Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
SemiSmoothNewton.jl
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Stephan Hilb
SemiSmoothNewton.jl
Commits
83c0116d
Commit
83c0116d
authored
Dec 16, 2021
by
Stephan Hilb
Browse files
Options
Downloads
Patches
Plain Diff
refactor
parent
c63a8eb3
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
src/image.jl
+146
-127
146 additions, 127 deletions
src/image.jl
with
146 additions
and
127 deletions
src/image.jl
+
146
−
127
View file @
83c0116d
export
evaluate_bilinear
,
halve
,
warp_backwards
#
ImageFunction
#
General Utility Methods on Images
# TODO: inherit from some abstract function type
struct
ImageFunction
{
Img
}
mesh
::
Mesh
img
::
Img
cell
::
Base
.
RefValue
{
Int
}
function
mean_squared_error
(
img
,
img_ref
)
axes
(
img
)
==
axes
(
img_ref
)
||
throw
(
ArgumentError
(
"images need matching axes"
))
n
=
length
(
img
)
return
sum
((
img
.-
img_ref
)
.^
2
./
n
)
end
ImageFunction
(
mesh
,
img
)
=
ImageFunction
(
mesh
,
img
,
Ref
(
1
))
bind!
(
f
::
ImageFunction
,
cell
)
=
f
.
cell
[]
=
cell
# transform coordinates to image/matrix indexing space
img_coord
(
img
,
x
)
=
(
size
(
img
,
1
)
-
x
[
2
]
+
1
,
x
[
1
])
evaluate
(
f
::
ImageFunction
,
xloc
)
=
evaluate_bilinear
(
f
.
img
,
img_coord
(
f
.
img
,
elmap
(
f
.
mesh
,
f
.
cell
[])(
xloc
)))
function
peak_signal_to_noise_ratio
(
img
,
img_ref
)
mse
=
mean_squared_error
(
img
,
img_ref
)
imax
=
1.0
# maximum intensity
return
10
*
log10
(
imax
/
mse
)
end
# FIXME: unused?
from_img
(
img
)
=
permutedims
(
reverse
(
arr
;
dims
=
1
))
...
...
@@ -67,6 +63,24 @@ function halve(img)
return
res
end
# ImageFunction mesh function wrapper
# TODO: inherit from some abstract mesh function type
# TODO: make mesh type a parameter for performance
struct
ImageFunction
{
Img
}
mesh
::
Mesh
img
::
Img
cell
::
Base
.
RefValue
{
Int
}
end
ImageFunction
(
mesh
,
img
)
=
ImageFunction
(
mesh
,
img
,
Ref
(
0
))
bind!
(
f
::
ImageFunction
,
cell
)
=
f
.
cell
[]
=
cell
# transform coordinates to image/matrix indexing space
img_coord
(
img
,
x
)
=
(
size
(
img
,
1
)
-
x
[
2
]
+
1
,
x
[
1
])
evaluate
(
f
::
ImageFunction
,
xloc
)
=
evaluate_bilinear
(
f
.
img
,
img_coord
(
f
.
img
,
elmap
(
f
.
mesh
,
f
.
cell
[])(
xloc
)))
# Sampling
# evaluate the function on a rectangular grid of coordinates with integer
...
...
@@ -121,23 +135,30 @@ function _sample(f::FeFunction)
return
out2
end
# Interpolation
# Mesh Function Projection Methods
# TODO: refine interface: projection vs interpolation, unify different
# algorithms
"""
interprets `img` as a bilinearly interpolated continuous function and applies
the default interpolation operator for the discrete function u.
"""
# TODO: should be called "interpolate_nodal"
function
interpolate!
(
u
::
FeFunction
,
img
::
AbstractArray
)
f
=
ImageFunction
(
u
.
space
.
mesh
,
img
)
interpolate!
(
u
,
@inline
(
x
;
f
)
->
f
;
f
)
end
# TODO: refine interface: projection vs interpolation, unify different
# algorithms
project_l2_lagrange
(
space
::
FeSpace
,
img
)
=
(
u
=
FeFunction
(
space
);
project_l2_lagrange!
(
u
,
img
))
"""
standard l2 projection but using an adaptive quadrature rule based on cell size
"""
# TODO: this could be a general l2 projection, accepting a mesh function and
# some custom quadrature rule?
function
project_l2_lagrange!
(
u
::
FeFunction
,
img
::
AbstractArray
)
d
=
2
# domain dimension
space
=
u
.
space
...
...
@@ -222,9 +243,10 @@ end
project_qi_lagrange
(
space
::
FeSpace
,
img
)
=
(
u
=
FeFunction
(
space
);
project_qi_lagrange!
(
u
,
img
))
# L1-stable quasi-interpolation operator
# (https://arxiv.org/pdf/1505.06931.pdf)
#
"""
L1-stable quasi-interpolation operator
(https://arxiv.org/pdf/1505.06931.pdf)
"""
# FIXME: currently only approximate quadrature by sampling on lagrange lattice
# based on element size. Exact evaluation is tricky to implement (lots of
# intersection handling).
...
...
@@ -311,6 +333,8 @@ end
function
Base.iterate
(
it
::
PixelIterator
,
state
...
)
y
=
iterate
(
it
.
grid
,
state
...
)
isnothing
(
y
)
&&
return
nothing
# TODO: do something more sophisticated than walking the whole cartesian
# bounding box
while
!
_intersects
(
it
,
first
(
y
))
y
=
iterate
(
it
.
grid
,
last
(
y
))
isnothing
(
y
)
&&
return
nothing
...
...
@@ -362,10 +386,6 @@ function project_l2_pixel!(u::FeFunction, img)
delmapinv
=
inv
(
delmap
)
intel
=
abs
(
det
(
delmap
))
#p = ceil(Int, diam(mesh, cell))
#qw, qx = quadrature_composite_lagrange_midpoint(p)
#nqpts = length(qw) # number of quadrature points
# pixels as quadrature points
pixels
=
PixelIterator
(
mesh
,
cell
)
for
P
in
pixels
...
...
@@ -418,5 +438,4 @@ function project_l2_pixel!(u::FeFunction, img)
u
.
data
.=
A
\
b
return
u
end
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment