diff --git a/hahllo.py b/hahllo.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/section_4.1_compute_visualize.py b/section_4.1_compute_visualize.py index 6bcee1e53809dddb8d69a9e26053e11f81975925..96280623223f972c92ba24cd4d8a5a3156bbd2b9 100644 --- a/section_4.1_compute_visualize.py +++ b/section_4.1_compute_visualize.py @@ -29,7 +29,7 @@ hyperparameter = dic_hyperparams[name_dataset] ## Run everything A_start, A_optimized, model, model_vkoga1, model_vkoga2, data, \ - array_concatenate, _, dic_timings_2L = run_everything( + array_concatenate, _, list_timings_2L = run_everything( name_dataset, hyperparameter.maxIter_vkoga, hyperparameter.N_points, hyperparameter.noise_level, hyperparameter.reg_para_optim, hyperparameter.reg_para_vkoga, @@ -62,7 +62,7 @@ io.savemat(path_for_results + name_dataset + '.mat', array_eps=array_eps, array_cv_f=array_cv_f, array_cv_f_val=array_cv_f_val, - dic_timings_2L = dic_timings_2L, + list_timings_2L = list_timings_2L, list_timings_1L = list_timings_1L)) # in Matlab: diff --git a/section_4.2_compute.py b/section_4.2_compute.py index a2054d6192b77c597bc2b220339da1ee9b41bbe9..bdfdd64883c7196d0636959bf216c9c52e5ac2af 100644 --- a/section_4.2_compute.py +++ b/section_4.2_compute.py @@ -18,7 +18,6 @@ np.random.seed(1) list_datasets = ['fried', 'sarcos', 'ct', 'diamonds', 'stock', 'kegg_undir_uci', 'online_video', 'wecs', 'mlr_knn_rng', 'query_agg_count', 'sgemm', 'road_network'] - ## Loop over reruns and datasets for idx_indices in [0, 1, 2, 3, 4]: for idx_dataset, name_dataset in enumerate(list_datasets): @@ -29,7 +28,7 @@ for idx_indices in [0, 1, 2, 3, 4]: ## Run everything A_start, A_optimized, model, model_vkoga1, model_vkoga2, data, \ - array_concatenate, array_test_rmse_deep, dic_timings_2L = run_everything( + array_concatenate, array_test_rmse_deep, list_timings_2L = run_everything( name_dataset, hyperparameter.maxIter_vkoga, hyperparameter.N_points, hyperparameter.noise_level, hyperparameter.reg_para_optim, hyperparameter.reg_para_vkoga, @@ -68,7 +67,7 @@ for idx_indices in [0, 1, 2, 3, 4]: array_cv_f_val=array_cv_f_val, array_test_rmse_deep=array_test_rmse_deep, array_test_rmse_cv=array_test_rmse_cv, - dic_timings_2L=dic_timings_2L, + list_timings_2L=list_timings_2L, list_timings_1L=list_timings_1L)) # in Matlab: diff --git a/testfile.py b/testfile.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/utils_code/main_function.py b/utils_code/main_function.py index dbc379f4d5a798780b8b45fc69ea16f65c5c30f5..687a66328af0af5b0add635eca9b94fa1b8e8e9d 100644 --- a/utils_code/main_function.py +++ b/utils_code/main_function.py @@ -29,7 +29,7 @@ def run_everything(name_dataset, maxIter_vkoga, N_points, noise_level, reg_para_ flag_vkoga_verbose=False, flag_plots=False, flag_optim_verbose=True, flag_std_vkoga=True, idx_rerun=None): - dic_timings = {} + list_timings = [] ## Load dataset dataset = Dataset(N_points=N_points) @@ -82,7 +82,7 @@ def run_everything(name_dataset, maxIter_vkoga, N_points, noise_level, reg_para_ print(datetime.now().strftime("%H:%M:%S"), name_dataset, '2layered kernel optimization finished.') t_optim_stop = time.time() - dic_timings['2L_optim'] = t_optim_stop - t_optim_start + list_timings.append(t_optim_stop - t_optim_start) ## Application of VKOGA # VKOGA with modified modified kernel, simply pre-apply the linear transformation @@ -96,7 +96,7 @@ def run_everything(name_dataset, maxIter_vkoga, N_points, noise_level, reg_para_ print(datetime.now().strftime("%H:%M:%S"), name_dataset, '2layered VKOGA finished.') t_vkoga1_stop = time.time() - dic_timings['2L_vkoga'] = t_vkoga1_stop - t_vkoga1_start + list_timings.append(t_vkoga1_stop - t_vkoga1_start) # VKOGA with standard kernel model_vkoga2 = VKOGA(kernel=kernel, greedy_type='f_greedy', @@ -219,7 +219,7 @@ def run_everything(name_dataset, maxIter_vkoga, N_points, noise_level, reg_para_ data = [X_train, X_test, y_train, y_test] return A_start, model.A.detach().numpy(), model, model_vkoga1, model_vkoga2, \ - data, array_concatenate, array_test_rmse, dic_timings + data, array_concatenate, array_test_rmse, list_timings