = { +# 1: ft.partial(saturation_sym_prime, index=1), +# 2: ft.partial(saturation_sym_prime, index=2), +# # 3: ft.partial(saturation_sym_prime, index=2), +# # 4: ft.partial(saturation_sym_prime, index=2), +# # 5: ft.partial(saturation_sym_prime, index=1) +# } +# +# sat_pressure_relationship = { +# 1: ft.partial(saturation, index=1), +# 2: ft.partial(saturation, index=2), +# # 3: ft.partial(saturation, index=2), +# # 4: ft.partial(saturation, index=2), +# # 5: ft.partial(saturation, index=1) +# } + +# exact_solution = { +# 1: {'wetting': '1.0 - (1.0 + t*t)*(1.0 + x[0]*x[0] + x[1]*x[1])'}, +# 2: {'wetting': '1.0 - (1.0 + t*t)*(1.0 + x[0]*x[0])'}, +# 3: {'wetting': '1.0 - (1.0 + t*t)*(1.0 + x[0]*x[0])'}, +# 4: {'wetting': '1.0 - (1.0 + t*t)*(1.0 + x[0]*x[0])'}, +# 5: {'wetting': '1.0 - (1.0 + t*t)*(1.0 + x[0]*x[0] + x[1]*x[1])'} +# } +# +# initial_condition = { +# 1: {'wetting': '-(x[0]*x[0] + x[1]*x[1])'}, +# 2: {'wetting': '-x[0]*x[0]'}, +# 3: {'wetting': '-x[0]*x[0]'}, +# 4: {'wetting': '-x[0]*x[0]'}, +# 5: {'wetting': '-(x[0]*x[0] + x[1]*x[1])'} +# } + +############################################# +# Manufacture source expressions with sympy # +############################################# +x, y = sym.symbols('x[0], x[1]') # needed by UFL +t = sym.symbols('t', positive=True) + +p_e_sym = { + 1: {'wetting': -3 + 0*t, + 'nonwetting': -1+ 0*t}, + 2: {'wetting': -3+ 0*t, + 'nonwetting': -1+ 0*t}, + # 3: {'wetting': 1.0 - (1.0 + t*t)*(1.0 + x*x)}, + # 4: {'wetting': 1.0 - (1.0 + t*t)*(1.0 + x*x)}, + # 5: {'wetting': 1.0 - (1.0 + t*t)*(1.0 + x*x + y*y)} +} + +# pc_e_sym = { +# 1: -1*p_e_sym[1]['wetting'], +# 2: -1*p_e_sym[2]['wetting'], +# # 3: -1*p_e_sym[3]['wetting'], +# # 4: -1*p_e_sym[4]['wetting'], +# # 5: -1*p_e_sym[5]['wetting'] +# } + +pc_e_sym = { + 1: p_e_sym[1]['nonwetting'] - p_e_sym[1]['wetting'], + 2: p_e_sym[2]['nonwetting'] - p_e_sym[2]['wetting'], + # 3: -1*p_e_sym[3]['wetting'], + # 4: -1*p_e_sym[4]['wetting'], + # 5: -1*p_e_sym[5]['wetting'] +} + + +# #### Manufacture source expressions with sympy +# ############################################################################### +# ## subdomain1 +# x, y = sym.symbols('x[0], x[1]') # needed by UFL +# t = sym.symbols('t', positive=True) +# #f = -sym.diff(u, x, 2) - sym.diff(u, y, 2) # -Laplace(u) +# #f = sym.simplify(f) # simplify f +# p1_w = 1 - (1+t**2)*(1 + x**2 + (y-0.5)**2) +# p1_nw = t*(1-(y-0.5) - x**2)**2 - sym.sqrt(2+t**2)*(1-(y-0.5)) +# +# #dtS1_w = sym.diff(S_pc_rel_sym[1](p1_nw - p1_w), t, 1) +# #dtS1_nw = -sym.diff(S_pc_rel_sym[1](p1_nw - p1_w), t, 1) +# dtS1_w = porosity[1]*sym.diff(sym.Piecewise((S_pc_rel[1](p1_nw - p1_w), (p1_nw - p1_w) > 0), (1, True) ), t, 1) +# dtS1_nw = -porosity[1]*sym.diff(sym.Piecewise((S_pc_rel[1](p1_nw - p1_w), (p1_nw - p1_w) > 0), (1, True) ), t, 1) +# print("dtS1_w = ", dtS1_w, "\n") +# print("dtS1_nw = ", dtS1_nw, "\n") +# +# #dxdxflux1_w = -sym.diff(relative_permeability[1]['wetting'](S_pc_rel_sym[1](p1_nw - p1_w))*sym.diff(p1_w, x, 1), x, 1) +# #dydyflux1_w = -sym.diff(relative_permeability[1]['wetting'](S_pc_rel_sym[1](p1_nw - p1_w))*sym.diff(p1_w, y, 1), y, 1) +# dxdxflux1_w = -1/viscosity[1]['wetting']*sym.diff(relative_permeability[1]['wetting'](sym.Piecewise((S_pc_rel[1](p1_nw - p1_w), (p1_nw - p1_w) > 0), (1, True) ))*sym.diff(p1_w, x, 1), x, 1) +# dydyflux1_w = -1/viscosity[1]['wetting']*sym.diff(relative_permeability[1]['wetting'](sym.Piecewise((S_pc_rel[1](p1_nw - p1_w), (p1_nw - p1_w) > 0), (1, True) ))*sym.diff(p1_w, y, 1), y, 1) +# +# rhs1_w = dtS1_w + dxdxflux1_w + dydyflux1_w +# rhs1_w = sym.printing.ccode(rhs1_w) +# print("rhs_w = ", rhs1_w, "\n") +# #rhs_w = sym.expand(rhs_w) +# #print("rhs_w", rhs_w, "\n") +# #rhs_w = sym.collect(rhs_w, x) +# #print("rhs_w", rhs_w, "\n") +# +# #dxdxflux1_nw = -sym.diff(relative_permeability[1]['nonwetting'](S_pc_rel_sym[1](p1_nw - p1_w))*sym.diff(p1_nw, x, 1), x, 1) +# #dydyflux1_nw = -sym.diff(relative_permeability[1]['nonwetting'](S_pc_rel_sym[1](p1_nw - p1_w))*sym.diff(p1_nw, y, 1), y, 1) +# dxdxflux1_nw = -1/viscosity[1]['nonwetting']*sym.diff(relative_permeability[1]['nonwetting'](1-sym.Piecewise((S_pc_rel[1](p1_nw - p1_w), (p1_nw - p1_w) > 0), (1, True) ))*sym.diff(p1_nw, x, 1), x, 1) +# dydyflux1_nw = -1/viscosity[1]['nonwetting']*sym.diff(relative_permeability[1]['nonwetting'](1-sym.Piecewise((S_pc_rel[1](p1_nw - p1_w), (p1_nw - p1_w) > 0), (1, True) ))*sym.diff(p1_nw, y, 1), y, 1) +# +# rhs1_nw = dtS1_nw + dxdxflux1_nw + dydyflux1_nw +# rhs1_nw = sym.printing.ccode(rhs1_nw) +# print("rhs_nw = ", rhs1_nw, "\n") +# +# ## subdomain2 +# p2_w = 1 - (1+t**2)*(1 + x**2) +# p2_nw = t*(1- x**2)**2 - sym.sqrt(2+t**2)*(1-(y-0.5)) +# +# #dtS2_w = sym.diff(S_pc_rel_sym[2](p2_nw - p2_w), t, 1) +# #dtS2_nw = -sym.diff(S_pc_rel_sym[2](p2_nw - p2_w), t, 1) +# dtS2_w = porosity[2]*sym.diff(sym.Piecewise((sym.Piecewise((S_pc_rel[2](p2_nw - p2_w), (p2_nw - p2_w) > 0), (1, True) ), (p2_nw - p2_w) > 0), (1, True) ), t, 1) +# dtS2_nw = -porosity[2]*sym.diff(sym.Piecewise((S_pc_rel[2](p2_nw - p2_w), (p2_nw - p2_w) > 0), (1, True) ), t, 1) +# print("dtS2_w = ", dtS2_w, "\n") +# print("dtS2_nw = ", dtS2_nw, "\n") +# +# #dxdxflux2_w = -sym.diff(relative_permeability[2]['wetting'](S_pc_rel_sym[2](p2_nw - p2_w))*sym.diff(p2_w, x, 1), x, 1) +# #dydyflux2_w = -sym.diff(relative_permeability[2]['wetting'](S_pc_rel_sym[2](p2_nw - p2_w))*sym.diff(p2_w, y, 1), y, 1) +# dxdxflux2_w = -1/viscosity[2]['wetting']*sym.diff(relative_permeability[2]['wetting'](sym.Piecewise((S_pc_rel[2](p2_nw - p2_w), (p2_nw - p2_w) > 0), (1, True) ))*sym.diff(p2_w, x, 1), x, 1) +# dydyflux2_w = -1/viscosity[2]['wetting']*sym.diff(relative_permeability[2]['wetting'](sym.Piecewise((S_pc_rel[2](p2_nw - p2_w), (p2_nw - p2_w) > 0), (1, True) ))*sym.diff(p2_w, y, 1), y, 1) +# +# rhs2_w = dtS2_w + dxdxflux2_w + dydyflux2_w +# rhs2_w = sym.printing.ccode(rhs2_w) +# print("rhs2_w = ", rhs2_w, "\n") +# #rhs_w = sym.expand(rhs_w) +# #print("rhs_w", rhs_w, "\n") +# #rhs_w = sym.collect(rhs_w, x) +# #print("rhs_w", rhs_w, "\n") +# +# #dxdxflux2_nw = -sym.diff(relative_permeability[2]['nonwetting'](S_pc_rel_sym[2](p2_nw - p2_w))*sym.diff(p2_nw, x, 1), x, 1) +# #dydyflux2_nw = -sym.diff(relative_permeability[2]['nonwetting'](S_pc_rel_sym[2](p2_nw - p2_w))*sym.diff(p2_nw, y, 1), y, 1) +# dxdxflux2_nw = -1/viscosity[2]['nonwetting']*sym.diff(relative_permeability[2]['nonwetting'](1-sym.Piecewise((S_pc_rel[2](p2_nw - p2_w), (p2_nw - p2_w) > 0), (1, True) ))*sym.diff(p2_nw, x, 1), x, 1) +# dydyflux2_nw = -1/viscosity[2]['nonwetting']*sym.diff(relative_permeability[2]['nonwetting'](1-sym.Piecewise((S_pc_rel[2](p2_nw - p2_w), (p2_nw - p2_w) > 0), (1, True) ))*sym.diff(p2_nw, y, 1), y, 1) +# +# rhs2_nw = dtS2_nw + dxdxflux2_nw + dydyflux2_nw +# rhs2_nw = sym.printing.ccode(rhs2_nw) +# print("rhs2_nw = ", rhs2_nw, "\n") +# +# +# ############################################################################### +# +# source_expression = { +# 1: {'wetting': rhs1_w, +# 'nonwetting': rhs1_nw}, +# 2: {'wetting': rhs2_w, +# 'nonwetting': rhs2_nw} +# } +# +# p1_w_00 = p1_w.subs(t, 0) +# p1_nw_00 = p1_nw.subs(t, 0) +# p2_w_00 = p2_w.subs(t, 0) +# p2_nw_00 = p2_nw.subs(t, 0) +# # p1_w_00 = sym.printing.ccode(p1_w_00) +# +# initial_condition = { +# 1: {'wetting': sym.printing.ccode(p1_w_00), +# 'nonwetting': sym.printing.ccode(p1_nw_00)},# +# 2: {'wetting': sym.printing.ccode(p2_w_00), +# 'nonwetting': sym.printing.ccode(p2_nw_00)} +# } +# +# exact_solution = { +# 1: {'wetting': sym.printing.ccode(p1_w), +# 'nonwetting': sym.printing.ccode(p1_nw)},# +# 2: {'wetting': sym.printing.ccode(p2_w), +# 'nonwetting': sym.printing.ccode(p2_nw)} +# } +# +# # similary to the outer boundary dictionary, if a patch has no outer boundary +# # None should be written instead of an expression. This is a bit of a brainfuck: +# # dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind. +# # Since a domain patch can have several disjoint outer boundary parts, the expressions +# # need to get an enumaration index which starts at 0. So dirichletBC[ind][j] is +# # the dictionary of outer dirichlet conditions of subdomain ind and boundary part j. +# # finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting'] return +# # the actual expression needed for the dirichlet condition for both phases if present. +# dirichletBC = { +# #subdomain index: {outer boudary part index: {phase: expression}} +# 1: { 0: {'wetting': sym.printing.ccode(p1_w), +# 'nonwetting': sym.printing.ccode(p1_nw)}}, +# 2: { 0: {'wetting': sym.printing.ccode(p2_w), +# 'nonwetting': sym.printing.ccode(p2_nw)}} +# } + +# turn above symbolic code into exact solution for dolphin and +# construct the rhs that matches the above exact solution. +dtS = dict() +div_flux = dict() +source_expression = dict() +exact_solution = dict() +initial_condition = dict() +for subdomain, isR in isRichards.items(): + dtS.update({subdomain: dict()}) + div_flux.update({subdomain: dict()}) + source_expression.update({subdomain: dict()}) + exact_solution.update({subdomain: dict()}) + initial_condition.update({subdomain: dict()}) + if isR: + subdomain_has_phases = ["wetting"] + else: + subdomain_has_phases = ["wetting", "nonwetting"] + + # conditional for S_pc_prime + pc = pc_e_sym[subdomain] + dtpc = sym.diff(pc, t, 1) + dxpc = sym.diff(pc, x, 1) + dypc = sym.diff(pc, y, 1) + S = sym.Piecewise((S_pc_sym[subdomain](pc), pc > 0), (1, True)) + dS = sym.Piecewise((S_pc_sym_prime[subdomain](pc), pc > 0), (0, True)) + for phase in subdomain_has_phases: + # Turn above symbolic expression for exact solution into c code + exact_solution[subdomain].update( + {phase: sym.printing.ccode(p_e_sym[subdomain][phase])} + ) + # save the c code for initial conditions + initial_condition[subdomain].update( + {phase: sym.printing.ccode(p_e_sym[subdomain][phase].subs(t, 0))} + ) + if phase == "nonwetting": + dtS[subdomain].update( + {phase: -porosity[subdomain]*dS*dtpc} + ) + else: + dtS[subdomain].update( + {phase: porosity[subdomain]*dS*dtpc} + ) + pa = p_e_sym[subdomain][phase] + dxpa = sym.diff(pa, x, 1) + dxdxpa = sym.diff(pa, x, 2) + dypa = sym.diff(pa, y, 1) + dydypa = sym.diff(pa, y, 2) + mu = viscosity[subdomain][phase] + ka = relative_permeability[subdomain][phase] + dka = ka_prime[subdomain][phase] + rho = densities[subdomain][phase] + g = gravity_acceleration + + if phase == "nonwetting": + # x part of div(flux) for nonwetting + dxdxflux = -1/mu*dka(1-S)*dS*dxpc*dxpa + 1/mu*dxdxpa*ka(1-S) + # y part of div(flux) for nonwetting + dydyflux = -1/mu*dka(1-S)*dS*dypc*(dypa - rho*g) \ + + 1/mu*dydypa*ka(1-S) + else: + # x part of div(flux) for wetting + dxdxflux = 1/mu*dka(S)*dS*dxpc*dxpa + 1/mu*dxdxpa*ka(S) + # y part of div(flux) for wetting + dydyflux = 1/mu*dka(S)*dS*dypc*(dypa - rho*g) + 1/mu*dydypa*ka(S) + div_flux[subdomain].update({phase: dxdxflux + dydyflux}) + contructed_rhs = dtS[subdomain][phase] - div_flux[subdomain][phase] + source_expression[subdomain].update( + {phase: sym.printing.ccode(contructed_rhs)} + ) + # print(f"source_expression[{subdomain}][{phase}] =", source_expression[subdomain][phase]) + +# Dictionary of dirichlet boundary conditions. +dirichletBC = dict() +# similarly to the outer boundary dictionary, if a patch has no outer boundary +# None should be written instead of an expression. +# This is a bit of a brainfuck: +# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind. +# Since a domain patch can have several disjoint outer boundary parts, the +# expressions need to get an enumaration index which starts at 0. +# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of +# subdomain ind and boundary part j. +# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting'] +# return the actual expression needed for the dirichlet condition for both +# phases if present. + +# subdomain index: {outer boudary part index: {phase: expression}} +for subdomain in isRichards.keys(): + # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None + if outer_boundary_def_points[subdomain] is None: + dirichletBC.update({subdomain: None}) + else: + dirichletBC.update({subdomain: dict()}) + # set the dirichlet conditions to be the same code as exact solution on + # the subdomain. + for outer_boundary_ind in outer_boundary_def_points[subdomain].keys(): + dirichletBC[subdomain].update( + {outer_boundary_ind: exact_solution[subdomain]} + ) + + +# def saturation(pressure, subdomain_index): +# # inverse capillary pressure-saturation-relationship +# return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1) +# +# sa + +write_to_file = { + 'meshes_and_markers': True, + 'L_iterations': True +} + + +# initialise LDD simulation class +simulation = ldd.LDDsimulation(tol = 1E-14, LDDsolver_tol = 1E-6, debug = False) +simulation.set_parameters(output_dir = "./output/",# + subdomain_def_points = subdomain_def_points,# + isRichards = isRichards,# + interface_def_points = interface_def_points,# + outer_boundary_def_points = outer_boundary_def_points,# + adjacent_subdomains = adjacent_subdomains,# + mesh_resolution = mesh_resolution,# + viscosity = viscosity,# + porosity = porosity,# + L = L,# + lambda_param = lambda_param,# + relative_permeability = relative_permeability,# + saturation = sat_pressure_relationship,# + starttime = starttime,# + number_of_timesteps = number_of_timesteps, + number_of_timesteps_to_analyse = number_of_timesteps_to_analyse, + timestep_size = timestep_size,# + sources = source_expression,# + initial_conditions = initial_condition,# + dirichletBC_expression_strings = dirichletBC,# + exact_solution = exact_solution,# + densities=densities, + include_gravity=True, + write2file = write_to_file,# + ) + +simulation.initialise() +# simulation.write_exact_solution_to_xdmf() +simulation.run()