Skip to content
Snippets Groups Projects
Commit abc9add5 authored by Tizian Wenzel's avatar Tizian Wenzel
Browse files

Some more fixes.

parent 61d424b8
No related branches found
No related tags found
No related merge requests found
......@@ -29,7 +29,7 @@ hyperparameter = dic_hyperparams[name_dataset]
## Run everything
A_start, A_optimized, model, model_vkoga1, model_vkoga2, data, \
array_concatenate, _, dic_timings_2L = run_everything(
array_concatenate, _, list_timings_2L = run_everything(
name_dataset,
hyperparameter.maxIter_vkoga, hyperparameter.N_points,
hyperparameter.noise_level, hyperparameter.reg_para_optim, hyperparameter.reg_para_vkoga,
......@@ -62,7 +62,7 @@ io.savemat(path_for_results + name_dataset + '.mat',
array_eps=array_eps,
array_cv_f=array_cv_f,
array_cv_f_val=array_cv_f_val,
dic_timings_2L = dic_timings_2L,
list_timings_2L = list_timings_2L,
list_timings_1L = list_timings_1L))
# in Matlab:
......
......@@ -18,7 +18,6 @@ np.random.seed(1)
list_datasets = ['fried', 'sarcos', 'ct', 'diamonds', 'stock', 'kegg_undir_uci', 'online_video',
'wecs', 'mlr_knn_rng', 'query_agg_count', 'sgemm', 'road_network']
## Loop over reruns and datasets
for idx_indices in [0, 1, 2, 3, 4]:
for idx_dataset, name_dataset in enumerate(list_datasets):
......@@ -29,7 +28,7 @@ for idx_indices in [0, 1, 2, 3, 4]:
## Run everything
A_start, A_optimized, model, model_vkoga1, model_vkoga2, data, \
array_concatenate, array_test_rmse_deep, dic_timings_2L = run_everything(
array_concatenate, array_test_rmse_deep, list_timings_2L = run_everything(
name_dataset,
hyperparameter.maxIter_vkoga, hyperparameter.N_points,
hyperparameter.noise_level, hyperparameter.reg_para_optim, hyperparameter.reg_para_vkoga,
......@@ -68,7 +67,7 @@ for idx_indices in [0, 1, 2, 3, 4]:
array_cv_f_val=array_cv_f_val,
array_test_rmse_deep=array_test_rmse_deep,
array_test_rmse_cv=array_test_rmse_cv,
dic_timings_2L=dic_timings_2L,
list_timings_2L=list_timings_2L,
list_timings_1L=list_timings_1L))
# in Matlab:
......
......@@ -29,7 +29,7 @@ def run_everything(name_dataset, maxIter_vkoga, N_points, noise_level, reg_para_
flag_vkoga_verbose=False, flag_plots=False, flag_optim_verbose=True,
flag_std_vkoga=True, idx_rerun=None):
dic_timings = {}
list_timings = []
## Load dataset
dataset = Dataset(N_points=N_points)
......@@ -82,7 +82,7 @@ def run_everything(name_dataset, maxIter_vkoga, N_points, noise_level, reg_para_
print(datetime.now().strftime("%H:%M:%S"), name_dataset, '2layered kernel optimization finished.')
t_optim_stop = time.time()
dic_timings['2L_optim'] = t_optim_stop - t_optim_start
list_timings.append(t_optim_stop - t_optim_start)
## Application of VKOGA
# VKOGA with modified modified kernel, simply pre-apply the linear transformation
......@@ -96,7 +96,7 @@ def run_everything(name_dataset, maxIter_vkoga, N_points, noise_level, reg_para_
print(datetime.now().strftime("%H:%M:%S"), name_dataset, '2layered VKOGA finished.')
t_vkoga1_stop = time.time()
dic_timings['2L_vkoga'] = t_vkoga1_stop - t_vkoga1_start
list_timings.append(t_vkoga1_stop - t_vkoga1_start)
# VKOGA with standard kernel
model_vkoga2 = VKOGA(kernel=kernel, greedy_type='f_greedy',
......@@ -219,7 +219,7 @@ def run_everything(name_dataset, maxIter_vkoga, N_points, noise_level, reg_para_
data = [X_train, X_test, y_train, y_test]
return A_start, model.A.detach().numpy(), model, model_vkoga1, model_vkoga2, \
data, array_concatenate, array_test_rmse, dic_timings
data, array_concatenate, array_test_rmse, list_timings
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment