Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
SemiSmoothNewton.jl
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Stephan Hilb
SemiSmoothNewton.jl
Commits
d4d67b01
Commit
d4d67b01
authored
3 years ago
by
Stephan Hilb
Browse files
Options
Downloads
Patches
Plain Diff
implement primal dual algorithm (untested)
parent
fbf2276a
Branches
Branches containing commit
Tags
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
src/operator.jl
+23
-14
23 additions, 14 deletions
src/operator.jl
src/run.jl
+136
-14
136 additions, 14 deletions
src/run.jl
with
159 additions
and
28 deletions
src/operator.jl
+
23
−
14
View file @
d4d67b01
...
...
@@ -116,9 +116,12 @@ function assemble(space::FeSpace, a, l; params...)
return
A
,
b
end
project_img
(
space
::
FeSpace
,
img
)
=
(
u
=
FeFunction
(
space
);
project_img!
(
u
,
img
))
function
project_img
(
space
::
FeSpace
,
img
)
function
project_img
!
(
u
::
FeFunction
,
img
)
d
=
2
# domain dimension
space
=
u
.
space
mesh
=
space
.
mesh
f
=
ImageFunction
(
mesh
,
img
)
opparams
=
(;
f
)
...
...
@@ -131,13 +134,21 @@ function project_img(space::FeSpace, img)
# composite midpoint quadrature on lagrange point lattice
function
quadrature
(
p
)
k
=
Iterators
.
filter
(
x
->
sum
(
x
)
==
p
,
Iterators
.
product
((
0
:
p
for
_
in
1
:
d
+
1
)
...
))
|>
collect
weights
=
[
1
/
length
(
k
)
for
_
in
axes
(
k
,
1
)]
points
=
[
x
[
i
]
/
p
for
i
in
1
:
2
,
x
in
k
]
d_
=
2
n
=
binomial
(
p
+
2
,
2
)
weights
=
Vector
{
Float64
}(
undef
,
n
)
points
=
Matrix
{
Float64
}(
undef
,
2
,
n
)
k
=
0
for
I
in
Iterators
.
product
(
ntuple
(
_
->
0
:
p
,
d_
+
1
)
...
)
I
[
1
]
+
I
[
2
]
+
I
[
3
]
!=
p
&&
continue
k
+=
1
weights
[
k
]
=
1
/
n
points
[
1
,
k
]
=
I
[
1
]
/
p
points
[
2
,
k
]
=
I
[
2
]
/
p
end
return
weights
::
Vector
{
Float64
},
points
::
Matrix
{
Float64
}
return
weights
,
points
end
I
=
Float64
[]
...
...
@@ -160,16 +171,16 @@ function project_img(space::FeSpace, img)
qphi
=
zeros
(
nrdims
,
nrdims
,
nldofs
,
nqpts
)
dqphi
=
zeros
(
nrdims
,
d
,
nrdims
,
nldofs
,
nqpts
)
for
r
in
1
:
nrdims
for
k
in
axes
(
qx
,
2
)
qphi
[
r
,
r
,
:
,
k
]
.=
evaluate_basis
(
space
.
element
,
qx
[
:
,
k
]
)
dqphi
[
r
,
:
,
r
,
:
,
k
]
.=
transpose
(
jacobian
(
x
->
evaluate_basis
(
space
.
element
,
x
),
SVector
{
d
}(
qx
[
:
,
k
]
)))
for
k
in
axes
(
qx
,
2
)
for
r
in
1
:
nrdims
qphi
[
r
,
r
,
:
,
k
]
.=
evaluate_basis
(
space
.
element
,
SVector
{
d
}(
view
(
qx
,
:
,
k
))
)
dqphi
[
r
,
:
,
r
,
:
,
k
]
.=
transpose
(
jacobian
(
x
->
evaluate_basis
(
space
.
element
,
x
),
SVector
{
d
}(
view
(
qx
,
:
,
k
)
)))
end
end
# quadrature points
for
k
in
axes
(
qx
,
2
)
xhat
=
SVector
{
d
}(
qx
[
:
,
k
]
)
xhat
=
SVector
{
d
}(
view
(
qx
,
:
,
k
)
)
x
=
elmap
(
mesh
,
cell
)(
xhat
)
opvalues
=
map
(
f
->
evaluate
(
f
,
xhat
),
opparams
)
...
...
@@ -204,8 +215,6 @@ function project_img(space::FeSpace, img)
ngdofs
=
ndofs
(
space
)
A
=
sparse
(
I
,
J
,
V
,
ngdofs
,
ngdofs
)
u
=
FeFunction
(
space
)
u
.
data
.=
A
\
b
return
u
end
This diff is collapsed.
Click to expand it.
src/run.jl
+
136
−
14
View file @
d4d67b01
export
myrun
,
denoise
,
inpaint
,
optflow
,
solve_primal!
,
estimate!
,
loadimg
,
saveimg
export
myrun
,
denoise
,
denoise_pd
,
inpaint
,
optflow
,
solve_primal!
,
estimate!
,
loadimg
,
saveimg
using
LinearAlgebra
:
norm
...
...
@@ -169,6 +169,74 @@ function step!(ctx::L1L2TVContext)
p2_project!
(
ctx
.
p2
,
ctx
.
lambda
)
end
function
step_pd!
(
ctx
::
L1L2TVContext
;
sigma
,
tau
,
theta
=
1.
)
# note: ignores gamma1, gamma2, beta and uses T = I, lambda = 1, m = 1!
if
ctx
.
m
!=
1
||
ctx
.
lambda
!=
1.
||
ctx
.
beta
!=
0.
error
(
"unsupported parameters"
)
end
beta
=
tau
*
ctx
.
alpha1
/
(
1
+
2
*
tau
*
ctx
.
alpha2
)
# u is P1
# p2 is essentially DP0 (technically may be DP1)
# 1.
function
p2_update
(
x_
;
p2
,
nablau
)
return
p2
+
sigma
*
nablau
end
interpolate!
(
ctx
.
p2
,
p2_update
;
ctx
.
p2
,
ctx
.
nablau
)
function
p2_project!
(
p2
,
lambda
)
p2
.
space
.
element
::
DP1
p2d
=
reshape
(
p2
.
data
,
prod
(
p2
.
space
.
size
),
:
)
# no copy
for
i
in
axes
(
p2d
,
2
)
p2in
=
norm
(
p2d
[
:
,
i
])
if
p2in
>
lambda
p2d
[
:
,
i
]
.*=
lambda
./
p2in
end
end
end
p2_next
=
FeFunction
(
ctx
.
p2
.
space
)
p2_project!
(
p2_next
,
ctx
.
lambda
)
ctx
.
dp2
.
data
.=
p2_next
.
data
.-
ctx
.
p2
.
data
ctx
.
p2
.
data
.=
p2_next
.
data
# 2.
u_a
(
x
,
z
,
nablaz
,
phi
,
nablaphi
;
g
,
u
,
p2
)
=
dot
(
z
,
phi
)
u_l
(
x
,
phi
,
nablaphi
;
u
,
g
,
p2
)
=
(
dot
(
u
+
2
*
tau
*
ctx
.
alpha2
*
g
,
phi
)
-
tau
*
dot
(
p2
,
nablaphi
))
/
(
1
+
2
*
tau
*
ctx
.
alpha2
)
# z = 1 / (1 + 2 * tau * alpha2) *
# (u + 2 * tau * alpha2 * g + tau * div(p))
z
=
FeFunction
(
ctx
.
u
.
space
)
A
,
b
=
assemble
(
z
.
space
,
u_a
,
u_l
;
ctx
.
g
,
ctx
.
u
,
ctx
.
p2
)
z
.
data
.=
A
\
b
function
u_update!
(
u
,
z
,
g
,
beta
)
u
.
space
.
element
::
P1
g
.
space
.
element
::
P1
for
i
in
eachindex
(
u
.
data
)
if
z
.
data
[
i
]
-
beta
>=
g
.
data
[
i
]
u
.
data
[
i
]
=
z
.
data
[
i
]
-
beta
elseif
z
.
data
[
i
]
+
beta
<=
g
.
data
[
i
]
u
.
data
[
i
]
=
z
.
data
[
i
]
+
beta
else
u
.
data
[
i
]
=
g
.
data
[
i
]
end
end
end
u_next
=
FeFunction
(
ctx
.
u
.
space
)
u_update!
(
u_next
,
z
,
ctx
.
g
,
beta
)
# 3.
ctx
.
du
.
data
.=
u_next
.
data
.-
ctx
.
u
.
data
ctx
.
u
.
data
.=
u_next
.
data
.+
theta
*
ctx
.
du
.
data
return
ctx
end
function
solve_primal!
(
u
::
FeFunction
,
ctx
::
L1L2TVContext
)
u_a
(
x
,
u
,
nablau
,
phi
,
nablaphi
;
g
,
p1
,
p2
,
tdata
)
=
ctx
.
alpha2
*
dot
(
ctx
.
T
(
tdata
,
u
),
ctx
.
T
(
tdata
,
phi
))
+
...
...
@@ -208,15 +276,20 @@ function estimate!(ctx::L1L2TVContext)
project!
(
ctx
.
est
,
estf
;
ctx
.
g
,
ctx
.
u
,
ctx
.
p1
,
ctx
.
p2
,
ctx
.
nablau
,
w
,
nablaw
,
ctx
.
tdata
)
end
function
refine
(
ctx
::
L1L2TVContext
,
marked_cells
)
function
refine
(
ctx
::
L1L2TVContext
,
marked_cells
;
fs_
...
)
fs
=
NamedTuple
(
fs_
)
hmesh
=
HMesh
(
ctx
.
mesh
)
refined_functions
=
refine!
(
hmesh
,
Set
(
marked_cells
);
ctx
.
est
,
ctx
.
g
,
ctx
.
u
,
ctx
.
p1
,
ctx
.
p2
,
ctx
.
du
,
ctx
.
dp1
,
ctx
.
dp2
)
ctx
.
est
,
ctx
.
g
,
ctx
.
u
,
ctx
.
p1
,
ctx
.
p2
,
ctx
.
du
,
ctx
.
dp1
,
ctx
.
dp2
,
fs
...
)
new_mesh
=
refined_functions
.
u
.
space
.
mesh
new_ctx
=
L1L2TVContext
(
ctx
.
name
,
new_mesh
,
ctx
.
m
;
ctx
.
T
,
ctx
.
tdata
,
ctx
.
S
,
ctx
.
alpha1
,
ctx
.
alpha2
,
ctx
.
beta
,
ctx
.
lambda
,
ctx
.
gamma1
,
ctx
.
gamma2
)
fs_new
=
NamedTuple
(
x
[
1
]
=>
refined_functions
[
x
[
1
]]
for
x
in
pairs
(
fs
))
@assert
(
new_ctx
.
est
.
space
.
dofmap
==
refined_functions
.
est
.
space
.
dofmap
)
@assert
(
new_ctx
.
g
.
space
.
dofmap
==
refined_functions
.
g
.
space
.
dofmap
)
@assert
(
new_ctx
.
u
.
space
.
dofmap
==
refined_functions
.
u
.
space
.
dofmap
)
...
...
@@ -235,7 +308,7 @@ function refine(ctx::L1L2TVContext, marked_cells)
new_ctx
.
dp1
.
data
.=
refined_functions
.
dp1
.
data
new_ctx
.
dp2
.
data
.=
refined_functions
.
dp2
.
data
return
new_ctx
return
new_ctx
,
fs_new
end
function
mark
(
ctx
::
L1L2TVContext
;
theta
=
0.5
)
...
...
@@ -280,6 +353,9 @@ end
norm_l2
(
f
)
=
sqrt
(
integrate
(
f
.
space
.
mesh
,
(
x
;
f
)
->
dot
(
f
,
f
);
f
))
norm_step
(
ctx
::
L1L2TVContext
)
=
sqrt
((
norm_l2
(
ctx
.
du
)
^
2
+
norm_l2
(
ctx
.
dp1
)
^
2
+
norm_l2
(
ctx
.
dp2
)
^
2
)
/
area
(
ctx
.
mesh
))
function
denoise
(
img
;
name
,
params
...
)
m
=
1
#mesh = init_grid(img; type=:vertex)
...
...
@@ -290,8 +366,9 @@ function denoise(img; name, params...)
ctx
=
L1L2TVContext
(
name
,
mesh
,
m
;
T
,
tdata
=
nothing
,
S
,
params
...
)
interpolate!
(
ctx
.
g
,
x
->
interpolate_bilinear
(
img
,
x
))
m
=
(
size
(
img
)
.-
1
)
./
2
.+
1
project_img!
(
ctx
.
g
,
img
)
#interpolate!(ctx.g, x -> interpolate_bilinear(img, x))
#m = (size(img) .- 1) ./ 2 .+ 1
#interpolate!(ctx.g, x -> norm(x .- m) < norm(m .- 1) / 3)
save_denoise
(
ctx
,
i
)
=
...
...
@@ -311,24 +388,69 @@ function denoise(img; name, params...)
pvd
[
k
]
=
save_denoise
(
ctx
,
k
)
println
()
norm_step
=
sqrt
((
norm_l2
(
ctx
.
du
)
^
2
+
norm_l2
(
ctx
.
dp1
)
^
2
+
norm_l2
(
ctx
.
dp2
)
^
2
)
/
area
(
mesh
)
)
norm_step
_
=
norm_step
(
ctx
)
println
(
"ndofs:
$
(ndofs(ctx.u.space)), est:
$
(norm_l2(ctx.est)))"
)
println
(
"primal energy:
$
(primal_energy(ctx))"
)
println
(
"norm_step:
$(norm_step)
"
)
println
(
"norm_step:
$(norm_step
_
)
"
)
norm_step
<=
1e-1
&&
break
norm_step
_
<=
1e-1
&&
break
end
marked_cells
=
mark
(
ctx
;
theta
=
0.5
)
#println(marked_cells)
println
(
"refining ..."
)
ctx
=
refine
(
ctx
,
marked_cells
)
ctx
,
_
=
refine
(
ctx
,
marked_cells
)
test_mesh
(
ctx
.
mesh
)
gnew
=
project_img
(
ctx
.
g
.
space
,
img
)
ctx
.
g
.
data
.=
gnew
.
data
#interpolate!(ctx.g, x -> norm(x .- m) < norm(m .- 1) / 3)
project_img!
(
ctx
.
g
,
img
)
k
>=
100
&&
break
end
vtk_save
(
pvd
)
return
ctx
end
function
denoise_pd
(
img
;
name
,
params
...
)
m
=
1
mesh
=
init_grid
(
img
;
type
=:
vertex
)
#mesh = init_grid(img, 5, 5)
sigma
=
1e-1
tau
=
1e-1
theta
=
1.
T
(
tdata
,
u
)
=
u
S
(
u
,
nablau
)
=
u
ctx
=
L1L2TVContext
(
name
,
mesh
,
m
;
T
,
tdata
=
nothing
,
S
,
params
...
)
project_img!
(
ctx
.
g
,
img
)
#interpolate!(ctx.g, x -> interpolate_bilinear(img, x))
#m = (size(img) .- 1) ./ 2 .+ 1
#interpolate!(ctx.g, x -> norm(x .- m) < norm(m .- 1) / 3)
save_denoise
(
ctx
,
i
)
=
output
(
ctx
,
"output/
$
(ctx.name)_
$
(lpad(i, 5, '0')).vtu"
,
ctx
.
g
,
ctx
.
u
,
ctx
.
p1
,
ctx
.
p2
,
ctx
.
est
)
pvd
=
paraview_collection
(
"output/
$
(ctx.name).pvd"
)
pvd
[
0
]
=
save_denoise
(
ctx
,
0
)
k
=
0
println
(
"primal energy:
$
(primal_energy(ctx))"
)
while
true
k
+=
1
step_pd!
(
ctx
;
sigma
,
tau
,
theta
)
#estimate!(ctx)
pvd
[
k
]
=
save_denoise
(
ctx
,
k
)
println
()
norm_step_
=
norm_step
(
ctx
)
println
(
"ndofs:
$
(ndofs(ctx.u.space)), est:
$
(norm_l2(ctx.est)))"
)
println
(
"primal energy:
$
(primal_energy(ctx))"
)
println
(
"norm_step:
$(norm_step_)
"
)
norm_step_
<=
1e-1
&&
break
k
>=
100
&&
break
end
vtk_save
(
pvd
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment