Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
DualTVDD.jl
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Stephan Hilb
DualTVDD.jl
Commits
de855f9a
Commit
de855f9a
authored
5 years ago
by
Stephan Hilb
Browse files
Options
Downloads
Patches
Plain Diff
add projected gradient
parent
e2d9a050
No related branches found
No related tags found
No related merge requests found
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
src/DualTVDD.jl
+46
-5
46 additions, 5 deletions
src/DualTVDD.jl
src/chambolle.jl
+4
-0
4 additions, 0 deletions
src/chambolle.jl
src/dualtvdd.jl
+4
-5
4 additions, 5 deletions
src/dualtvdd.jl
src/projgrad.jl
+87
-0
87 additions, 0 deletions
src/projgrad.jl
with
141 additions
and
10 deletions
src/DualTVDD.jl
+
46
−
5
View file @
de855f9a
...
@@ -5,6 +5,7 @@ module DualTVDD
...
@@ -5,6 +5,7 @@ module DualTVDD
include
(
"types.jl"
)
include
(
"types.jl"
)
include
(
"chambolle.jl"
)
include
(
"chambolle.jl"
)
include
(
"dualtvdd.jl"
)
include
(
"dualtvdd.jl"
)
include
(
"projgrad.jl"
)
using
Makie
:
heatmap
using
Makie
:
heatmap
...
@@ -47,8 +48,8 @@ function rundd()
...
@@ -47,8 +48,8 @@ function rundd()
f
=
zeros
(
2
,
2
)
f
=
zeros
(
2
,
2
)
f
[
1
,
:
]
.=
1
f
[
1
,
:
]
.=
1
#g = [0. 2; 1 0.]
#g = [0. 2; 1 0.]
A
=
diagm
(
vcat
(
fill
(
1
,
length
(
f
)
÷
2
),
fill
(
1
/
10
00
,
length
(
f
)
÷
2
)))
#
A = diagm(vcat(fill(1, length(f)÷2), fill(1/10, length(f)÷2)))
#
A = rand(length(f), length(f))
A
=
rand
(
length
(
f
),
length
(
f
))
display
(
A
)
display
(
A
)
println
(
cond
(
A
))
println
(
cond
(
A
))
display
(
eigen
(
A
))
display
(
eigen
(
A
))
...
@@ -61,7 +62,7 @@ function rundd()
...
@@ -61,7 +62,7 @@ function rundd()
g
=
similar
(
f
)
g
=
similar
(
f
)
vec
(
g
)
.=
A
'
*
vec
(
f
)
vec
(
g
)
.=
A
'
*
vec
(
f
)
α
=
.
25
α
=
.
0
25
md
=
DualTVDD
.
DualTVDDModel
(
f
,
A
,
α
,
0.
,
0.
)
md
=
DualTVDD
.
DualTVDDModel
(
f
,
A
,
α
,
0.
,
0.
)
alg
=
DualTVDD
.
DualTVDDAlgorithm
(
M
=
(
1
,
1
),
overlap
=
(
1
,
1
),
σ
=
1
)
alg
=
DualTVDD
.
DualTVDDAlgorithm
(
M
=
(
1
,
1
),
overlap
=
(
1
,
1
),
σ
=
1
)
...
@@ -75,7 +76,7 @@ function rundd()
...
@@ -75,7 +76,7 @@ function rundd()
for
i
in
1
:
1
for
i
in
1
:
1
step!
(
ctx
)
step!
(
ctx
)
end
end
for
i
in
1
:
100000
for
i
in
1
:
100000
0
step!
(
ctx2
)
step!
(
ctx2
)
end
end
...
@@ -108,7 +109,47 @@ function rundd()
...
@@ -108,7 +109,47 @@ function rundd()
ctx
,
ctx2
ctx
,
ctx2
end
end
function
energy
(
ctx
::
DualTVDDContext
)
function
run3
()
f
=
rand
(
20
,
20
)
A
=
rand
(
length
(
f
),
length
(
f
))
A
.+=
diagm
(
ones
(
length
(
f
)))
g
=
reshape
(
A
'
*
vec
(
f
),
size
(
f
))
β
=
0
B
=
inv
(
A
'
*
A
+
β
*
I
)
println
(
norm
(
A
))
α
=
0.1
# Chambolle
md
=
DualTVDD
.
OpROFModel
(
g
,
B
,
α
)
alg
=
DualTVDD
.
ChambolleAlgorithm
()
ctx
=
DualTVDD
.
init
(
md
,
alg
)
# Projected Gradient
md
=
DualTVDD
.
DualTVDDModel
(
f
,
A
,
α
,
0.
,
0.
)
alg
=
DualTVDD
.
ProjGradAlgorithm
(
λ
=
1
/
norm
(
A
)
^
2
)
ctx2
=
DualTVDD
.
init
(
md
,
alg
)
for
i
in
1
:
100000
step!
(
ctx
)
step!
(
ctx2
)
end
#display(ctx.p)
#display(ctx2.p)
display
(
recover_u!
(
ctx
))
display
(
recover_u!
(
ctx2
))
println
(
energy
(
ctx
))
println
(
energy
(
ctx2
))
ctx
,
ctx2
end
function
energy
(
ctx
::
Union
{
DualTVDDContext
,
ProjGradContext
})
d
=
ndims
(
ctx
.
p
)
d
=
ndims
(
ctx
.
p
)
@inline
kfΛ
(
w
)
=
@inbounds
divergence
(
w
)
@inline
kfΛ
(
w
)
=
@inbounds
divergence
(
w
)
...
...
This diff is collapsed.
Click to expand it.
src/chambolle.jl
+
4
−
0
View file @
de855f9a
...
@@ -73,6 +73,10 @@ function init(md::OpROFModel, alg::ChambolleAlgorithm)
...
@@ -73,6 +73,10 @@ function init(md::OpROFModel, alg::ChambolleAlgorithm)
return
ChambolleContext
(
md
,
alg
,
g
,
λ
,
p
,
r
,
s
,
rv
,
sv
,
k1
,
k2
)
return
ChambolleContext
(
md
,
alg
,
g
,
λ
,
p
,
r
,
s
,
rv
,
sv
,
k1
,
k2
)
end
end
function
reset!
(
ctx
::
ChambolleContext
)
fill!
(
ctx
.
p
,
zero
(
eltype
(
ctx
.
p
)))
end
@generated
function
gradient
(
w
::
StaticKernels
.
Window
{
<:
Any
,
N
})
where
N
@generated
function
gradient
(
w
::
StaticKernels
.
Window
{
<:
Any
,
N
})
where
N
i0
=
ntuple
(
_
->
0
,
N
)
i0
=
ntuple
(
_
->
0
,
N
)
i1
(
k
)
=
ntuple
(
i
->
Int
(
k
==
i
),
N
)
i1
(
k
)
=
ntuple
(
i
->
Int
(
k
==
i
),
N
)
...
...
This diff is collapsed.
Click to expand it.
src/dualtvdd.jl
+
4
−
5
View file @
de855f9a
...
@@ -95,11 +95,10 @@ function step!(ctx::DualTVDDContext)
...
@@ -95,11 +95,10 @@ function step!(ctx::DualTVDDContext)
ctx
.
subg
[
i
]
.+=
ctx
.
g
[
sax
...
]
ctx
.
subg
[
i
]
.+=
ctx
.
g
[
sax
...
]
# set sensible starting value
# set sensible starting value
ctx
.
subctx
[
i
]
.
p
.=
Ref
(
zero
(
eltype
(
ctx
.
subctx
[
i
]
.
p
))
)
reset!
(
ctx
.
subctx
[
i
])
# precomputed: B/λ * (A'f - Λ(1-θ_i)p^n)
# precomputed: B/λ * (A'f - Λ(1-θ_i)p^n)
gloc
=
similar
(
ctx
.
subg
[
i
])
gloc
=
copy
(
ctx
.
subg
[
i
])
vec
(
gloc
)
.=
ctx
.
subctx
[
i
]
.
model
.
B
*
vec
(
ctx
.
subg
[
i
])
# v_0
# v_0
ctx
.
ptmp
.=
theta
.
(
Ref
(
ax
),
Ref
(
sax
),
Ref
(
overlap
),
CartesianIndices
(
ctx
.
p
))
.*
ctx
.
p
ctx
.
ptmp
.=
theta
.
(
Ref
(
ax
),
Ref
(
sax
),
Ref
(
overlap
),
CartesianIndices
(
ctx
.
p
))
.*
ctx
.
p
...
@@ -109,11 +108,11 @@ function step!(ctx::DualTVDDContext)
...
@@ -109,11 +108,11 @@ function step!(ctx::DualTVDDContext)
subIB
=
I
-
ctx
.
B
[
vec
(
li
[
sax
...
]),
vec
(
li
[
sax
...
])]
./
λ
subIB
=
I
-
ctx
.
B
[
vec
(
li
[
sax
...
]),
vec
(
li
[
sax
...
])]
./
λ
subB
=
ctx
.
B
[
vec
(
li
[
sax
...
]),
vec
(
li
[
sax
...
])]
./
λ
subB
=
ctx
.
B
[
vec
(
li
[
sax
...
]),
vec
(
li
[
sax
...
])]
./
λ
for
j
in
1
:
10000
00
for
j
in
1
:
10000
subΛp
=
map
(
kΛ
,
ctx
.
subctx
[
i
]
.
p
)
subΛp
=
map
(
kΛ
,
ctx
.
subctx
[
i
]
.
p
)
vec
(
ctx
.
subg
[
i
])
.=
subIB
*
vec
(
subΛp
)
.+
subB
*
vec
(
gloc
)
vec
(
ctx
.
subg
[
i
])
.=
subIB
*
vec
(
subΛp
)
.+
subB
*
vec
(
gloc
)
for
k
in
1
:
1000
0
for
k
in
1
:
1000
step!
(
ctx
.
subctx
[
i
])
step!
(
ctx
.
subctx
[
i
])
end
end
end
end
...
...
This diff is collapsed.
Click to expand it.
src/projgrad.jl
0 → 100644
+
87
−
0
View file @
de855f9a
struct
ProjGradAlgorithm
<:
Algorithm
"gradient step size"
λ
::
Float64
function
ProjGradAlgorithm
(;
λ
)
return
new
(
λ
)
end
end
struct
ProjGradContext
{
M
,
A
,
V
,
W
,
Wv
,
WvWv
,
R
,
S
,
K1
,
K2
}
model
::
M
algorithm
::
A
"dual optimization variable"
p
::
V
"precomputed A'f"
g
::
W
"scalar temporary 1"
rv
::
Wv
"scalar temporary 2"
sv
::
Wv
"precomputed (A'A + βI)^(-1)"
B
::
WvWv
"matrix view on rv"
r
::
R
"matrix view on sv"
s
::
S
k1
::
K1
k2
::
K2
end
function
init
(
md
::
DualTVDDModel
,
alg
::
ProjGradAlgorithm
)
# FIXME: A is assumed square
d
=
ndims
(
md
.
f
)
ax
=
axes
(
md
.
f
)
p
=
extend
(
zeros
(
SVector
{
d
,
Float64
},
ax
),
StaticKernels
.
ExtensionNothing
())
gtmp
=
reshape
(
md
.
A
'
*
vec
(
md
.
f
),
size
(
md
.
f
))
g
=
extend
(
gtmp
,
StaticKernels
.
ExtensionNothing
())
rv
=
zeros
(
length
(
md
.
f
))
sv
=
zeros
(
length
(
md
.
f
))
B
=
inv
(
md
.
A
'
*
md
.
A
+
md
.
β
*
I
)
r
=
reshape
(
rv
,
ax
)
s
=
extend
(
reshape
(
sv
,
ax
),
StaticKernels
.
ExtensionReplicate
())
z
=
zero
(
CartesianIndex
{
d
})
@inline
kf1
(
pw
,
gw
)
=
@inbounds
-
divergence
(
pw
)
-
gw
[
z
]
k1
=
Kernel
{
ntuple
(
_
->-
1
:
1
,
d
)}(
kf1
)
@inline
function
kf2
(
pw
,
sw
)
Base
.
@_inline_meta
q
=
pw
[
z
]
-
alg
.
λ
*
gradient
(
sw
)
return
q
/
max
(
norm
(
q
)
/
md
.
α
,
1
)
end
k2
=
Kernel
{
ntuple
(
_
->
0
:
1
,
d
)}(
kf2
)
return
ProjGradContext
(
md
,
alg
,
p
,
g
,
rv
,
sv
,
B
,
r
,
s
,
k1
,
k2
)
end
function
step!
(
ctx
::
ProjGradContext
)
# r = Λ*p - g
map!
(
ctx
.
k1
,
ctx
.
r
,
ctx
.
p
,
ctx
.
g
)
# s = B * r
mul!
(
ctx
.
sv
,
ctx
.
B
,
ctx
.
rv
)
# p = proj(p - λΛ's)
map!
(
ctx
.
k2
,
ctx
.
p
,
ctx
.
p
,
ctx
.
s
)
end
function
recover_u!
(
ctx
::
ProjGradContext
)
d
=
ndims
(
ctx
.
g
)
u
=
similar
(
ctx
.
g
)
v
=
similar
(
ctx
.
g
)
@inline
kfΛ
(
w
)
=
@inbounds
divergence
(
w
)
kΛ
=
Kernel
{
ntuple
(
_
->-
1
:
1
,
d
)}(
kfΛ
)
# v = div(p) + A'*f
map!
(
kΛ
,
v
,
ctx
.
p
)
# extension: nothing
v
.+=
ctx
.
g
# u = B * v
mul!
(
vec
(
u
),
ctx
.
B
,
vec
(
v
))
return
u
end
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment