Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
SemiSmoothNewton.jl
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Stephan Hilb
SemiSmoothNewton.jl
Commits
65804157
Commit
65804157
authored
Aug 22, 2021
by
Stephan Hilb
Browse files
Options
Downloads
Patches
Plain Diff
get refinement working somewhat
parent
6d2a2f59
No related branches found
No related tags found
No related merge requests found
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
scripts/run.jl
+85
-65
85 additions, 65 deletions
scripts/run.jl
src/function.jl
+1
-1
1 addition, 1 deletion
src/function.jl
src/mesh.jl
+21
-3
21 additions, 3 deletions
src/mesh.jl
with
107 additions
and
69 deletions
scripts/run.jl
+
85
−
65
View file @
65804157
...
...
@@ -9,7 +9,8 @@ using OpticalFlowUtils
using
WriteVTK
:
paraview_collection
using
SemiSmoothNewton
using
SemiSmoothNewton
:
project_img!
,
project!
using
SemiSmoothNewton
:
HMesh
,
ncells
,
refine
using
SemiSmoothNewton
:
project_img!
,
project_img2!
,
project!
using
SemiSmoothNewton
:
vtk_mesh
,
vtk_append!
,
vtk_save
include
(
"util.jl"
)
...
...
@@ -63,8 +64,6 @@ struct L1L2TVContext{M, Ttype, Stype}
du
::
FeFunction
dp1
::
FeFunction
dp2
::
FeFunction
nablau
nabladu
end
function
L1L2TVContext
(
name
,
mesh
,
m
;
T
,
tdata
,
S
,
...
...
@@ -82,11 +81,9 @@ function L1L2TVContext(name, mesh, m; T, tdata, S,
u
=
FeFunction
(
Vu
,
name
=
"u"
)
p1
=
FeFunction
(
Vp1
,
name
=
"p1"
)
p2
=
FeFunction
(
Vp2
,
name
=
"p2"
)
du
=
FeFunction
(
Vu
)
dp1
=
FeFunction
(
Vp1
)
dp2
=
FeFunction
(
Vp2
)
nablau
=
nabla
(
u
)
nabladu
=
nabla
(
du
)
du
=
FeFunction
(
Vu
;
name
=
"du"
)
dp1
=
FeFunction
(
Vp1
;
name
=
"dp1"
)
dp2
=
FeFunction
(
Vp2
;
name
=
"dp2"
)
est
.
data
.=
0
g
.
data
.=
0
...
...
@@ -99,7 +96,7 @@ function L1L2TVContext(name, mesh, m; T, tdata, S,
return
L1L2TVContext
(
name
,
mesh
,
d
,
m
,
T
,
tdata
,
S
,
alpha1
,
alpha2
,
beta
,
lambda
,
gamma1
,
gamma2
,
est
,
g
,
u
,
p1
,
p2
,
du
,
dp1
,
dp2
,
nablau
,
nabladu
)
est
,
g
,
u
,
p1
,
p2
,
du
,
dp1
,
dp2
)
end
function
p1_project!
(
p1
,
alpha1
)
...
...
@@ -166,7 +163,7 @@ function step!(ctx::L1L2TVContext)
# solve du
print
(
"assemble ... "
)
A
,
b
=
assemble
(
ctx
.
du
.
space
,
du_a
,
du_l
;
ctx
.
g
,
ctx
.
u
,
ctx
.
nablau
,
ctx
.
p1
,
ctx
.
p2
,
ctx
.
tdata
)
ctx
.
g
,
ctx
.
u
,
nablau
=
nabla
(
ctx
.
u
)
,
ctx
.
p1
,
ctx
.
p2
,
ctx
.
tdata
)
print
(
"solve ... "
)
ctx
.
du
.
data
.=
A
\
b
...
...
@@ -191,7 +188,7 @@ function step!(ctx::L1L2TVContext)
return
-
p2
+
lambda
/
m2
*
(
nablau
+
nabladu
)
-
cond
end
interpolate!
(
ctx
.
dp2
,
dp2_update
;
ctx
.
u
,
ctx
.
nablau
,
ctx
.
p2
,
ctx
.
du
,
ctx
.
nabladu
)
ctx
.
u
,
nablau
=
nabla
(
ctx
.
u
)
,
ctx
.
p2
,
ctx
.
du
,
nabladu
=
nabla
(
ctx
.
du
)
)
# newton update
theta
=
1.
...
...
@@ -388,46 +385,49 @@ function estimate!(ctx::L1L2TVContext)
end
w
=
FeFunction
(
ctx
.
u
.
space
)
nablaw
=
nabla
(
w
)
solve_primal!
(
w
,
ctx
)
project!
(
ctx
.
est
,
estf
;
ctx
.
g
,
ctx
.
u
,
ctx
.
p1
,
ctx
.
p2
,
ctx
.
nablau
,
w
,
nablaw
,
ctx
.
tdata
)
end
function
refine
(
ctx
::
L1L2TVContext
,
marked_cells
;
fs_
...
)
fs
=
NamedTuple
(
fs_
)
hmesh
=
HMesh
(
ctx
.
mesh
)
refined_functions
=
refine!
(
hmesh
,
Set
(
marked_cells
);
ctx
.
est
,
ctx
.
g
,
ctx
.
u
,
ctx
.
p1
,
ctx
.
p2
,
ctx
.
du
,
ctx
.
dp1
,
ctx
.
dp2
,
fs
...
)
new_mesh
=
refined_functions
.
u
.
space
.
mesh
new_ctx
=
L1L2TVContext
(
ctx
.
name
,
new_mesh
,
ctx
.
m
;
ctx
.
T
,
ctx
.
tdata
,
ctx
.
S
,
ctx
.
alpha1
,
ctx
.
alpha2
,
ctx
.
beta
,
ctx
.
lambda
,
ctx
.
gamma1
,
ctx
.
gamma2
)
fs_new
=
NamedTuple
(
x
[
1
]
=>
refined_functions
[
x
[
1
]]
for
x
in
pairs
(
fs
))
@assert
(
new_ctx
.
est
.
space
.
dofmap
==
refined_functions
.
est
.
space
.
dofmap
)
@assert
(
new_ctx
.
g
.
space
.
dofmap
==
refined_functions
.
g
.
space
.
dofmap
)
@assert
(
new_ctx
.
u
.
space
.
dofmap
==
refined_functions
.
u
.
space
.
dofmap
)
@assert
(
new_ctx
.
p1
.
space
.
dofmap
==
refined_functions
.
p1
.
space
.
dofmap
)
@assert
(
new_ctx
.
p2
.
space
.
dofmap
==
refined_functions
.
p2
.
space
.
dofmap
)
@assert
(
new_ctx
.
du
.
space
.
dofmap
==
refined_functions
.
du
.
space
.
dofmap
)
@assert
(
new_ctx
.
dp1
.
space
.
dofmap
==
refined_functions
.
dp1
.
space
.
dofmap
)
@assert
(
new_ctx
.
dp2
.
space
.
dofmap
==
refined_functions
.
dp2
.
space
.
dofmap
)
new_ctx
.
est
.
data
.=
refined_functions
.
est
.
data
new_ctx
.
g
.
data
.=
refined_functions
.
g
.
data
new_ctx
.
u
.
data
.=
refined_functions
.
u
.
data
new_ctx
.
p1
.
data
.=
refined_functions
.
p1
.
data
new_ctx
.
p2
.
data
.=
refined_functions
.
p2
.
data
new_ctx
.
du
.
data
.=
refined_functions
.
du
.
data
new_ctx
.
dp1
.
data
.=
refined_functions
.
dp1
.
data
new_ctx
.
dp2
.
data
.=
refined_functions
.
dp2
.
data
return
new_ctx
,
fs_new
end
project!
(
ctx
.
est
,
estf
;
ctx
.
g
,
ctx
.
u
,
ctx
.
p1
,
ctx
.
p2
,
nablau
=
nabla
(
ctx
.
u
),
w
,
nablaw
=
nabla
(
w
),
ctx
.
tdata
)
end
# TODO: deprecate in favor of refine(mesh, marked_cells; fs...)
#function refine(ctx::L1L2TVContext, marked_cells; fs_...)
# fs = NamedTuple(fs_)
#
# hmesh = HMesh(ctx.mesh)
# refined_functions = refine!(hmesh, Set(marked_cells);
# ctx.est, ctx.g, ctx.u, ctx.p1, ctx.p2, ctx.du, ctx.dp1, ctx.dp2,
# fs...)
# new_mesh = refined_functions.u.space.mesh
#
# # TODO: tdata needs to be recreated for refinement
# new_ctx = L1L2TVContext(ctx.name, new_mesh, ctx.m; ctx.T, ctx.tdata, ctx.S,
# ctx.alpha1, ctx.alpha2, ctx.beta, ctx.lambda, ctx.gamma1, ctx.gamma2)
#
# fs_new = NamedTuple(x[1] => refined_functions[x[1]] for x in pairs(fs))
#
# @assert(new_ctx.est.space.dofmap == refined_functions.est.space.dofmap)
# @assert(new_ctx.g.space.dofmap == refined_functions.g.space.dofmap)
# @assert(new_ctx.u.space.dofmap == refined_functions.u.space.dofmap)
# @assert(new_ctx.p1.space.dofmap == refined_functions.p1.space.dofmap)
# @assert(new_ctx.p2.space.dofmap == refined_functions.p2.space.dofmap)
# @assert(new_ctx.du.space.dofmap == refined_functions.du.space.dofmap)
# @assert(new_ctx.dp1.space.dofmap == refined_functions.dp1.space.dofmap)
# @assert(new_ctx.dp2.space.dofmap == refined_functions.dp2.space.dofmap)
#
# new_ctx.est.data .= refined_functions.est.data
# new_ctx.g.data .= refined_functions.g.data
# new_ctx.u.data .= refined_functions.u.data
# new_ctx.p1.data .= refined_functions.p1.data
# new_ctx.p2.data .= refined_functions.p2.data
# new_ctx.du.data .= refined_functions.du.data
# new_ctx.dp1.data .= refined_functions.dp1.data
# new_ctx.dp2.data .= refined_functions.dp2.data
#
# return new_ctx, fs_new
#end
# minimal Dörfler marking
function
mark
(
ctx
::
L1L2TVContext
;
theta
=
0.5
)
n
=
ncells
(
ctx
.
mesh
)
esttotal
=
sum
(
ctx
.
est
.
data
)
...
...
@@ -461,7 +461,8 @@ function primal_energy(ctx::L1L2TVContext)
ctx
.
beta
/
2
*
norm
(
ctx
.
S
(
u
,
nablau
))
^
2
+
ctx
.
lambda
*
huber
(
norm
(
nablau
),
ctx
.
gamma2
)
end
return
integrate
(
ctx
.
mesh
,
integrand
;
ctx
.
g
,
ctx
.
u
,
ctx
.
nablau
,
ctx
.
tdata
)
return
integrate
(
ctx
.
mesh
,
integrand
;
ctx
.
g
,
ctx
.
u
,
nablau
=
nabla
(
ctx
.
u
),
ctx
.
tdata
)
end
norm_l2
(
f
)
=
sqrt
(
integrate
(
f
.
space
.
mesh
,
(
x
;
f
)
->
dot
(
f
,
f
);
f
))
...
...
@@ -482,7 +483,8 @@ function norm_residual(ctx::L1L2TVContext)
ctx
.
lambda
*
nablau
return
norm
(
p1part
)
^
2
+
norm
(
p2part
)
^
2
end
ppart2
=
integrate
(
ctx
.
mesh
,
integrand
;
ctx
.
g
,
ctx
.
u
,
ctx
.
nablau
,
ctx
.
p1
,
ctx
.
p2
,
ctx
.
tdata
)
ppart2
=
integrate
(
ctx
.
mesh
,
integrand
;
ctx
.
g
,
ctx
.
u
,
nablau
=
nabla
(
ctx
.
u
),
ctx
.
p1
,
ctx
.
p2
,
ctx
.
tdata
)
return
sqrt
(
upart2
+
ppart2
)
end
...
...
@@ -694,7 +696,7 @@ function optflow(ctx)
m
=
2
#mesh = init_grid(imgf0; type=:vertex)
mesh
=
init_grid
(
imgf0
,
20
,
20
)
mesh
=
init_grid
(
imgf0
,
1
,
1
)
#mesh = init_grid(imgf0)
# optflow specific stuff
...
...
@@ -702,12 +704,12 @@ function optflow(ctx)
f0
=
FeFunction
(
Vg
,
name
=
"f0"
)
f1
=
FeFunction
(
Vg
,
name
=
"f1"
)
fw
=
FeFunction
(
Vg
,
name
=
"fw"
)
nablafw
=
nabla
(
fw
)
T
(
tdata
,
u
)
=
tdata
*
u
# tdata = nablafw
S
(
u
,
nablau
)
=
nablau
#S(u, nablau) = nablau
S
(
u
,
nablau
)
=
u
st
=
L1L2TVContext
(
"run"
,
mesh
,
m
;
T
,
tdata
=
nablafw
,
S
,
st
=
L1L2TVContext
(
"run"
,
mesh
,
m
;
T
,
tdata
=
nabla
(
fw
)
,
S
,
ctx
.
params
.
alpha1
,
ctx
.
params
.
alpha2
,
ctx
.
params
.
lambda
,
ctx
.
params
.
beta
,
ctx
.
params
.
gamma1
,
ctx
.
params
.
gamma2
)
...
...
@@ -720,7 +722,7 @@ function optflow(ctx)
g_optflow
(
x
;
u
,
f0
,
fw
,
nablafw
)
=
nablafw
*
u
-
(
fw
-
f0
)
interpolate!
(
st
.
g
,
g_optflow
;
st
.
u
,
f0
,
fw
,
nablafw
)
interpolate!
(
st
.
g
,
g_optflow
;
st
.
u
,
f0
,
fw
,
nablafw
=
nabla
(
fw
)
)
end
reproject!
()
...
...
@@ -728,15 +730,33 @@ function optflow(ctx)
output
(
st
,
joinpath
(
ctx
.
outdir
,
"output_
$
(lpad(i, 5, '0')).vtu"
),
st
.
g
,
st
.
u
,
st
.
p1
,
st
.
p2
,
st
.
est
,
f0
,
f1
,
fw
)
pvd
=
paraview_collection
(
joinpath
(
ctx
.
outdir
,
"output.pvd"
))
pvd
[
0
]
=
save_step
(
0
)
for
i
in
1
:
10
i
=
0
pvd
=
paraview_collection
(
joinpath
(
ctx
.
outdir
,
"output.pvd"
))
do
pvd
pvd
[
i
]
=
save_step
(
i
)
while
true
for
k
in
1
:
10
i
+=
1
step!
(
st
)
estimate!
(
st
)
pvd
[
i
]
=
save_step
(
i
)
println
()
end
vtk_save
(
pvd
)
marked_cells
=
mark
(
st
;
theta
=
0.5
)
println
(
"refining ..."
)
mesh
,
fs
=
refine
(
mesh
,
marked_cells
;
st
.
est
,
st
.
g
,
st
.
u
,
st
.
p1
,
st
.
p2
,
st
.
du
,
st
.
dp1
,
st
.
dp2
,
f0
,
f1
,
fw
)
st
=
L1L2TVContext
(
"run"
,
mesh
,
st
.
d
,
st
.
m
,
T
,
nabla
(
fs
.
fw
),
S
,
st
.
alpha1
,
st
.
alpha2
,
st
.
beta
,
st
.
lambda
,
st
.
gamma1
,
st
.
gamma2
,
fs
.
est
,
fs
.
g
,
fs
.
u
,
fs
.
p1
,
fs
.
p2
,
fs
.
du
,
fs
.
dp1
,
fs
.
dp2
)
f0
,
f1
,
fw
=
(
fs
.
f0
,
fs
.
f1
,
fs
.
fw
)
println
(
"reprojecting ..."
)
reproject!
()
end
end
display
(
plot
(
colorflow
(
to_img
(
sample
(
st
.
u
)))))
#CSV.write(joinpath(ctx.outdir, "energies.csv"), df)
...
...
This diff is collapsed.
Click to expand it.
src/function.jl
+
1
−
1
View file @
65804157
This diff is collapsed.
Click to expand it.
src/mesh.jl
+
21
−
3
View file @
65804157
export
init_grid
,
init_hgrid
,
save
,
refine!
,
cells
,
vertices
,
export
init_grid
,
init_hgrid
,
save
,
refine!
,
refine
,
cells
,
vertices
,
ndims_domain
,
ndims_space
using
LinearAlgebra
:
norm
...
...
@@ -286,7 +286,7 @@ function refine!(hmesh::HMesh, marked_cells::Set; fs...)
# extended functions onto newly created cells
extended_fs
=
map
(
NamedTuple
(
fs
))
do
f
space
=
FeSpace
(
extended_mesh
,
f
.
space
.
element
,
f
.
space
.
size
)
return
FeFunction
(
space
)
return
FeFunction
(
space
;
f
.
name
)
end
# copy over previous data for unmodified cells
for
(
f
,
extended_f
)
in
zip
(
NamedTuple
(
fs
),
extended_fs
)
...
...
@@ -302,7 +302,7 @@ function refine!(hmesh::HMesh, marked_cells::Set; fs...)
# retain only non-refined cells
new_fs
=
map
(
NamedTuple
(
extended_fs
))
do
f
space
=
FeSpace
(
new_mesh
,
f
.
space
.
element
,
f
.
space
.
size
)
return
FeFunction
(
space
)
return
FeFunction
(
space
;
f
.
name
)
end
retained_cells
=
setdiff
(
cells
(
extended_mesh
),
removed_cells
)
@assert
(
retained_cells
==
cells
(
hmesh
))
...
...
@@ -316,6 +316,24 @@ function refine!(hmesh::HMesh, marked_cells::Set; fs...)
return
new_fs
end
"refine by creating temporary hierarchical mesh on the fly"
function
refine
(
mesh
::
Mesh
,
marked_cells
;
fs
...
)
hmesh
=
HMesh
(
mesh
)
fs_new
=
refine!
(
hmesh
,
Set
(
marked_cells
);
fs
...
)
mesh_new
=
sub_mesh
(
hmesh
)
return
mesh_new
,
fs_new
end
function
geo_tolocal
(
A
,
v
)
J
=
jacobian
(
x
->
A
*
[
1
-
x
[
1
]
-
x
[
2
],
x
[
1
],
x
[
2
]],
[
0.
,
0.
])
return
J
\
(
v
-
A
[
:
,
1
])
end
function
geo_contains
(
A
,
v
)
J
=
jacobian
(
x
->
A
*
[
1
-
x
[
1
]
-
x
[
2
],
x
[
1
],
x
[
2
]],
[
0.
,
0.
])
λ
=
J
\
(
v
-
A
[
:
,
1
])
return
all
(
λ
.>=
0
)
&&
sum
(
λ
)
<=
1
end
#function cell_contains(mesh, cell, v)
# geo = mesh.vertices[:, mesh.cells[:, cell]]
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
sign in
to comment