Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
L
LDD-for-two-phase-flow-systems
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
David Seus
LDD-for-two-phase-flow-systems
Commits
461f210c
Commit
461f210c
authored
4 years ago
by
David Seus
Browse files
Options
Downloads
Patches
Plain Diff
add installTest.py
parent
66606308
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
Usecases/InstallationTest/installTest.py
+360
-0
360 additions, 0 deletions
Usecases/InstallationTest/installTest.py
Usecases/InstallationTest/run-simulation
+16
-0
16 additions, 0 deletions
Usecases/InstallationTest/run-simulation
with
376 additions
and
0 deletions
Usecases/InstallationTest/installTest.py
0 → 100755
+
360
−
0
View file @
461f210c
#!/usr/bin/python3
"""
TPR 2 patch soil simulation, Copyright 2020, David Seus
This program runs an LDD simulation on a two-domain substructuring using
a TPR coupling.
# LICENCE #####################################################################
Copyright 2020, David Seus
david.seus[at]ians.uni-stuttgart.de
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
###############################################################################
"""
import
dolfin
as
df
import
sympy
as
sym
import
functions
as
fts
import
LDDsimulation
as
ldd
import
helpers
as
hlp
import
datetime
import
os
import
multiprocessing
as
mp
import
domainSubstructuring
as
dss
# init sympy session
sym
.
init_printing
()
# PREREQUISITS ###############################################################
# check if output directory "./output" exists. This will be used in
# the generation of the output string.
if
not
os
.
path
.
exists
(
'
./output
'
):
os
.
mkdir
(
'
./output
'
)
print
(
"
Directory
"
,
'
./output
'
,
"
created
"
)
else
:
print
(
"
Directory
"
,
'
./output
'
,
"
already exists. Will use as output
\
directory
"
)
date
=
datetime
.
datetime
.
now
()
datestr
=
date
.
strftime
(
"
%Y-%m-%d
"
)
# Name of the usecase that will be printed during simulation.
use_case
=
"
InstalationTest_TPR-2-patch
"
# The name of this very file. Needed for creating log output.
thisfile
=
"
installTest.py
"
# GENERAL SOLVER CONFIG ######################################################
# maximal iteration per timestep
max_iter_num
=
5
FEM_Lagrange_degree
=
1
# GRID AND MESH STUDY SPECIFICATIONS #########################################
mesh_study
=
False
resolutions
=
{
# 1: 1e-5,
# 2: 1e-5,
# 4: 1e-5,
# 8: 1e-5,
16
:
5e-6
,
# 32: 5e-6,
# 64: 2e-6,
# 128: 2e-6,
# 256: 1e-6,
}
# starttimes gives a list of starttimes to run the simulation from.
# The list is looped over and a simulation is run with t_0 as initial time
# for each element t_0 in starttimes.
starttimes
=
{
0
:
0.0
}
timestep_size
=
0.01
number_of_timesteps
=
5
# LDD scheme parameters ######################################################
Lw1
=
0.025
#/timestep_size
Lnw1
=
0.025
Lw2
=
0.025
#/timestep_size
Lnw2
=
0.025
lambda_w
=
4
lambda_nw
=
4
include_gravity
=
False
debugflag
=
False
analyse_condition
=
False
# I/O CONFIG #################################################################
# when number_of_timesteps is high, it might take a long time to write all
# timesteps to disk. Therefore, you can choose to only write data of every
# plot_timestep_every timestep to disk.
plot_timestep_every
=
1
# Decide how many timesteps you want analysed. Analysed means, that
# subsequent errors of the L-iteration within the timestep are written out.
number_of_timesteps_to_analyse
=
1
# fine grained control over data to be written to disk in the mesh study case
# as well as for a regular simuation for a fixed grid.
if
mesh_study
:
write_to_file
=
{
# output the relative errornorm (integration in space) w.r.t. an exact
# solution for each timestep into a csv file.
'
space_errornorms
'
:
True
,
# save the mesh and marker functions to disk
'
meshes_and_markers
'
:
True
,
# save xdmf/h5 data for each LDD iteration for timesteps determined by
# number_of_timesteps_to_analyse. I/O intensive!
'
L_iterations_per_timestep
'
:
False
,
# save solution to xdmf/h5.
'
solutions
'
:
True
,
# save absolute differences w.r.t an exact solution to xdmf/h5 file
# to monitor where on the domains errors happen
'
absolute_differences
'
:
True
,
# analyise condition numbers for timesteps determined by
# number_of_timesteps_to_analyse and save them over time to csv.
'
condition_numbers
'
:
analyse_condition
,
# output subsequent iteration errors measured in L^2 to csv for
# timesteps determined by number_of_timesteps_to_analyse.
# Usefull to monitor convergence of the acutal LDD solver.
'
subsequent_errors
'
:
True
}
else
:
write_to_file
=
{
'
space_errornorms
'
:
True
,
'
meshes_and_markers
'
:
True
,
'
L_iterations_per_timestep
'
:
False
,
'
solutions
'
:
True
,
'
absolute_differences
'
:
True
,
'
condition_numbers
'
:
analyse_condition
,
'
subsequent_errors
'
:
True
}
# OUTPUT FILE STRING #########################################################
output_string
=
"
./output/{}-{}_timesteps{}_P{}
"
.
format
(
datestr
,
use_case
,
number_of_timesteps
,
FEM_Lagrange_degree
)
# DOMAIN AND INTERFACE #######################################################
substructuring
=
dss
.
twoSoilLayers
()
interface_def_points
=
substructuring
.
interface_def_points
adjacent_subdomains
=
substructuring
.
adjacent_subdomains
subdomain_def_points
=
substructuring
.
subdomain_def_points
outer_boundary_def_points
=
substructuring
.
outer_boundary_def_points
# MODEL CONFIGURATION #########################################################
isRichards
=
{
1
:
True
,
#
2
:
False
}
viscosity
=
{
#
# subdom_num : viscosity
1
:
{
'
wetting
'
:
1
,
'
nonwetting
'
:
1
/
50
},
#
2
:
{
'
wetting
'
:
1
,
'
nonwetting
'
:
1
/
50
}
}
porosity
=
{
#
# subdom_num : porosity
1
:
0.22
,
#
2
:
0.22
}
# Dict of the form: { subdom_num : density }
densities
=
{
1
:
{
'
wetting
'
:
997
,
'
nonwetting
'
:
1.225
},
2
:
{
'
wetting
'
:
997
,
'
nonwetting
'
:
1.225
}
}
gravity_acceleration
=
9.81
L
=
{
#
# subdom_num : subdomain L for L-scheme
1
:
{
'
wetting
'
:
Lw1
,
'
nonwetting
'
:
Lnw1
},
#
2
:
{
'
wetting
'
:
Lw2
,
'
nonwetting
'
:
Lnw2
}
}
lambda_param
=
{
#
# subdom_num : lambda parameter for the L-scheme
0
:
{
'
wetting
'
:
lambda_w
,
'
nonwetting
'
:
lambda_nw
},
#
}
intrinsic_permeability
=
{
1
:
0.01
,
2
:
0.01
,
}
# RELATIVE PEMRMEABILITIES
rel_perm_definition
=
{
1
:
{
"
wetting
"
:
"
Spow2
"
,
"
nonwetting
"
:
"
oneMinusSpow2
"
},
2
:
{
"
wetting
"
:
"
Spow3
"
,
"
nonwetting
"
:
"
oneMinusSpow3
"
},
}
rel_perm_dict
=
fts
.
generate_relative_permeability_dicts
(
rel_perm_definition
)
relative_permeability
=
rel_perm_dict
[
"
ka
"
]
ka_prime
=
rel_perm_dict
[
"
ka_prime
"
]
# S-pc relation
Spc_on_subdomains
=
{
1
:
{
"
testSpc
"
:
{
"
index
"
:
1
}},
2
:
{
"
testSpc
"
:
{
"
index
"
:
2
}},
}
Spc
=
fts
.
generate_Spc_dicts
(
Spc_on_subdomains
)
S_pc_sym
=
Spc
[
"
symbolic
"
]
S_pc_sym_prime
=
Spc
[
"
prime_symbolic
"
]
sat_pressure_relationship
=
Spc
[
"
dolfin
"
]
###############################################################################
# Manufacture source expressions with sympy #
###############################################################################
x
,
y
=
sym
.
symbols
(
'
x[0], x[1]
'
)
# needed by UFL
t
=
sym
.
symbols
(
'
t
'
,
positive
=
True
)
p_e_sym
=
{
1
:
{
'
wetting
'
:
(
-
7.0
-
(
1.0
+
t
*
t
)
*
(
1.0
+
x
*
x
+
y
*
y
))},
#*(1-x)**2*(1+x)**2*(1-y)**2},
2
:
{
'
wetting
'
:
(
-
7.0
-
(
1.0
+
t
*
t
)
*
(
1.0
+
x
*
x
)),
#*(1-x)**2*(1+x)**2*(1+y)**2,
'
nonwetting
'
:
(
-
2
-
t
*
(
1.1
+
y
+
x
**
2
))
*
y
**
2
},
#*(1-x)**2*(1+x)**2*(1+y)**2},
}
#-y*y*(sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t)) - t*t*x*(0.5-y)*y*(1-x)
pc_e_sym
=
hlp
.
generate_exact_symbolic_pc
(
isRichards
=
isRichards
,
symbolic_pressure
=
p_e_sym
)
symbols
=
{
"
x
"
:
x
,
"
y
"
:
y
,
"
t
"
:
t
}
# turn above symbolic code into exact solution for dolphin and
# construct the rhs that matches the above exact solution.
exact_solution_example
=
hlp
.
generate_exact_solution_expressions
(
symbols
=
symbols
,
isRichards
=
isRichards
,
symbolic_pressure
=
p_e_sym
,
symbolic_capillary_pressure
=
pc_e_sym
,
saturation_pressure_relationship
=
S_pc_sym
,
saturation_pressure_relationship_prime
=
S_pc_sym_prime
,
viscosity
=
viscosity
,
porosity
=
porosity
,
intrinsic_permeability
=
intrinsic_permeability
,
relative_permeability
=
relative_permeability
,
relative_permeability_prime
=
ka_prime
,
densities
=
densities
,
gravity_acceleration
=
gravity_acceleration
,
include_gravity
=
include_gravity
,
)
source_expression
=
exact_solution_example
[
'
source
'
]
exact_solution
=
exact_solution_example
[
'
exact_solution
'
]
initial_condition
=
exact_solution_example
[
'
initial_condition
'
]
# BOUNDARY CONDITIONS #########################################################
# Dictionary of dirichlet boundary conditions. If an exact solution case is
# used, use the hlp.generate_exact_DirichletBC() method to generate the
# Dirichlet Boundary conditions from the exact solution.
dirichletBC
=
hlp
.
generate_exact_DirichletBC
(
isRichards
=
isRichards
,
outer_boundary_def_points
=
outer_boundary_def_points
,
exact_solution
=
exact_solution
)
# If no exact solution is provided you need to provide a dictionary of boundary
# conditions. See the definiton of hlp.generate_exact_DirichletBC() to see
# the structure.
# LOG FILE OUTPUT #############################################################
# read this file and print it to std out. This way the simulation can produce a
# log file with ./TP-R-layered_soil.py | tee simulation.log
f
=
open
(
thisfile
,
'
r
'
)
print
(
f
.
read
())
f
.
close
()
# MAIN ########################################################################
if
__name__
==
'
__main__
'
:
# dictionary of simualation parameters to pass to the run function.
# mesh_resolution and starttime are excluded, as they get passed explicitly
# to achieve parallelisation in these parameters in these parameters for
# mesh studies etc.
simulation_parameter
=
{
"
tol
"
:
1E-14
,
"
debugflag
"
:
debugflag
,
"
max_iter_num
"
:
max_iter_num
,
"
FEM_Lagrange_degree
"
:
FEM_Lagrange_degree
,
"
mesh_study
"
:
mesh_study
,
"
use_case
"
:
use_case
,
"
output_string
"
:
output_string
,
"
subdomain_def_points
"
:
subdomain_def_points
,
"
isRichards
"
:
isRichards
,
"
interface_def_points
"
:
interface_def_points
,
"
outer_boundary_def_points
"
:
outer_boundary_def_points
,
"
adjacent_subdomains
"
:
adjacent_subdomains
,
# "mesh_resolution": mesh_resolution,
"
viscosity
"
:
viscosity
,
"
porosity
"
:
porosity
,
"
L
"
:
L
,
"
lambda_param
"
:
lambda_param
,
"
relative_permeability
"
:
relative_permeability
,
"
intrinsic_permeability
"
:
intrinsic_permeability
,
"
sat_pressure_relationship
"
:
sat_pressure_relationship
,
# "starttime": starttime,
"
number_of_timesteps
"
:
number_of_timesteps
,
"
number_of_timesteps_to_analyse
"
:
number_of_timesteps_to_analyse
,
"
plot_timestep_every
"
:
plot_timestep_every
,
"
timestep_size
"
:
timestep_size
,
"
source_expression
"
:
source_expression
,
"
initial_condition
"
:
initial_condition
,
"
dirichletBC
"
:
dirichletBC
,
"
exact_solution
"
:
exact_solution
,
"
densities
"
:
densities
,
"
include_gravity
"
:
include_gravity
,
"
gravity_acceleration
"
:
gravity_acceleration
,
"
write_to_file
"
:
write_to_file
,
"
analyse_condition
"
:
analyse_condition
}
for
number_shift
,
starttime
in
starttimes
.
items
():
simulation_parameter
.
update
(
{
"
starttime_timestep_number_shift
"
:
number_shift
}
)
for
mesh_resolution
,
solver_tol
in
resolutions
.
items
():
simulation_parameter
.
update
({
"
solver_tol
"
:
solver_tol
})
hlp
.
info
(
simulation_parameter
[
"
use_case
"
])
processQueue
=
mp
.
Queue
()
LDDsim
=
mp
.
Process
(
target
=
hlp
.
run_simulation
,
args
=
(
simulation_parameter
,
processQueue
,
starttime
,
mesh_resolution
)
)
LDDsim
.
start
()
# LDDsim.join()
# hlp.run_simulation(
# mesh_resolution=mesh_resolution,
# starttime=starttime,
# parameter=simulation_parameter
# )
LDDsim
.
join
()
if
mesh_study
:
simulation_output_dir
=
processQueue
.
get
()
hlp
.
merge_spacetime_errornorms
(
isRichards
=
isRichards
,
resolutions
=
resolutions
,
output_dir
=
simulation_output_dir
)
This diff is collapsed.
Click to expand it.
Usecases/InstallationTest/run-simulation
0 → 100755
+
16
−
0
View file @
461f210c
#!/bin/bash
[
$#
-eq
0
]
&&
{
echo
"Usage:
$0
simulation_file [logfile_name]"
;
exit
1
;
}
SIMULATION_FILE
=
$1
SIMULATION
=
${
SIMULATION_FILE
%.py
}
LOGFILE_DEFAULT
=
"
$SIMULATION
.log"
DATE
=
$(
date
-I
)
LOGFILE
=
${
2
:-
$DATE
-
$LOGFILE_DEFAULT
}
GREETING
=
"Simulation
$SIMULATION
is run on
$DATE
by
$USER
"
echo
$GREETING
echo
"running
$SIMULATION_FILE
| tee
$LOGFILE
"
./
$SIMULATION_FILE
|
tee
$LOGFILE
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment