Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
SemiSmoothNewton.jl
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Stephan Hilb
SemiSmoothNewton.jl
Commits
88bd6f28
Commit
88bd6f28
authored
3 years ago
by
Stephan Hilb
Browse files
Options
Downloads
Patches
Plain Diff
correct error indicator values
saved values are no longer squared values
parent
2a863f8f
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
scripts/run_experiments.jl
+21
-18
21 additions, 18 deletions
scripts/run_experiments.jl
with
21 additions
and
18 deletions
scripts/run_experiments.jl
+
21
−
18
View file @
88bd6f28
...
@@ -424,39 +424,42 @@ huber(x, gamma) = abs(x) < gamma ? x^2 / (2 * gamma) : abs(x) - gamma / 2
...
@@ -424,39 +424,42 @@ huber(x, gamma) = abs(x) < gamma ? x^2 / (2 * gamma) : abs(x) - gamma / 2
# this computes the primal-dual error indicator which is not really useful
# this computes the primal-dual error indicator which is not really useful
# if not computed on a finer mesh than `u` was solved on
# if not computed on a finer mesh than `u` was solved on
function
estimate!
(
ctx
::
L1L2TVState
)
function
estimate!
(
st
::
L1L2TVState
)
function
estf
(
x_
;
g
,
u
,
p1
,
p2
,
nablau
,
w
,
nablaw
,
tdata
)
function
estf
(
x_
;
g
,
u
,
p1
,
p2
,
nablau
,
w
,
nablaw
,
tdata
)
alpha1part
=
alpha1part
=
ctx
.
alpha1
*
huber
(
norm
(
ctx
.
T
(
tdata
,
u
)
-
g
),
ctx
.
gamma1
)
-
st
.
alpha1
*
huber
(
norm
(
st
.
T
(
tdata
,
u
)
-
g
),
st
.
gamma1
)
-
dot
(
ctx
.
T
(
tdata
,
u
)
-
g
,
p1
)
+
dot
(
st
.
T
(
tdata
,
u
)
-
g
,
p1
)
+
(
iszero
(
ctx
.
alpha1
)
?
0.
:
(
iszero
(
st
.
alpha1
)
?
0.
:
ctx
.
gamma1
/
(
2
*
ctx
.
alpha1
)
*
norm
(
p1
)
^
2
)
st
.
gamma1
/
(
2
*
st
.
alpha1
)
*
norm
(
p1
)
^
2
)
lambdapart
=
lambdapart
=
ctx
.
lambda
*
huber
(
norm
(
nablau
),
ctx
.
gamma2
)
-
st
.
lambda
*
huber
(
norm
(
nablau
),
st
.
gamma2
)
-
dot
(
nablau
,
p2
)
+
dot
(
nablau
,
p2
)
+
(
iszero
(
ctx
.
lambda
)
?
0.
:
(
iszero
(
st
.
lambda
)
?
0.
:
ctx
.
gamma2
/
(
2
*
ctx
.
lambda
)
*
norm
(
p2
)
^
2
)
st
.
gamma2
/
(
2
*
st
.
lambda
)
*
norm
(
p2
)
^
2
)
# avoid non-negative rounding errors
# avoid non-negative rounding errors
alpha1part
=
max
(
0
,
alpha1part
)
alpha1part
=
max
(
0
,
alpha1part
)
lambdapart
=
max
(
0
,
lambdapart
)
lambdapart
=
max
(
0
,
lambdapart
)
bpart
=
1
/
2
*
(
bpart
=
1
/
2
*
(
ctx
.
alpha2
*
dot
(
ctx
.
T
(
tdata
,
w
-
u
),
ctx
.
T
(
tdata
,
w
-
u
))
+
st
.
alpha2
*
dot
(
st
.
T
(
tdata
,
w
-
u
),
st
.
T
(
tdata
,
w
-
u
))
+
ctx
.
beta
*
dot
(
ctx
.
S
(
w
,
nablaw
)
-
ctx
.
S
(
u
,
nablau
),
st
.
beta
*
dot
(
st
.
S
(
w
,
nablaw
)
-
st
.
S
(
u
,
nablau
),
ctx
.
S
(
w
,
nablaw
)
-
ctx
.
S
(
u
,
nablau
)))
st
.
S
(
w
,
nablaw
)
-
st
.
S
(
u
,
nablau
)))
res
=
alpha1part
+
lambdapart
+
bpart
return
alpha1part
+
lambdapart
+
bpart
@assert
isfinite
(
res
)
return
res
end
end
w
=
FeFunction
(
ctx
.
u
.
space
)
w
=
FeFunction
(
st
.
u
.
space
)
solve_primal!
(
w
,
ctx
)
solve_primal!
(
w
,
st
)
#w.data .= .-w.data
#w.data .= .-w.data
# TODO: find better name: is actually a cell-wise integration
# TODO: find better name: is actually a cell-wise integration
project!
(
ctx
.
est
,
estf
;
ctx
.
g
,
ctx
.
u
,
ctx
.
p1
,
ctx
.
p2
,
project!
(
st
.
est
,
estf
;
st
.
g
,
st
.
u
,
st
.
p1
,
st
.
p2
,
nablau
=
nabla
(
ctx
.
u
),
w
,
nablaw
=
nabla
(
w
),
ctx
.
tdata
)
nablau
=
nabla
(
st
.
u
),
w
,
nablaw
=
nabla
(
w
),
st
.
tdata
)
st
.
est
.
data
.=
sqrt
.
(
st
.
est
.
data
)
end
end
estimate_error
(
st
::
L1L2TVState
)
=
estimate_error
(
st
::
L1L2TVState
)
=
s
um
(
st
.
est
.
data
)
/
area
(
st
.
mesh
)
s
qrt
(
sum
(
x
->
x
^
2
,
st
.
est
.
data
)
/
area
(
st
.
mesh
)
)
# minimal Dörfler marking
# minimal Dörfler marking
function
mark
(
ctx
::
L1L2TVState
;
theta
=
0.5
)
function
mark
(
ctx
::
L1L2TVState
;
theta
=
0.5
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment