Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
S
SemiSmoothNewton.jl
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Stephan Hilb
SemiSmoothNewton.jl
Commits
37c04181
Commit
37c04181
authored
3 years ago
by
Stephan Hilb
Browse files
Options
Downloads
Patches
Plain Diff
refactor code
parent
2e5565de
No related branches found
No related tags found
No related merge requests found
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
src/function.jl
+10
-4
10 additions, 4 deletions
src/function.jl
src/image.jl
+1
-1
1 addition, 1 deletion
src/image.jl
src/mesh.jl
+1
-1
1 addition, 1 deletion
src/mesh.jl
src/run.jl
+267
-7
267 additions, 7 deletions
src/run.jl
with
279 additions
and
13 deletions
src/function.jl
+
10
−
4
View file @
37c04181
...
...
@@ -78,7 +78,7 @@ end
# evaluate at local point
@inline
function
evaluate
(
space
::
FeSpace
,
ldofs
,
xloc
)
bv
=
evaluate_basis
(
space
.
element
,
xloc
)
ldofs_
=
SArray
{
Tuple
{
prod
(
space
.
size
),
ndofs
(
space
.
element
)}}(
ldofs
)
ldofs_
=
SArray
{
Tuple
{
prod
(
space
.
size
),
ndofs
(
space
.
element
)}}(
ldofs
)
v
=
ldofs_
*
bv
return
SArray
{
Tuple
{
space
.
size
...
}}(
v
)
end
...
...
@@ -105,7 +105,8 @@ end
Base
.
show
(
io
::
IO
,
::
MIME
"text/plain"
,
f
::
FeFunction
)
=
print
(
"
$
(nameof(typeof(f))), size
$
(f.space.size) with
$
(length(f.data)) dofs"
)
interpolate!
(
dst
::
FeFunction
,
expr
::
Function
;
params
...
)
=
interpolate!
(
dst
,
dst
.
space
.
element
,
expr
;
params
...
)
interpolate!
(
dst
::
FeFunction
,
expr
::
Function
;
params
...
)
=
interpolate!
(
dst
,
dst
.
space
.
element
,
expr
;
params
...
)
myvec
(
x
)
=
vec
(
x
)
...
...
@@ -121,7 +122,7 @@ function interpolate!(dst::FeFunction, ::P1, expr::Function; params...)
end
for
eldof
in
axes
(
mesh
.
cells
,
1
)
xid
=
mesh
.
cells
[
eldof
,
cell
]
x
=
mesh
.
vertices
[
:
,
xid
]
x
=
SArray
{
Tuple
{
ndims_domain
(
mesh
)}}(
mesh
.
vertices
[
:
,
xid
]
)
xloc
=
SA
[
0.
1.
0.
;
0.
0.
1.
][
:
,
eldof
]
opvalues
=
map
(
f
->
evaluate
(
f
,
xloc
),
params
)
...
...
@@ -141,7 +142,7 @@ function interpolate!(dst::FeFunction, ::DP0, expr::Function; params...)
bind!
(
f
,
cell
)
end
vertices
=
mesh
.
vertices
[
:
,
mesh
.
cells
[
:
,
cell
]]
centroid
=
reshape
(
mean
(
vertices
,
dims
=
2
)
,
2
)
centroid
=
SArray
{
Tuple
{
ndims_domain
(
mesh
)}}
(
mean
(
vertices
,
dims
=
2
))
lcentroid
=
SA
[
1
/
3
,
1
/
3
]
opvalues
=
map
(
f
->
evaluate
(
f
,
lcentroid
),
params
)
...
...
@@ -162,6 +163,11 @@ end
# evaluate at local point (needs bind! call before)
evaluate
(
f
::
FeFunction
,
x
)
=
evaluate
(
f
.
space
,
f
.
ldata
,
x
)
# allow any non-function to act as a constant function
bind!
(
c
,
cell
)
=
nothing
evaluate
(
c
,
xloc
)
=
c
# TODO: inherit from some abstract function type
struct
Derivative
{
F
}
f
::
F
end
...
...
This diff is collapsed.
Click to expand it.
src/image.jl
+
1
−
1
View file @
37c04181
...
...
@@ -11,7 +11,7 @@ function interpolate_bilinear(img, x)
cornerbool
=
Bool
.
(
Tuple
(
idx
))
λ
=
ifelse
.
(
cornerbool
,
x
.-
x0
,
x1
.-
x
)
corner
=
ifelse
.
(
cornerbool
,
x1
,
x0
)
val
+=
prod
(
λ
)
*
eval_neumann
(
img
,
CartesianIndex
(
corner
)
)
val
+=
prod
(
λ
)
*
eval_neumann
(
img
,
corner
)
end
return
val
end
...
...
This diff is collapsed.
Click to expand it.
src/mesh.jl
+
1
−
1
View file @
37c04181
...
...
@@ -35,7 +35,7 @@ function init_grid(m::Int, n::Int = m, v0 = (0., 0.), v1 = (1., 1.))
return
Mesh
(
vertices
,
cells
)
end
init_grid
(
img
::
Array
{
<:
Any
,
2
}
,
type
=:
vertex
)
=
init_grid
(
img
::
Array
{
<:
Any
,
2
}
;
type
=:
vertex
)
=
type
==
:
vertex
?
init_grid
(
size
(
img
,
1
)
-
1
,
size
(
img
,
2
)
-
1
,
(
1.0
,
1.0
),
size
(
img
))
:
init_grid
(
size
(
img
,
1
),
size
(
img
,
2
),
(
0.5
,
0.5
),
size
(
img
)
.-
(
0.5
,
0.5
))
...
...
This diff is collapsed.
Click to expand it.
src/run.jl
+
267
−
7
View file @
37c04181
export
myrun
export
myrun
,
denoise
,
inpaint
,
optflow
using
LinearAlgebra
:
norm
struct
L1L2TVContext
{
M
,
Ttype
,
Stype
}
name
::
String
mesh
::
M
d
::
Int
# = ndims_domain(mesh)
m
::
Int
T
::
Ttype
tdata
S
::
Stype
alpha1
::
Float64
alpha2
::
Float64
beta
::
Float64
lambda
::
Float64
gamma1
::
Float64
gamma2
::
Float64
g
::
FeFunction
u
::
FeFunction
p1
::
FeFunction
p2
::
FeFunction
du
::
FeFunction
dp1
::
FeFunction
dp2
::
FeFunction
nablau
nabladu
end
function
L1L2TVContext
(
name
,
mesh
,
m
;
T
,
tdata
,
S
,
alpha1
,
alpha2
,
beta
,
lambda
,
gamma1
,
gamma2
)
d
=
ndims_domain
(
mesh
)
Vg
=
FeSpace
(
mesh
,
P1
(),
(
1
,))
Vu
=
FeSpace
(
mesh
,
P1
(),
(
m
,))
Vp1
=
FeSpace
(
mesh
,
DP0
(),
(
1
,))
Vp2
=
FeSpace
(
mesh
,
DP1
(),
(
m
,
d
))
g
=
FeFunction
(
Vg
,
name
=
"g"
)
u
=
FeFunction
(
Vu
,
name
=
"u"
)
p1
=
FeFunction
(
Vp1
,
name
=
"p1"
)
p2
=
FeFunction
(
Vp2
,
name
=
"p2"
)
du
=
FeFunction
(
Vu
)
dp1
=
FeFunction
(
Vp1
)
dp2
=
FeFunction
(
Vp2
)
nablau
=
nabla
(
u
)
nabladu
=
nabla
(
du
)
g
.
data
.=
0
u
.
data
.=
0
p1
.
data
.=
0
p2
.
data
.=
0
du
.
data
.=
0
dp1
.
data
.=
0
dp2
.
data
.=
0
return
L1L2TVContext
(
name
,
mesh
,
d
,
m
,
T
,
tdata
,
S
,
alpha1
,
alpha2
,
beta
,
lambda
,
gamma1
,
gamma2
,
g
,
u
,
p1
,
p2
,
du
,
dp1
,
dp2
,
nablau
,
nabladu
)
end
function
step!
(
ctx
::
L1L2TVContext
)
T
=
ctx
.
T
S
=
ctx
.
S
alpha1
=
ctx
.
alpha1
alpha2
=
ctx
.
alpha2
beta
=
ctx
.
beta
lambda
=
ctx
.
lambda
gamma1
=
ctx
.
gamma1
gamma2
=
ctx
.
gamma2
function
du_a
(
x
,
du
,
nabladu
,
phi
,
nablaphi
;
g
,
u
,
nablau
,
p1
,
p2
,
tdata
)
m1
=
max
(
gamma1
,
norm
(
T
(
tdata
,
u
)
-
g
))
cond1
=
norm
(
T
(
tdata
,
u
)
-
g
)
>
gamma1
?
dot
(
T
(
tdata
,
u
)
-
g
,
T
(
tdata
,
du
))
/
norm
(
T
(
tdata
,
u
)
-
g
)
^
2
*
p1
:
zeros
(
size
(
p1
))
a1
=
alpha1
/
m1
*
dot
(
T
(
tdata
,
du
),
T
(
tdata
,
phi
))
-
dot
(
cond1
,
T
(
tdata
,
phi
))
m2
=
max
(
gamma2
,
norm
(
nablau
))
cond2
=
norm
(
nablau
)
>
gamma2
?
dot
(
nablau
,
nabladu
)
/
norm
(
nablau
)
^
2
*
p2
:
zeros
(
size
(
p2
))
a2
=
lambda
/
m2
*
dot
(
nabladu
,
nablaphi
)
-
dot
(
cond2
,
nablaphi
)
aB
=
alpha2
*
dot
(
T
(
tdata
,
du
),
T
(
tdata
,
phi
))
+
beta
*
dot
(
S
(
du
,
nabladu
),
S
(
phi
,
nablaphi
))
return
a1
+
a2
+
aB
end
function
du_l
(
x
,
phi
,
nablaphi
;
g
,
u
,
nablau
,
tdata
)
aB
=
alpha2
*
dot
(
T
(
tdata
,
u
),
T
(
tdata
,
phi
))
+
beta
*
dot
(
S
(
u
,
nablau
),
S
(
phi
,
nablaphi
))
m1
=
max
(
gamma1
,
norm
(
T
(
tdata
,
u
)
-
g
))
p1part
=
alpha1
/
m1
*
dot
(
T
(
tdata
,
u
)
-
g
,
T
(
tdata
,
phi
))
m2
=
max
(
gamma2
,
norm
(
nablau
))
p2part
=
lambda
/
m2
*
dot
(
nablau
,
nablaphi
)
gpart
=
alpha2
*
dot
(
g
,
T
(
tdata
,
phi
))
return
-
aB
-
p1part
-
p2part
+
gpart
end
# solve du
print
(
"assemble ... "
)
A
=
assemble
(
ctx
.
du
.
space
,
du_a
;
ctx
.
g
,
ctx
.
u
,
ctx
.
nablau
,
ctx
.
p1
,
ctx
.
p2
,
ctx
.
tdata
)
b
=
assemble_rhs
(
ctx
.
du
.
space
,
du_l
;
ctx
.
g
,
ctx
.
u
,
ctx
.
nablau
,
ctx
.
tdata
)
print
(
"solve ... "
)
ctx
.
du
.
data
.=
A
\
b
# solve dp1
function
dp1_update
(
x
;
g
,
u
,
p1
,
du
,
tdata
)
m1
=
max
(
gamma1
,
norm
(
T
(
tdata
,
u
)
-
g
))
cond
=
norm
(
T
(
tdata
,
u
)
-
g
)
>
gamma1
?
dot
(
T
(
tdata
,
u
)
-
g
,
T
(
tdata
,
du
))
/
norm
(
T
(
tdata
,
u
)
-
g
)
^
2
*
p1
:
zeros
(
size
(
p1
))
return
-
p1
+
alpha1
/
m1
*
(
T
(
tdata
,
u
)
+
T
(
tdata
,
du
)
-
g
)
-
cond
end
interpolate!
(
ctx
.
dp1
,
dp1_update
;
ctx
.
g
,
ctx
.
u
,
ctx
.
p1
,
ctx
.
du
,
ctx
.
tdata
)
# solve dp2
function
dp2_update
(
x
;
u
,
nablau
,
p2
,
du
,
nabladu
)
m2
=
max
(
gamma2
,
norm
(
nablau
))
cond
=
norm
(
nablau
)
>
gamma2
?
dot
(
nablau
,
nabladu
)
/
norm
(
nablau
)
^
2
*
p2
:
zeros
(
size
(
p2
))
return
-
p2
+
lambda
/
m2
*
(
nablau
+
nabladu
)
-
cond
end
interpolate!
(
ctx
.
dp2
,
dp2_update
;
ctx
.
u
,
ctx
.
nablau
,
ctx
.
p2
,
ctx
.
du
,
ctx
.
nabladu
)
# newton update
ctx
.
u
.
data
.+=
ctx
.
du
.
data
ctx
.
p1
.
data
.+=
ctx
.
dp1
.
data
ctx
.
p2
.
data
.+=
ctx
.
dp2
.
data
# reproject p1
function
p1_project!
(
p1
,
alpha1
)
p1
.
space
.
element
::
DP0
p1
.
data
.=
clamp
.
(
p1
.
data
,
-
alpha1
,
alpha1
)
end
p1_project!
(
ctx
.
p1
,
ctx
.
alpha1
)
# reproject p2
function
p2_project!
(
p2
,
lambda
)
p2
.
space
.
element
::
DP1
p2d
=
reshape
(
p2
.
data
,
prod
(
p2
.
space
.
size
),
:
)
# no copy
for
i
in
axes
(
p2d
,
2
)
p2in
=
norm
(
p2d
[
:
,
i
])
if
p2in
>
lambda
p2d
[
:
,
i
]
.*=
lambda
./
p2in
end
end
end
p2_project!
(
ctx
.
p2
,
ctx
.
lambda
)
end
function
save
(
ctx
::
L1L2TVContext
,
filename
,
fs
...
)
print
(
"save ... "
)
vtk
=
vtk_mesh
(
filename
,
ctx
.
mesh
)
vtk_append!
(
vtk
,
fs
...
)
vtk_save
(
vtk
)
return
vtk
end
function
denoise
(
img
;
name
,
params
...
)
m
=
1
mesh
=
init_grid
(
img
;
type
=:
vertex
)
T
(
tdata
,
u
)
=
u
S
(
u
,
nablau
)
=
u
ctx
=
L1L2TVContext
(
name
,
mesh
,
m
;
T
,
tdata
=
nothing
,
S
,
params
...
)
interpolate!
(
ctx
.
g
,
x
->
interpolate_bilinear
(
img
,
x
))
save_denoise
(
i
)
=
save
(
ctx
,
"
$
(ctx.name)_
$
(lpad(i, 5, '0')).vtu"
,
ctx
.
g
,
ctx
.
u
,
ctx
.
p1
,
ctx
.
p2
)
pvd
=
paraview_collection
(
"
$
(ctx.name).pvd"
)
pvd
[
0
]
=
save_denoise
(
0
)
for
i
in
1
:
10
step!
(
ctx
)
pvd
[
i
]
=
save_denoise
(
i
)
println
()
end
end
function
inpaint
(
img
,
imgmask
;
name
,
params
...
)
size
(
img
)
==
size
(
imgmask
)
||
throw
(
ArgumentError
(
"non-matching dimensions"
))
m
=
1
mesh
=
init_grid
(
img
;
type
=:
vertex
)
# inpaint specific stuff
Vg
=
FeSpace
(
mesh
,
P1
(),
(
1
,))
mask
=
FeFunction
(
Vg
,
name
=
"mask"
)
T
(
tdata
,
u
)
=
iszero
(
tdata
)
?
zero
(
u
)
:
u
S
(
u
,
nablau
)
=
u
ctx
=
L1L2TVContext
(
name
,
mesh
,
m
;
T
,
tdata
=
mask
,
S
,
params
...
)
# FIXME: currently dual grid only
interpolate!
(
mask
,
x
->
imgmask
[
round
.
(
Int
,
x
)
...
])
#interpolate!(mask, x -> abs(x[2] - 0.5) > 0.1)
interpolate!
(
ctx
.
g
,
x
->
imgmask
[
round
.
(
Int
,
x
)
...
]
?
img
[
round
.
(
Int
,
x
)
...
]
:
0.
)
save_inpaint
(
i
)
=
save
(
ctx
,
"
$
(ctx.name)_
$
(lpad(i, 5, '0')).vtu"
,
ctx
.
g
,
ctx
.
u
,
ctx
.
p1
,
ctx
.
p2
,
mask
)
pvd
=
paraview_collection
(
"
$
(ctx.name).pvd"
)
pvd
[
0
]
=
save_inpaint
(
0
)
for
i
in
1
:
10
step!
(
ctx
)
pvd
[
i
]
=
save_inpaint
(
i
)
println
()
end
end
function
optflow
(
imgf0
,
imgf1
;
name
,
params
...
)
size
(
imgf0
)
==
size
(
imgf1
)
||
throw
(
ArgumentError
(
"non-matching dimensions"
))
m
=
2
mesh
=
init_grid
(
imgf0
;
type
=:
vertex
)
# optflow specific stuff
Vg
=
FeSpace
(
mesh
,
P1
(),
(
1
,))
f0
=
FeFunction
(
Vg
,
name
=
"f0"
)
f1
=
FeFunction
(
Vg
,
name
=
"f1"
)
fw
=
FeFunction
(
Vg
,
name
=
"fw"
)
nablafw
=
nabla
(
fw
)
T
(
tdata
,
u
)
=
tdata
*
u
S
(
u
,
nablau
)
=
nablau
ctx
=
L1L2TVContext
(
name
,
mesh
,
m
;
T
,
tdata
=
nablafw
,
S
,
params
...
)
# FIXME: currently dual grid only
interpolate!
(
f0
,
x
->
imgf0
[
round
.
(
Int
,
x
)
...
])
interpolate!
(
f1
,
x
->
imgf1
[
round
.
(
Int
,
x
)
...
])
fw
.
data
.=
f1
.
data
g_optflow
(
x
;
u
,
f0
,
fw
,
nablafw
)
=
nablafw
*
u
-
(
fw
-
f0
)
interpolate!
(
ctx
.
g
,
g_optflow
;
ctx
.
u
,
f0
,
fw
,
nablafw
)
save_optflow
(
i
)
=
save
(
ctx
,
"
$
(ctx.name)_
$
(lpad(i, 5, '0')).vtu"
,
ctx
.
g
,
ctx
.
u
,
ctx
.
p1
,
ctx
.
p2
,
f0
,
f1
,
fw
)
pvd
=
paraview_collection
(
"
$
(ctx.name).pvd"
)
pvd
[
0
]
=
save_optflow
(
0
)
for
i
in
1
:
10
step!
(
ctx
)
pvd
[
i
]
=
save_optflow
(
i
)
println
()
end
end
function
myrun
()
name
=
"test"
...
...
@@ -17,11 +283,6 @@ function myrun()
# inpainting
mask
=
FeFunction
(
Vg
,
name
=
"mask"
)
# optflow
f0
=
FeFunction
(
Vg
,
name
=
"f0"
)
f1
=
FeFunction
(
Vg
,
name
=
"f1"
)
fw
=
FeFunction
(
Vg
,
name
=
"fw"
)
nablafw
=
nabla
(
fw
)
g
=
FeFunction
(
Vg
,
name
=
"g"
)
u
=
FeFunction
(
Vu
,
name
=
"u"
)
...
...
@@ -49,7 +310,6 @@ function myrun()
gamma2
=
1e-3
interpolate!
(
g
,
x
->
norm
(
x
-
SA
[
0.5
,
0.5
])
<
0.3
)
interpolate!
(
mask
,
x
->
abs
(
x
[
2
]
-
0.5
)
>
0.1
)
interpolate!
(
f0
,
x
->
x
[
1
])
interpolate!
(
f1
,
x
->
x
[
1
]
-
0.01
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment