Skip to content
Snippets Groups Projects
Commit 612ceff2 authored by David Seus's avatar David Seus
Browse files

fix weird git fuckup

parent 867e84c7
No related branches found
No related tags found
No related merge requests found
......@@ -7,30 +7,34 @@ import sympy as sym
# import domainPatch as dp
import LDDsimulation as ldd
import functools as ft
import helpers as hlp
# import ufl as ufl
# init sympy session
sym.init_printing()
# ----------------------------------------------------------------------------#
# ------------------- MESH ---------------------------------------------------#
# ----------------------------------------------------------------------------#
mesh_resolution = 51
# ----------------------------------------:-------------------------------------#
# ------------------- TIME ---------------------------------------------------#
# ----------------------------------------------------------------------------#
timestep_size = 0.005
number_of_timesteps = 160
# decide how many timesteps you want analysed. Analysed means, that we write
# out subsequent errors of the L-iteration within the timestep.
number_of_timesteps_to_analyse = 11
solver_tol = 5E-7
############ GRID #######################ü
mesh_resolution = 30
timestep_size = 0.001
number_of_timesteps = 1000
# decide how many timesteps you want analysed. Analysed means, that we write out
# subsequent errors of the L-iteration within the timestep.
number_of_timesteps_to_analyse = 10
starttime = 0
Lw = 1000
Lw = 1 #/timestep_size
Lnw=Lw
l_param_w = 80
l_param_nw = 80
l_param_w = 40
l_param_nw = 40
include_gravity = True
debugflag = False
analyse_condition = True
output_string = "./output/like_RR_number_of_timesteps{}_".format(number_of_timesteps)
# ----------------------------------------------------------------------------#
# ------------------- Domain and Interface -----------------------------------#
......@@ -258,7 +262,7 @@ def rel_perm1w_prime(s):
def rel_perm1nw_prime(s):
# relative permeabilty on subdomain1
return 2*(1-s)
return -2*(1-s)
# definition of the derivatives of the relative permeabilities
# relative permeabilty functions on subdomain 1
......@@ -268,7 +272,7 @@ def rel_perm2w_prime(s):
def rel_perm2nw_prime(s):
# relative permeabilty on subdomain1
return 3*(1-s)**2
return -3*(1-s)**2
_rel_perm1w_prime = ft.partial(rel_perm1w_prime)
_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime)
......@@ -354,13 +358,13 @@ x, y = sym.symbols('x[0], x[1]') # needed by UFL
t = sym.symbols('t', positive=True)
p_e_sym = {
1: {'wetting': 1.0 - (1.0 + t*t)*(1.0 + x*x + y*y),
1: {'wetting': (1.0 - (1.0 + t*t)*(1.0 + x*x + y*y)), #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2,
'nonwetting': 0.0*t},
2: {'wetting': 1.0 - (1.0 + t*t)*(1.0 + x*x),
2: {'wetting': (1.0 - (1.0 + t*t)*(1.0 + x*x)), #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2,
'nonwetting': 0.0*t},
3: {'wetting': 1.0 - (1.0 + t*t)*(1.0 + x*x),
3: {'wetting': (1.0 - (1.0 + t*t)*(1.0 + x*x)), #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2,
'nonwetting': 0.0*t},
4: {'wetting': 1.0 - (1.0 + t*t)*(1.0 + x*x + y*y),
4: {'wetting': (1.0 - (1.0 + t*t)*(1.0 + x*x + y*y)), #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2,
'nonwetting': 0.0*t}
}
......@@ -374,80 +378,35 @@ p_e_sym = {
pc_e_sym = dict()
for subdomain, isR in isRichards.items():
if isR:
pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting'].copy()})
pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']})
else:
pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'].copy() - p_e_sym[subdomain]['wetting'].copy()})
pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting']
- p_e_sym[subdomain]['wetting']})
symbols = {"x": x,
"y": y,
"t": t}
# turn above symbolic code into exact solution for dolphin and
# construct the rhs that matches the above exact solution.
dtS = dict()
div_flux = dict()
source_expression = dict()
exact_solution = dict()
initial_condition = dict()
for subdomain, isR in isRichards.items():
dtS.update({subdomain: dict()})
div_flux.update({subdomain: dict()})
source_expression.update({subdomain: dict()})
exact_solution.update({subdomain: dict()})
initial_condition.update({subdomain: dict()})
if isR:
subdomain_has_phases = ["wetting"]
else:
subdomain_has_phases = ["wetting", "nonwetting"]
# conditional for S_pc_prime
pc = pc_e_sym[subdomain]
dtpc = sym.diff(pc, t, 1)
dxpc = sym.diff(pc, x, 1)
dypc = sym.diff(pc, y, 1)
S = sym.Piecewise((S_pc_sym[subdomain](pc), pc > 0), (1, True))
dS = sym.Piecewise((S_pc_sym_prime[subdomain](pc), pc > 0), (0, True))
for phase in subdomain_has_phases:
# Turn above symbolic expression for exact solution into c code
exact_solution[subdomain].update(
{phase: sym.printing.ccode(p_e_sym[subdomain][phase])}
)
# save the c code for initial conditions
initial_condition[subdomain].update(
{phase: sym.printing.ccode(p_e_sym[subdomain][phase].subs(t, 0))}
)
if phase == "nonwetting":
dtS[subdomain].update(
{phase: -porosity[subdomain]*dS*dtpc}
)
else:
dtS[subdomain].update(
{phase: porosity[subdomain]*dS*dtpc}
)
pa = p_e_sym[subdomain][phase]
dxpa = sym.diff(pa, x, 1)
dxdxpa = sym.diff(pa, x, 2)
dypa = sym.diff(pa, y, 1)
dydypa = sym.diff(pa, y, 2)
mu = viscosity[subdomain][phase]
ka = relative_permeability[subdomain][phase]
dka = ka_prime[subdomain][phase]
rho = densities[subdomain][phase]
g = gravity_acceleration
if phase == "nonwetting":
# x part of div(flux) for nonwetting
dxdxflux = -1/mu*dka(1-S)*dS*dxpc*dxpa + 1/mu*dxdxpa*ka(1-S)
# y part of div(flux) for nonwetting
dydyflux = -1/mu*dka(1-S)*dS*dypc*(dypa - rho*g) \
+ 1/mu*dydypa*ka(1-S)
else:
# x part of div(flux) for wetting
dxdxflux = 1/mu*dka(S)*dS*dxpc*dxpa + 1/mu*dxdxpa*ka(S)
# y part of div(flux) for wetting
dydyflux = 1/mu*dka(S)*dS*dypc*(dypa - rho*g) + 1/mu*dydypa*ka(S)
div_flux[subdomain].update({phase: dxdxflux + dydyflux})
contructed_rhs = dtS[subdomain][phase] - div_flux[subdomain][phase]
source_expression[subdomain].update(
{phase: sym.printing.ccode(contructed_rhs)}
exact_solution_example = hlp.generate_exact_solution_expressions(
symbols=symbols,
isRichards=isRichards,
symbolic_pressure=p_e_sym,
symbolic_capillary_pressure=pc_e_sym,
saturation_pressure_relationship=S_pc_sym,
saturation_pressure_relationship_prime=S_pc_sym_prime,
viscosity=viscosity,
porosity=porosity,
relative_permeability=relative_permeability,
relative_permeability_prime=ka_prime,
densities=densities,
gravity_acceleration=gravity_acceleration,
include_gravity=include_gravity,
)
# print(f"source_expression[{subdomain}][{phase}] =", source_expression[subdomain][phase])
source_expression = exact_solution_example['source']
exact_solution = exact_solution_example['exact_solution']
initial_condition = exact_solution_example['initial_condition']
# Dictionary of dirichlet boundary conditions.
dirichletBC = dict()
......@@ -485,8 +444,8 @@ write_to_file = {
}
# initialise LDD simulation class
simulation = ldd.LDDsimulation(tol=1E-14, debug=True, LDDsolver_tol=1E-6)
simulation.set_parameters(output_dir="./output/",
simulation = ldd.LDDsimulation(tol=1E-14, LDDsolver_tol=solver_tol, debug=debugflag)
simulation.set_parameters(output_dir=output_string,
subdomain_def_points=subdomain_def_points,
isRichards=isRichards,
interface_def_points=interface_def_points,
......@@ -508,12 +467,12 @@ simulation.set_parameters(output_dir="./output/",
dirichletBC_expression_strings=dirichletBC,
exact_solution=exact_solution,
densities=densities,
include_gravity=True,
include_gravity=include_gravity,
write2file=write_to_file,
)
simulation.initialise()
# print(simulation.__dict__)
simulation.run()
simulation.run(analyse_condition=analyse_condition)
# simulation.LDDsolver(time=0, debug=True, analyse_timestep=True)
# df.info(parameters, True)
#!/usr/bin/python3
"""This program sets up a domain together with a decomposition into subdomains
modelling layered soil. This is used for our LDD article with tp-tp and tp-r
coupling.
Along with the subdomains and the mesh domain markers are set upself.
The resulting mesh is saved into files for later use.
"""
#!/usr/bin/python3
import dolfin as df
import mshr
import numpy as np
import sympy as sym
import typing as tp
import domainPatch as dp
import LDDsimulation as ldd
# global domain
subdomain0_vertices = [df.Point(0.0,0.0), #
df.Point(13.0,0.0),#
df.Point(13.0,8.0),#
df.Point(0.0,8.0)]
interface12_vertices = [df.Point(0.0, 7.0),
df.Point(9.0, 7.0),
df.Point(10.5, 7.5),
df.Point(12.0, 7.0),
df.Point(13.0, 6.5)]
# subdomain1.
subdomain1_vertices = [interface12_vertices[0],
interface12_vertices[1],
interface12_vertices[2],
interface12_vertices[3],
interface12_vertices[4], # southern boundary, 12 interface
df.Point(13.0, 8.0), # eastern boundary, outer boundary
df.Point(0.0, 8.0) ] # northern boundary, outer on_boundary
# interface23
interface23_vertices = [df.Point(0.0, 5.0),
df.Point(3.0, 5.0),
df.Point(6.5, 4.5),
df.Point(9.5, 5.0),
df.Point(11.5, 3.5),
df.Point(13.0, 3)]
#subdomain1
subdomain2_vertices = [interface23_vertices[0],
interface23_vertices[1],
interface23_vertices[2],
interface23_vertices[3],
interface23_vertices[4],
interface23_vertices[5], # southern boundary, 23 interface
subdomain1_vertices[4], # eastern boundary, outer boundary
subdomain1_vertices[3],
subdomain1_vertices[2],
subdomain1_vertices[1],
subdomain1_vertices[0] ] # northern boundary, 12 interface
# interface34
interface34_vertices = [df.Point(0.0, 2.0),
df.Point(4.0, 2.0),
df.Point(9.0, 2.5),
df.Point(10.5, 2.0),
df.Point(13.0, 1.5)]
# subdomain3
subdomain3_vertices = [interface34_vertices[0],
interface34_vertices[1],
interface34_vertices[2],
interface34_vertices[3],
interface34_vertices[4], # southern boundary, 34 interface
subdomain2_vertices[5], # eastern boundary, outer boundary
subdomain2_vertices[4],
subdomain2_vertices[3],
subdomain2_vertices[2],
subdomain2_vertices[1],
subdomain2_vertices[0] ] # northern boundary, 23 interface
# subdomain4
subdomain4_vertices = [df.Point(0.0, 0.0),
df.Point(13.0, 0.0), # southern boundary, outer boundary
subdomain3_vertices[4],# eastern boundary, outer boundary
subdomain3_vertices[3],
subdomain3_vertices[2],
subdomain3_vertices[1],
subdomain3_vertices[0] ] # northern boundary, 34 interface
subdomain_vertices = [subdomain0_vertices,#
subdomain1_vertices,#
subdomain2_vertices,#
subdomain3_vertices,#
subdomain4_vertices]
# subdomain_vertices = [subdomain0_vertices,#
# subdomain1_vertices,#
# subdomain2_vertices]
# interface_vertices introduces a global numbering of interfaces.
interface_vertices = [interface12_vertices, interface23_vertices, interface34_vertices]
adjacent_subdomains = [[1,2], [2,3], [3,4]]
# adjacent_subdomains = [[1,2]]
# interface_vertices = [interface12_vertices]
# initialise LDD simulation class
simulation = ldd.LDDsimulation()
simulation._init_meshes_and_markers(subdomain_vertices, mesh_resolution=2)
# subdomain marker functions
domain_marker = simulation.domain_marker
mesh_subdomain = simulation.mesh_subdomain
simulation._init_interfaces(interface_vertices, adjacent_subdomains)
interface = simulation.interface
interface_marker = simulation.interface_marker
# Save mesh to file
df.File('./domain_layered_soil.xml.gz') << mesh_subdomain[0]
df.File('./global_interface_marker.pvd') << interface_marker
#df.File('./subdomain1.xml.gz') << mesh_subdomain
df.File('./domain_markers.pvd') << domain_marker
#df.File('./subdomain_boundary_markers.pvd') << subdomain_boundary_marker
# Save sub domains to file
#file = File("subdomains_layered_soil.xml")
#file << subdomains
#file_double = File("subdomains_double.xml")
#file_double << subdomains_double
# Save sub domains to VTK files
#file = File("subdomains_layered_soil.pvd")
#file << subdomains
# global domain
subdomain0_vertices = [df.Point(0.0,0.0), #
df.Point(13.0,0.0),#
df.Point(13.0,8.0),#
df.Point(0.0,8.0)]
interface12_vertices = [df.Point(0.0, 7.0),
df.Point(9.0, 7.0),
df.Point(10.5, 7.5),
df.Point(12.0, 7.0),
df.Point(13.0, 6.5)]
# subdomain1.
subdomain1_vertices = [interface12_vertices[0],
interface12_vertices[1],
interface12_vertices[2],
interface12_vertices[3],
interface12_vertices[4], # southern boundary, 12 interface
subdomain0_vertices[2], # eastern boundary, outer boundary
subdomain0_vertices[3]] # northern boundary, outer on_boundary
# vertex coordinates of the outer boundaries. If it can not be specified as a
# polygon, use an entry per boundary polygon. This information is used for defining
# the Dirichlet boundary conditions. If a domain is completely internal, the
# dictionary entry should be 0: None
subdomain1_outer_boundary_verts = {
0: [interface12_vertices[4], #
subdomain0_vertices[2], # eastern boundary, outer boundary
subdomain0_vertices[3],
interface12_vertices[0]]
}
# interface23
interface23_vertices = [df.Point(0.0, 5.0),
df.Point(3.0, 5.0),
# df.Point(6.5, 4.5),
df.Point(6.5, 5.0),
df.Point(9.5, 5.0),
# df.Point(11.5, 3.5),
# df.Point(13.0, 3)
df.Point(11.5, 5.0),
df.Point(13.0, 5.0)
]
#subdomain1
subdomain2_vertices = [interface23_vertices[0],
interface23_vertices[1],
interface23_vertices[2],
interface23_vertices[3],
interface23_vertices[4],
interface23_vertices[5], # southern boundary, 23 interface
subdomain1_vertices[4], # eastern boundary, outer boundary
subdomain1_vertices[3],
subdomain1_vertices[2],
subdomain1_vertices[1],
subdomain1_vertices[0] ] # northern boundary, 12 interface
subdomain2_outer_boundary_verts = {
0: [interface23_vertices[5],
subdomain1_vertices[4]],
1: [subdomain1_vertices[0],
interface23_vertices[0]]
}
# interface34
interface34_vertices = [df.Point(0.0, 2.0),
df.Point(4.0, 2.0),
df.Point(9.0, 2.5),
df.Point(10.5, 2.0),
df.Point(13.0, 1.5)]
# subdomain3
subdomain3_vertices = [interface34_vertices[0],
interface34_vertices[1],
interface34_vertices[2],
interface34_vertices[3],
interface34_vertices[4], # southern boundary, 34 interface
subdomain2_vertices[5], # eastern boundary, outer boundary
subdomain2_vertices[4],
subdomain2_vertices[3],
subdomain2_vertices[2],
subdomain2_vertices[1],
subdomain2_vertices[0] ] # northern boundary, 23 interface
subdomain3_outer_boundary_verts = {
0: [interface34_vertices[4],
subdomain2_vertices[5]],
1: [subdomain2_vertices[0],
interface34_vertices[0]]
}
# subdomain4
subdomain4_vertices = [subdomain0_vertices[0],
subdomain0_vertices[1], # southern boundary, outer boundary
subdomain3_vertices[4],# eastern boundary, outer boundary
subdomain3_vertices[3],
subdomain3_vertices[2],
subdomain3_vertices[1],
subdomain3_vertices[0] ] # northern boundary, 34 interface
subdomain4_outer_boundary_verts = {
0: [subdomain4_vertices[6],
subdomain4_vertices[0],
subdomain4_vertices[1],
subdomain4_vertices[2]]
}
subdomain_def_points = [subdomain0_vertices,#
subdomain1_vertices,#
subdomain2_vertices,#
subdomain3_vertices,#
subdomain4_vertices
]
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment