diff --git a/TP-multi-patch-plus-gravity-with-same-wetting-phase-as-RR/TP-multi-patch-with-gravity-same-wetting-phase-as-RR.py b/TP-multi-patch-plus-gravity-with-same-wetting-phase-as-RR/TP-multi-patch-with-gravity-same-wetting-phase-as-RR.py index 74af2066898977981e19f9b5e7671834901a10a3..9c526f83cc418c5cc433876d6cebeae6a4be2adb 100755 --- a/TP-multi-patch-plus-gravity-with-same-wetting-phase-as-RR/TP-multi-patch-with-gravity-same-wetting-phase-as-RR.py +++ b/TP-multi-patch-plus-gravity-with-same-wetting-phase-as-RR/TP-multi-patch-with-gravity-same-wetting-phase-as-RR.py @@ -7,30 +7,34 @@ import sympy as sym # import domainPatch as dp import LDDsimulation as ldd import functools as ft +import helpers as hlp # import ufl as ufl # init sympy session sym.init_printing() -# ----------------------------------------------------------------------------# -# ------------------- MESH ---------------------------------------------------# -# ----------------------------------------------------------------------------# -mesh_resolution = 51 -# ----------------------------------------:-------------------------------------# -# ------------------- TIME ---------------------------------------------------# -# ----------------------------------------------------------------------------# -timestep_size = 0.005 -number_of_timesteps = 160 -# decide how many timesteps you want analysed. Analysed means, that we write -# out subsequent errors of the L-iteration within the timestep. -number_of_timesteps_to_analyse = 11 +solver_tol = 5E-7 + +############ GRID #######################ΓΌ +mesh_resolution = 30 +timestep_size = 0.001 +number_of_timesteps = 1000 +# decide how many timesteps you want analysed. Analysed means, that we write out +# subsequent errors of the L-iteration within the timestep. +number_of_timesteps_to_analyse = 10 starttime = 0 -Lw = 1000 -Lnw = Lw +Lw = 1 #/timestep_size +Lnw=Lw + +l_param_w = 40 +l_param_nw = 40 + +include_gravity = True +debugflag = False +analyse_condition = True -l_param_w = 80 -l_param_nw = 80 +output_string = "./output/like_RR_number_of_timesteps{}_".format(number_of_timesteps) # ----------------------------------------------------------------------------# # ------------------- Domain and Interface -----------------------------------# @@ -258,7 +262,7 @@ def rel_perm1w_prime(s): def rel_perm1nw_prime(s): # relative permeabilty on subdomain1 - return 2*(1-s) + return -2*(1-s) # definition of the derivatives of the relative permeabilities # relative permeabilty functions on subdomain 1 @@ -268,7 +272,7 @@ def rel_perm2w_prime(s): def rel_perm2nw_prime(s): # relative permeabilty on subdomain1 - return 3*(1-s)**2 + return -3*(1-s)**2 _rel_perm1w_prime = ft.partial(rel_perm1w_prime) _rel_perm1nw_prime = ft.partial(rel_perm1nw_prime) @@ -354,13 +358,13 @@ x, y = sym.symbols('x[0], x[1]') # needed by UFL t = sym.symbols('t', positive=True) p_e_sym = { - 1: {'wetting': 1.0 - (1.0 + t*t)*(1.0 + x*x + y*y), + 1: {'wetting': (1.0 - (1.0 + t*t)*(1.0 + x*x + y*y)), #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2, 'nonwetting': 0.0*t}, - 2: {'wetting': 1.0 - (1.0 + t*t)*(1.0 + x*x), + 2: {'wetting': (1.0 - (1.0 + t*t)*(1.0 + x*x)), #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2, 'nonwetting': 0.0*t}, - 3: {'wetting': 1.0 - (1.0 + t*t)*(1.0 + x*x), + 3: {'wetting': (1.0 - (1.0 + t*t)*(1.0 + x*x)), #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2, 'nonwetting': 0.0*t}, - 4: {'wetting': 1.0 - (1.0 + t*t)*(1.0 + x*x + y*y), + 4: {'wetting': (1.0 - (1.0 + t*t)*(1.0 + x*x + y*y)), #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2, 'nonwetting': 0.0*t} } @@ -374,80 +378,35 @@ p_e_sym = { pc_e_sym = dict() for subdomain, isR in isRichards.items(): if isR: - pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting'].copy()}) + pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']}) else: - pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'].copy() - p_e_sym[subdomain]['wetting'].copy()}) + pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'] + - p_e_sym[subdomain]['wetting']}) +symbols = {"x": x, + "y": y, + "t": t} # turn above symbolic code into exact solution for dolphin and # construct the rhs that matches the above exact solution. -dtS = dict() -div_flux = dict() -source_expression = dict() -exact_solution = dict() -initial_condition = dict() -for subdomain, isR in isRichards.items(): - dtS.update({subdomain: dict()}) - div_flux.update({subdomain: dict()}) - source_expression.update({subdomain: dict()}) - exact_solution.update({subdomain: dict()}) - initial_condition.update({subdomain: dict()}) - if isR: - subdomain_has_phases = ["wetting"] - else: - subdomain_has_phases = ["wetting", "nonwetting"] - - # conditional for S_pc_prime - pc = pc_e_sym[subdomain] - dtpc = sym.diff(pc, t, 1) - dxpc = sym.diff(pc, x, 1) - dypc = sym.diff(pc, y, 1) - S = sym.Piecewise((S_pc_sym[subdomain](pc), pc > 0), (1, True)) - dS = sym.Piecewise((S_pc_sym_prime[subdomain](pc), pc > 0), (0, True)) - for phase in subdomain_has_phases: - # Turn above symbolic expression for exact solution into c code - exact_solution[subdomain].update( - {phase: sym.printing.ccode(p_e_sym[subdomain][phase])} - ) - # save the c code for initial conditions - initial_condition[subdomain].update( - {phase: sym.printing.ccode(p_e_sym[subdomain][phase].subs(t, 0))} - ) - if phase == "nonwetting": - dtS[subdomain].update( - {phase: -porosity[subdomain]*dS*dtpc} - ) - else: - dtS[subdomain].update( - {phase: porosity[subdomain]*dS*dtpc} - ) - pa = p_e_sym[subdomain][phase] - dxpa = sym.diff(pa, x, 1) - dxdxpa = sym.diff(pa, x, 2) - dypa = sym.diff(pa, y, 1) - dydypa = sym.diff(pa, y, 2) - mu = viscosity[subdomain][phase] - ka = relative_permeability[subdomain][phase] - dka = ka_prime[subdomain][phase] - rho = densities[subdomain][phase] - g = gravity_acceleration - - if phase == "nonwetting": - # x part of div(flux) for nonwetting - dxdxflux = -1/mu*dka(1-S)*dS*dxpc*dxpa + 1/mu*dxdxpa*ka(1-S) - # y part of div(flux) for nonwetting - dydyflux = -1/mu*dka(1-S)*dS*dypc*(dypa - rho*g) \ - + 1/mu*dydypa*ka(1-S) - else: - # x part of div(flux) for wetting - dxdxflux = 1/mu*dka(S)*dS*dxpc*dxpa + 1/mu*dxdxpa*ka(S) - # y part of div(flux) for wetting - dydyflux = 1/mu*dka(S)*dS*dypc*(dypa - rho*g) + 1/mu*dydypa*ka(S) - div_flux[subdomain].update({phase: dxdxflux + dydyflux}) - contructed_rhs = dtS[subdomain][phase] - div_flux[subdomain][phase] - source_expression[subdomain].update( - {phase: sym.printing.ccode(contructed_rhs)} - ) - # print(f"source_expression[{subdomain}][{phase}] =", source_expression[subdomain][phase]) +exact_solution_example = hlp.generate_exact_solution_expressions( + symbols=symbols, + isRichards=isRichards, + symbolic_pressure=p_e_sym, + symbolic_capillary_pressure=pc_e_sym, + saturation_pressure_relationship=S_pc_sym, + saturation_pressure_relationship_prime=S_pc_sym_prime, + viscosity=viscosity, + porosity=porosity, + relative_permeability=relative_permeability, + relative_permeability_prime=ka_prime, + densities=densities, + gravity_acceleration=gravity_acceleration, + include_gravity=include_gravity, + ) +source_expression = exact_solution_example['source'] +exact_solution = exact_solution_example['exact_solution'] +initial_condition = exact_solution_example['initial_condition'] + # Dictionary of dirichlet boundary conditions. dirichletBC = dict() @@ -485,8 +444,8 @@ write_to_file = { } # initialise LDD simulation class -simulation = ldd.LDDsimulation(tol=1E-14, debug=True, LDDsolver_tol=1E-6) -simulation.set_parameters(output_dir="./output/", +simulation = ldd.LDDsimulation(tol=1E-14, LDDsolver_tol=solver_tol, debug=debugflag) +simulation.set_parameters(output_dir=output_string, subdomain_def_points=subdomain_def_points, isRichards=isRichards, interface_def_points=interface_def_points, @@ -508,12 +467,12 @@ simulation.set_parameters(output_dir="./output/", dirichletBC_expression_strings=dirichletBC, exact_solution=exact_solution, densities=densities, - include_gravity=True, + include_gravity=include_gravity, write2file=write_to_file, ) simulation.initialise() # print(simulation.__dict__) -simulation.run() +simulation.run(analyse_condition=analyse_condition) # simulation.LDDsolver(time=0, debug=True, analyse_timestep=True) # df.info(parameters, True) diff --git a/layered-soil-case/layered_soil.py b/layered-soil-case/layered_soil.py new file mode 100755 index 0000000000000000000000000000000000000000..952d6e66d70c1f04df2727eb3a549fbbb6431658 --- /dev/null +++ b/layered-soil-case/layered_soil.py @@ -0,0 +1,134 @@ +#!/usr/bin/python3 +"""This program sets up a domain together with a decomposition into subdomains +modelling layered soil. This is used for our LDD article with tp-tp and tp-r +coupling. + +Along with the subdomains and the mesh domain markers are set upself. +The resulting mesh is saved into files for later use. +""" + +#!/usr/bin/python3 +import dolfin as df +import mshr +import numpy as np +import sympy as sym +import typing as tp +import domainPatch as dp +import LDDsimulation as ldd + +# global domain +subdomain0_vertices = [df.Point(0.0,0.0), # + df.Point(13.0,0.0),# + df.Point(13.0,8.0),# + df.Point(0.0,8.0)] + +interface12_vertices = [df.Point(0.0, 7.0), + df.Point(9.0, 7.0), + df.Point(10.5, 7.5), + df.Point(12.0, 7.0), + df.Point(13.0, 6.5)] +# subdomain1. +subdomain1_vertices = [interface12_vertices[0], + interface12_vertices[1], + interface12_vertices[2], + interface12_vertices[3], + interface12_vertices[4], # southern boundary, 12 interface + df.Point(13.0, 8.0), # eastern boundary, outer boundary + df.Point(0.0, 8.0) ] # northern boundary, outer on_boundary + +# interface23 +interface23_vertices = [df.Point(0.0, 5.0), + df.Point(3.0, 5.0), + df.Point(6.5, 4.5), + df.Point(9.5, 5.0), + df.Point(11.5, 3.5), + df.Point(13.0, 3)] + +#subdomain1 +subdomain2_vertices = [interface23_vertices[0], + interface23_vertices[1], + interface23_vertices[2], + interface23_vertices[3], + interface23_vertices[4], + interface23_vertices[5], # southern boundary, 23 interface + subdomain1_vertices[4], # eastern boundary, outer boundary + subdomain1_vertices[3], + subdomain1_vertices[2], + subdomain1_vertices[1], + subdomain1_vertices[0] ] # northern boundary, 12 interface + +# interface34 +interface34_vertices = [df.Point(0.0, 2.0), + df.Point(4.0, 2.0), + df.Point(9.0, 2.5), + df.Point(10.5, 2.0), + df.Point(13.0, 1.5)] + +# subdomain3 +subdomain3_vertices = [interface34_vertices[0], + interface34_vertices[1], + interface34_vertices[2], + interface34_vertices[3], + interface34_vertices[4], # southern boundary, 34 interface + subdomain2_vertices[5], # eastern boundary, outer boundary + subdomain2_vertices[4], + subdomain2_vertices[3], + subdomain2_vertices[2], + subdomain2_vertices[1], + subdomain2_vertices[0] ] # northern boundary, 23 interface + +# subdomain4 +subdomain4_vertices = [df.Point(0.0, 0.0), + df.Point(13.0, 0.0), # southern boundary, outer boundary + subdomain3_vertices[4],# eastern boundary, outer boundary + subdomain3_vertices[3], + subdomain3_vertices[2], + subdomain3_vertices[1], + subdomain3_vertices[0] ] # northern boundary, 34 interface + +subdomain_vertices = [subdomain0_vertices,# + subdomain1_vertices,# + subdomain2_vertices,# + subdomain3_vertices,# + subdomain4_vertices] +# subdomain_vertices = [subdomain0_vertices,# +# subdomain1_vertices,# +# subdomain2_vertices] + + +# interface_vertices introduces a global numbering of interfaces. +interface_vertices = [interface12_vertices, interface23_vertices, interface34_vertices] +adjacent_subdomains = [[1,2], [2,3], [3,4]] +# adjacent_subdomains = [[1,2]] +# interface_vertices = [interface12_vertices] +# initialise LDD simulation class +simulation = ldd.LDDsimulation() +simulation._init_meshes_and_markers(subdomain_vertices, mesh_resolution=2) +# subdomain marker functions +domain_marker = simulation.domain_marker +mesh_subdomain = simulation.mesh_subdomain +simulation._init_interfaces(interface_vertices, adjacent_subdomains) + +interface = simulation.interface +interface_marker = simulation.interface_marker + + +# Save mesh to file +df.File('./domain_layered_soil.xml.gz') << mesh_subdomain[0] +df.File('./global_interface_marker.pvd') << interface_marker +#df.File('./subdomain1.xml.gz') << mesh_subdomain +df.File('./domain_markers.pvd') << domain_marker +#df.File('./subdomain_boundary_markers.pvd') << subdomain_boundary_marker + + + +# Save sub domains to file +#file = File("subdomains_layered_soil.xml") +#file << subdomains + +#file_double = File("subdomains_double.xml") +#file_double << subdomains_double + +# Save sub domains to VTK files +#file = File("subdomains_layered_soil.pvd") +#file << subdomains diff --git a/old_geometry/old_geometry.py b/old_geometry/old_geometry.py new file mode 100644 index 0000000000000000000000000000000000000000..e19248f4dc950c0cc737acef7a1e71a93325999e --- /dev/null +++ b/old_geometry/old_geometry.py @@ -0,0 +1,115 @@ +# global domain +subdomain0_vertices = [df.Point(0.0,0.0), # + df.Point(13.0,0.0),# + df.Point(13.0,8.0),# + df.Point(0.0,8.0)] + +interface12_vertices = [df.Point(0.0, 7.0), + df.Point(9.0, 7.0), + df.Point(10.5, 7.5), + df.Point(12.0, 7.0), + df.Point(13.0, 6.5)] +# subdomain1. +subdomain1_vertices = [interface12_vertices[0], + interface12_vertices[1], + interface12_vertices[2], + interface12_vertices[3], + interface12_vertices[4], # southern boundary, 12 interface + subdomain0_vertices[2], # eastern boundary, outer boundary + subdomain0_vertices[3]] # northern boundary, outer on_boundary + +# vertex coordinates of the outer boundaries. If it can not be specified as a +# polygon, use an entry per boundary polygon. This information is used for defining +# the Dirichlet boundary conditions. If a domain is completely internal, the +# dictionary entry should be 0: None +subdomain1_outer_boundary_verts = { + 0: [interface12_vertices[4], # + subdomain0_vertices[2], # eastern boundary, outer boundary + subdomain0_vertices[3], + interface12_vertices[0]] +} + + +# interface23 +interface23_vertices = [df.Point(0.0, 5.0), + df.Point(3.0, 5.0), + # df.Point(6.5, 4.5), + df.Point(6.5, 5.0), + df.Point(9.5, 5.0), + # df.Point(11.5, 3.5), + # df.Point(13.0, 3) + df.Point(11.5, 5.0), + df.Point(13.0, 5.0) + ] + +#subdomain1 +subdomain2_vertices = [interface23_vertices[0], + interface23_vertices[1], + interface23_vertices[2], + interface23_vertices[3], + interface23_vertices[4], + interface23_vertices[5], # southern boundary, 23 interface + subdomain1_vertices[4], # eastern boundary, outer boundary + subdomain1_vertices[3], + subdomain1_vertices[2], + subdomain1_vertices[1], + subdomain1_vertices[0] ] # northern boundary, 12 interface + +subdomain2_outer_boundary_verts = { + 0: [interface23_vertices[5], + subdomain1_vertices[4]], + 1: [subdomain1_vertices[0], + interface23_vertices[0]] +} + + +# interface34 +interface34_vertices = [df.Point(0.0, 2.0), + df.Point(4.0, 2.0), + df.Point(9.0, 2.5), + df.Point(10.5, 2.0), + df.Point(13.0, 1.5)] + +# subdomain3 +subdomain3_vertices = [interface34_vertices[0], + interface34_vertices[1], + interface34_vertices[2], + interface34_vertices[3], + interface34_vertices[4], # southern boundary, 34 interface + subdomain2_vertices[5], # eastern boundary, outer boundary + subdomain2_vertices[4], + subdomain2_vertices[3], + subdomain2_vertices[2], + subdomain2_vertices[1], + subdomain2_vertices[0] ] # northern boundary, 23 interface + +subdomain3_outer_boundary_verts = { + 0: [interface34_vertices[4], + subdomain2_vertices[5]], + 1: [subdomain2_vertices[0], + interface34_vertices[0]] +} + +# subdomain4 +subdomain4_vertices = [subdomain0_vertices[0], + subdomain0_vertices[1], # southern boundary, outer boundary + subdomain3_vertices[4],# eastern boundary, outer boundary + subdomain3_vertices[3], + subdomain3_vertices[2], + subdomain3_vertices[1], + subdomain3_vertices[0] ] # northern boundary, 34 interface + +subdomain4_outer_boundary_verts = { + 0: [subdomain4_vertices[6], + subdomain4_vertices[0], + subdomain4_vertices[1], + subdomain4_vertices[2]] +} + + +subdomain_def_points = [subdomain0_vertices,# + subdomain1_vertices,# + subdomain2_vertices,# + subdomain3_vertices,# + subdomain4_vertices + ]