diff --git a/Usecases/InstallationTest/installTest.py b/Usecases/InstallationTest/installTest.py
new file mode 100755
index 0000000000000000000000000000000000000000..450f6da0d7c07f0a14784a869677103e0bfd9af8
--- /dev/null
+++ b/Usecases/InstallationTest/installTest.py
@@ -0,0 +1,360 @@
+#!/usr/bin/python3
+"""TPR 2 patch soil simulation, Copyright 2020, David Seus
+
+This program runs an LDD simulation on a two-domain substructuring using
+a TPR coupling.
+
+# LICENCE #####################################################################
+Copyright 2020, David Seus
+david.seus[at]ians.uni-stuttgart.de
+This program is free software: you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation, either version 3 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program.  If not, see <http://www.gnu.org/licenses/>.
+###############################################################################
+"""
+import dolfin as df
+import sympy as sym
+import functions as fts
+import LDDsimulation as ldd
+import helpers as hlp
+import datetime
+import os
+import multiprocessing as mp
+import domainSubstructuring as dss
+
+# init sympy session
+sym.init_printing()
+
+# PREREQUISITS  ###############################################################
+# check if output directory "./output" exists. This will be used in
+# the generation of the output string.
+if not os.path.exists('./output'):
+    os.mkdir('./output')
+    print("Directory ", './output',  " created ")
+else:
+    print("Directory ", './output',  " already exists. Will use as output \
+    directory")
+
+date = datetime.datetime.now()
+datestr = date.strftime("%Y-%m-%d")
+
+# Name of the usecase that will be printed during simulation.
+use_case = "InstalationTest_TPR-2-patch"
+# The name of this very file. Needed for creating log output.
+thisfile = "installTest.py"
+
+# GENERAL SOLVER CONFIG  ######################################################
+# maximal iteration per timestep
+max_iter_num = 5
+FEM_Lagrange_degree = 1
+
+# GRID AND MESH STUDY SPECIFICATIONS  #########################################
+mesh_study = False
+resolutions = {
+                # 1: 1e-5,
+                # 2: 1e-5,
+                # 4: 1e-5,
+                # 8: 1e-5,
+                16: 5e-6,
+                # 32: 5e-6,
+                # 64: 2e-6,
+                # 128: 2e-6,
+                # 256: 1e-6,
+                }
+
+# starttimes gives a list of starttimes to run the simulation from.
+# The list is looped over and a simulation is run with t_0 as initial time
+#  for each element t_0 in starttimes.
+starttimes = {0: 0.0}
+timestep_size = 0.01
+number_of_timesteps = 5
+
+# LDD scheme parameters  ######################################################
+Lw1 = 0.025 #/timestep_size
+Lnw1= 0.025
+
+Lw2 = 0.025 #/timestep_size
+Lnw2= 0.025
+
+lambda_w = 4
+lambda_nw = 4
+
+include_gravity = False
+debugflag = False
+analyse_condition = False
+
+# I/O CONFIG  #################################################################
+# when number_of_timesteps is high, it might take a long time to write all
+# timesteps to disk. Therefore, you can choose to only write data of every
+# plot_timestep_every timestep to disk.
+plot_timestep_every = 1
+# Decide how many timesteps you want analysed. Analysed means, that
+# subsequent errors of the L-iteration within the timestep are written out.
+number_of_timesteps_to_analyse = 1
+
+# fine grained control over data to be written to disk in the mesh study case
+# as well as for a regular simuation for a fixed grid.
+if mesh_study:
+    write_to_file = {
+        # output the relative errornorm (integration in space) w.r.t. an exact
+        # solution for each timestep into a csv file.
+        'space_errornorms': True,
+        # save the mesh and marker functions to disk
+        'meshes_and_markers': True,
+        # save xdmf/h5 data for each LDD iteration for timesteps determined by
+        # number_of_timesteps_to_analyse. I/O intensive!
+        'L_iterations_per_timestep': False,
+        # save solution to xdmf/h5.
+        'solutions': True,
+        # save absolute differences w.r.t an exact solution to xdmf/h5 file
+        # to monitor where on the domains errors happen
+        'absolute_differences': True,
+        # analyise condition numbers for timesteps determined by
+        # number_of_timesteps_to_analyse and save them over time to csv.
+        'condition_numbers': analyse_condition,
+        # output subsequent iteration errors measured in L^2  to csv for
+        # timesteps determined by number_of_timesteps_to_analyse.
+        # Usefull to monitor convergence of the acutal LDD solver.
+        'subsequent_errors': True
+    }
+else:
+    write_to_file = {
+        'space_errornorms': True,
+        'meshes_and_markers': True,
+        'L_iterations_per_timestep': False,
+        'solutions': True,
+        'absolute_differences': True,
+        'condition_numbers': analyse_condition,
+        'subsequent_errors': True
+    }
+
+# OUTPUT FILE STRING  #########################################################
+output_string = "./output/{}-{}_timesteps{}_P{}".format(
+    datestr, use_case, number_of_timesteps, FEM_Lagrange_degree
+    )
+
+# DOMAIN AND INTERFACE  #######################################################
+substructuring = dss.twoSoilLayers()
+interface_def_points = substructuring.interface_def_points
+adjacent_subdomains = substructuring.adjacent_subdomains
+subdomain_def_points = substructuring.subdomain_def_points
+outer_boundary_def_points = substructuring.outer_boundary_def_points
+
+# MODEL CONFIGURATION #########################################################
+isRichards = {
+    1: True, #
+    2: False
+    }
+
+
+viscosity = {#
+# subdom_num : viscosity
+    1: {'wetting' :1,
+         'nonwetting': 1/50}, #
+    2: {'wetting' :1,
+         'nonwetting': 1/50}
+}
+
+porosity = {#
+# subdom_num : porosity
+    1: 0.22,#
+    2: 0.22
+}
+
+# Dict of the form: { subdom_num : density }
+densities = {
+    1: {'wetting': 997,
+        'nonwetting': 1.225},
+    2: {'wetting': 997,
+        'nonwetting': 1.225}
+}
+
+gravity_acceleration = 9.81
+
+L = {#
+# subdom_num : subdomain L for L-scheme
+    1 : {'wetting' :Lw1,
+         'nonwetting': Lnw1},#
+    2 : {'wetting' :Lw2,
+         'nonwetting': Lnw2}
+}
+
+
+lambda_param = {#
+# subdom_num : lambda parameter for the L-scheme
+    0 : {'wetting' :lambda_w,
+         'nonwetting': lambda_nw},#
+}
+
+intrinsic_permeability = {
+    1: 0.01,
+    2: 0.01,
+}
+
+# RELATIVE PEMRMEABILITIES
+rel_perm_definition = {
+    1: {"wetting": "Spow2",
+        "nonwetting": "oneMinusSpow2"},
+    2: {"wetting": "Spow3",
+        "nonwetting": "oneMinusSpow3"},
+}
+
+rel_perm_dict = fts.generate_relative_permeability_dicts(rel_perm_definition)
+relative_permeability = rel_perm_dict["ka"]
+ka_prime = rel_perm_dict["ka_prime"]
+
+# S-pc relation
+Spc_on_subdomains = {
+    1: {"testSpc": {"index": 1}},
+    2: {"testSpc": {"index": 2}},
+}
+
+Spc = fts.generate_Spc_dicts(Spc_on_subdomains)
+S_pc_sym = Spc["symbolic"]
+S_pc_sym_prime = Spc["prime_symbolic"]
+sat_pressure_relationship = Spc["dolfin"]
+
+###############################################################################
+# Manufacture source expressions with sympy #
+###############################################################################
+x, y = sym.symbols('x[0], x[1]')  # needed by UFL
+t = sym.symbols('t', positive=True)
+
+p_e_sym = {
+    1: {'wetting': (-7.0 - (1.0 + t*t)*(1.0 + x*x + y*y))}, #*(1-x)**2*(1+x)**2*(1-y)**2},
+    2: {'wetting': (-7.0 - (1.0 + t*t)*(1.0 + x*x)), #*(1-x)**2*(1+x)**2*(1+y)**2,
+        'nonwetting': (-2-t*(1.1+y + x**2))*y**2}, #*(1-x)**2*(1+x)**2*(1+y)**2},
+} #-y*y*(sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t)) - t*t*x*(0.5-y)*y*(1-x)
+
+pc_e_sym = hlp.generate_exact_symbolic_pc(
+                isRichards=isRichards,
+                symbolic_pressure=p_e_sym
+            )
+
+symbols = {"x": x,
+           "y": y,
+           "t": t}
+# turn above symbolic code into exact solution for dolphin and
+# construct the rhs that matches the above exact solution.
+exact_solution_example = hlp.generate_exact_solution_expressions(
+                        symbols=symbols,
+                        isRichards=isRichards,
+                        symbolic_pressure=p_e_sym,
+                        symbolic_capillary_pressure=pc_e_sym,
+                        saturation_pressure_relationship=S_pc_sym,
+                        saturation_pressure_relationship_prime=S_pc_sym_prime,
+                        viscosity=viscosity,
+                        porosity=porosity,
+                        intrinsic_permeability=intrinsic_permeability,
+                        relative_permeability=relative_permeability,
+                        relative_permeability_prime=ka_prime,
+                        densities=densities,
+                        gravity_acceleration=gravity_acceleration,
+                        include_gravity=include_gravity,
+                        )
+source_expression = exact_solution_example['source']
+exact_solution = exact_solution_example['exact_solution']
+initial_condition = exact_solution_example['initial_condition']
+
+# BOUNDARY CONDITIONS #########################################################
+# Dictionary of dirichlet boundary conditions. If an exact solution case is
+# used, use the hlp.generate_exact_DirichletBC() method to generate the
+# Dirichlet Boundary conditions from the exact solution.
+dirichletBC = hlp.generate_exact_DirichletBC(
+        isRichards=isRichards,
+        outer_boundary_def_points=outer_boundary_def_points,
+        exact_solution=exact_solution
+    )
+# If no exact solution is provided you need to provide a dictionary of boundary
+# conditions. See the definiton of hlp.generate_exact_DirichletBC() to see
+# the structure.
+
+# LOG FILE OUTPUT #############################################################
+# read this file and print it to std out. This way the simulation can produce a
+# log file with ./TP-R-layered_soil.py | tee simulation.log
+f = open(thisfile, 'r')
+print(f.read())
+f.close()
+
+# MAIN ########################################################################
+if __name__ == '__main__':
+    # dictionary of simualation parameters to pass to the run function.
+    # mesh_resolution and starttime are excluded, as they get passed explicitly
+    # to achieve parallelisation in these parameters in these parameters for
+    # mesh studies etc.
+    simulation_parameter = {
+        "tol": 1E-14,
+        "debugflag": debugflag,
+        "max_iter_num": max_iter_num,
+        "FEM_Lagrange_degree": FEM_Lagrange_degree,
+        "mesh_study": mesh_study,
+        "use_case": use_case,
+        "output_string": output_string,
+        "subdomain_def_points": subdomain_def_points,
+        "isRichards": isRichards,
+        "interface_def_points": interface_def_points,
+        "outer_boundary_def_points": outer_boundary_def_points,
+        "adjacent_subdomains": adjacent_subdomains,
+        # "mesh_resolution": mesh_resolution,
+        "viscosity": viscosity,
+        "porosity": porosity,
+        "L": L,
+        "lambda_param": lambda_param,
+        "relative_permeability": relative_permeability,
+        "intrinsic_permeability": intrinsic_permeability,
+        "sat_pressure_relationship": sat_pressure_relationship,
+        # "starttime": starttime,
+        "number_of_timesteps": number_of_timesteps,
+        "number_of_timesteps_to_analyse": number_of_timesteps_to_analyse,
+        "plot_timestep_every": plot_timestep_every,
+        "timestep_size": timestep_size,
+        "source_expression": source_expression,
+        "initial_condition": initial_condition,
+        "dirichletBC": dirichletBC,
+        "exact_solution": exact_solution,
+        "densities": densities,
+        "include_gravity": include_gravity,
+        "gravity_acceleration": gravity_acceleration,
+        "write_to_file": write_to_file,
+        "analyse_condition": analyse_condition
+    }
+    for number_shift, starttime in starttimes.items():
+        simulation_parameter.update(
+            {"starttime_timestep_number_shift": number_shift}
+        )
+        for mesh_resolution, solver_tol in resolutions.items():
+            simulation_parameter.update({"solver_tol": solver_tol})
+            hlp.info(simulation_parameter["use_case"])
+            processQueue = mp.Queue()
+            LDDsim = mp.Process(
+                        target=hlp.run_simulation,
+                        args=(
+                            simulation_parameter,
+                            processQueue,
+                            starttime,
+                            mesh_resolution
+                            )
+                        )
+            LDDsim.start()
+            # LDDsim.join()
+            # hlp.run_simulation(
+            #     mesh_resolution=mesh_resolution,
+            #     starttime=starttime,
+            #     parameter=simulation_parameter
+            #     )
+
+        LDDsim.join()
+        if mesh_study:
+            simulation_output_dir = processQueue.get()
+            hlp.merge_spacetime_errornorms(isRichards=isRichards,
+                                           resolutions=resolutions,
+                                           output_dir=simulation_output_dir)
diff --git a/Usecases/InstallationTest/run-simulation b/Usecases/InstallationTest/run-simulation
new file mode 100755
index 0000000000000000000000000000000000000000..0eb497502a082a0fec07a5449b1fe946d59c8cc7
--- /dev/null
+++ b/Usecases/InstallationTest/run-simulation
@@ -0,0 +1,16 @@
+#!/bin/bash
+
+[ $# -eq 0 ] && { echo "Usage: $0 simulation_file [logfile_name]"; exit 1; }
+
+SIMULATION_FILE=$1
+SIMULATION=${SIMULATION_FILE%.py}
+LOGFILE_DEFAULT="$SIMULATION.log"
+
+DATE=$(date -I)
+LOGFILE=${2:-$DATE-$LOGFILE_DEFAULT}
+
+GREETING="Simulation $SIMULATION is run on $DATE by $USER"
+
+echo $GREETING
+echo "running $SIMULATION_FILE | tee $LOGFILE"
+./$SIMULATION_FILE | tee $LOGFILE