Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
DualTVDD.jl
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Stephan Hilb
DualTVDD.jl
Commits
c33b9e16
Commit
c33b9e16
authored
4 years ago
by
Stephan Hilb
Browse files
Options
Downloads
Patches
Plain Diff
finish up fully distributed dd implementation
parent
e20c2fcc
Branches
Branches containing commit
Tags
Tags containing commit
No related merge requests found
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
Manifest.toml
+12
-4
12 additions, 4 deletions
Manifest.toml
Project.toml
+1
-0
1 addition, 0 deletions
Project.toml
src/dualtvdd.jl
+85
-64
85 additions, 64 deletions
src/dualtvdd.jl
test/runtests.jl
+29
-6
29 additions, 6 deletions
test/runtests.jl
with
127 additions
and
74 deletions
Manifest.toml
+
12
−
4
View file @
c33b9e16
...
...
@@ -11,6 +11,14 @@ uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb"
deps
=
[
"Libdl"
]
uuid
=
"37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
[[Outsource]]
deps
=
[
"Distributed"
]
git-tree-sha1
=
"9303d4dd03e26e32e8ca0f87d39dfdefc7be27f2"
repo-rev
=
"master"
repo-url
=
"/home/stev47/stuff/Outsource"
uuid
=
"ce4b2b2b-baef-434e-9229-2c3161aca78b"
version
=
"0.1.0"
[[Random]]
deps
=
[
"Serialization"
]
uuid
=
"9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
...
...
@@ -27,14 +35,14 @@ uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
[[StaticArrays]]
deps
=
[
"LinearAlgebra"
,
"Random"
,
"Statistics"
]
git-tree-sha1
=
"
5c06c0aeb81bef54aed4b3f446847905eb6cbda0
"
git-tree-sha1
=
"
da4cf579416c81994afd6322365d00916c79b8ae
"
uuid
=
"90137ffa-7385-5640-81b9-e52037218182"
version
=
"0.12.
3
"
version
=
"0.12.
5
"
[[StaticKernels]]
git-tree-sha1
=
"
d8d5f496e25ff848afc94da260223b9374dd06db
"
git-tree-sha1
=
"
84a49458d75b4a64850a71b0bf364cd94ffd4aae
"
uuid
=
"4c63dfa8-a427-4548-bd2f-4c19e87a7dc7"
version
=
"0.5.
0
"
version
=
"0.5.
1
"
[[Statistics]]
deps
=
[
"LinearAlgebra"
,
"SparseArrays"
]
...
...
This diff is collapsed.
Click to expand it.
Project.toml
+
1
−
0
View file @
c33b9e16
...
...
@@ -6,6 +6,7 @@ version = "0.1.0"
[deps]
Distributed
=
"8ba89e20-285c-5b6f-9357-94700520ee1b"
LinearAlgebra
=
"37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Outsource
=
"ce4b2b2b-baef-434e-9229-2c3161aca78b"
StaticArrays
=
"90137ffa-7385-5640-81b9-e52037218182"
StaticKernels
=
"4c63dfa8-a427-4548-bd2f-4c19e87a7dc7"
...
...
This diff is collapsed.
Click to expand it.
src/dualtvdd.jl
+
85
−
64
View file @
c33b9e16
using
Distributed
:
@everywhere
,
pmap
using
Distributed
:
nworkers
,
workers
using
Outsource
:
Connector
,
outsource
#import Serialization
## We override SubArray serialization in order to preserve array data
## references. TODO: this should actually be julia-default!
#function Serialization.serialize(
# s::Serialization.AbstractSerializer,
# a::SubArray{T,N,A}) where {T,N,A<:Array}
#
# Serialization.serialize_any(s, a)
#end
struct
DualTVDDAlgorithm
{
P
,
d
}
<:
Algorithm
{
P
}
problem
::
P
...
...
@@ -15,22 +27,23 @@ struct DualTVDDAlgorithm{P,d} <: Algorithm{P}
ninner
::
Int
"prob -> Algorithm(::Problem, ...)"
subalg
::
Function
function
DualTVDDAlgorithm
(
problem
;
M
,
overlap
,
parallel
=
true
,
σ
=
1
/
4
,
ninner
=
10
,
subalg
=
x
->
ProjectedGradient
(
x
))
function
DualTVDDAlgorithm
(
problem
;
M
,
overlap
,
parallel
=
true
,
σ
=
parallel
?
1
/
4
:
1.
,
ninner
=
10
,
subalg
=
x
->
ProjGradAlgorithm
(
x
))
if
parallel
==
true
&&
σ
>
1
/
4
@warn
"parallel domain decomposition needs σ >= 1/4 for theoretical convergence"
end
return
new
{
typeof
(
problem
),
length
(
M
)}(
problem
,
M
,
overlap
,
parallel
,
σ
,
ninner
,
subalg
)
end
end
struct
DualTVDDState
{
A
,
d
,
V
,
SV
,
SAx
,
SC
}
struct
DualTVDDState
{
A
,
d
,
V
,
SAx
,
SC
}
algorithm
::
A
"global variable"
p
::
V
"local buffer"
# TODO: get rid of this
q
::
Array
{
SV
,
d
}
"subdomain axes wrt global indices"
subax
::
SAx
"con
text for subproblem
s"
subctx
::
Array
{
SC
,
d
}
"con
nectors to subworker
s"
cons
::
Array
{
SC
,
d
}
end
function
init
(
alg
::
DualTVDDAlgorithm
{
<:
DualTVL1ROFOpProblem
})
...
...
@@ -48,19 +61,24 @@ function init(alg::DualTVDDAlgorithm{<:DualTVL1ROFOpProblem})
# global dual variable
p
=
zeros
(
SVector
{
d
,
eltype
(
g
)},
size
(
g
))
# local
buffer
variable
s
q
=
[
extend
(
zeros
(
SVector
{
d
,
eltype
(
g
)},
length
.
(
x
))
,
StaticKernels
.
ExtensionNothing
(
))
for
x
in
subax
]
# local
dual
variable
subp
=
[
collect
(
reinterpret
(
Float64
,
zeros
(
SVector
{
d
,
eltype
(
g
)},
prod
(
length
.
(
x
))
)
))
for
x
in
subax
]
# create subproblem contexts
li
=
LinearIndices
(
ax
)
subprobs
=
[
DualTVL1ROFOpProblem
(
subg
[
i
],
op_restrict
(
alg
.
problem
.
B
,
ax
,
subax
[
i
]),
subλ
[
i
])
for
i
in
CartesianIndices
(
subax
)]
subalg
=
[
alg
.
subalg
(
subprobs
[
i
])
for
i
in
CartesianIndices
(
subax
)]
subctx
=
[
init
(
x
)
for
x
in
subalg
]
cids
=
chessboard_coloring
(
size
(
subax
))
cons
=
Array
{
Connector
,
d
}(
undef
,
size
(
subax
))
for
(
color
,
sidxs
)
in
enumerate
(
cids
)
for
(
i
,
sidx
)
in
enumerate
(
sidxs
)
sax
=
subax
[
sidx
]
subprob
=
DualTVL1ROFOpProblem
(
subg
[
sidx
],
op_restrict
(
alg
.
problem
.
B
,
ax
,
subax
[
sidx
]),
subλ
[
sidx
])
wf
=
subworker
(
alg
,
alg
.
subalg
(
subprob
))
wid
=
workers
()[
mod1
(
i
,
nworkers
())]
cons
[
sidx
]
=
outsource
(
wf
,
wid
)
end
end
return
DualTVDDState
(
alg
,
p
,
q
,
subax
,
subctx
)
return
DualTVDDState
(
alg
,
p
,
subax
,
cons
)
end
function
intersectin
(
a
,
b
)
...
...
@@ -71,8 +89,8 @@ function intersectin(a, b)
end
function
chessboard_coloring
(
sz
)
binli
=
LinearIndices
(
(
2
,
2
))
coloring
=
[
Int
[]
for
_
in
1
:
4
]
binli
=
LinearIndices
(
ntuple
(
_
->
2
,
length
(
sz
)
))
coloring
=
[
Int
[]
for
_
in
1
:
2
^
length
(
sz
)
]
li
=
LinearIndices
(
sz
)
for
I
in
CartesianIndices
(
sz
)
...
...
@@ -82,14 +100,25 @@ function chessboard_coloring(sz)
return
coloring
end
function
subrun!
(
subctx
,
maxiters
)
#fetch(subctx) .= Ref(zero(eltype(fetch(subctx))) .+ 1)
display
(
"uiae"
)
step!
(
subctx
)
#for j in 1:maxiters
# step!(subctx)
#end
return
subctx
function
subworker
(
alg
,
subalg
)
#fetch(st) .= reshape(reinterpret(SVector{d,eltype(g)}, initdata), size(g))
ninner
=
alg
.
ninner
return
function
(
con
)
subst
=
init
(
subalg
)
while
isopen
(
con
)
# fetch new data
subg
=
take!
(
con
)
subalg
.
problem
.
g
.=
subg
# run algorithm
for
_
in
1
:
ninner
step!
(
subst
)
end
# write result
subp
=
fetch
(
subst
)
put!
(
con
,
subp
)
end
end
end
function
step!
(
ctx
::
DualTVDDState
)
...
...
@@ -99,57 +128,49 @@ function step!(ctx::DualTVDDState)
ax
=
axes
(
ctx
.
p
)
overlap
=
ctx
.
algorithm
.
overlap
# call run! on each cell (this can be threaded)
p_rem
=
copy
(
ctx
.
p
)
p_don
=
zeros
(
eltype
(
ctx
.
p
),
size
(
ctx
.
p
))
# subdomain loop (in coloring order)
cids
=
chessboard_coloring
(
size
(
ctx
.
subax
))
for
(
color
,
ids
)
in
enumerate
(
cids
)
# prepare data g for subproblems
for
i
in
ids
sax
=
ctx
.
subax
[
i
]
li
=
LinearIndices
(
ctx
.
subax
)[
i
]
sg
=
ctx
.
subctx
[
i
]
.
algorithm
.
problem
.
g
# julia-bug workaround
sq
=
ctx
.
q
[
i
]
# julia-bug workaround
sg
.=
view
(
alg
.
problem
.
g
,
sax
...
)
# update remaining old contribution
view
(
p_rem
,
sax
...
)
.-=
theta
.
(
Ref
(
ax
),
Ref
(
sax
),
Ref
(
overlap
),
CartesianIndices
(
sax
))
.*
view
(
ctx
.
p
,
sax
...
)
# data: g - Λ(p_don + p_rem)
sg
=
copy
(
view
(
alg
.
problem
.
g
,
sax
...
))
sp
=
extend
(
similar
(
ctx
.
p
,
length
.
(
sax
)),
StaticKernels
.
ExtensionNothing
())
if
alg
.
parallel
s
q
.=
(
1
.-
theta
.
(
Ref
(
ax
),
Ref
(
sax
),
Ref
(
overlap
),
CartesianIndices
(
sax
)))
.*
view
(
ctx
.
p
,
sax
...
)
s
p
.=
(
1
.
.-
theta
.
(
Ref
(
ax
),
Ref
(
sax
),
Ref
(
overlap
),
CartesianIndices
(
sax
)))
.*
view
(
ctx
.
p
,
sax
...
)
else
sq
.=
Ref
(
zero
(
eltype
(
sq
)))
# contributions from previous domains
for
(
pcolor
,
pids
)
in
enumerate
(
cids
)
# TODO: only adjacent ones needed
for
lj
in
pids
saxj
=
ctx
.
subax
[
lj
]
pids
,
pidsi
,
pidsj
=
intersectin
(
CartesianIndices
(
sax
),
CartesianIndices
(
saxj
))
if
pcolor
<
color
sq
[
pidsi
]
.+=
view
(
ctx
.
subctx
[
lj
]
.
p
,
pidsj
)
elseif
pcolor
>
color
sq
[
pidsi
]
.+=
theta
.
(
Ref
(
ax
),
Ref
(
saxj
),
Ref
(
overlap
),
pids
)
.*
view
(
ctx
.
p
,
pids
)
end
end
end
sp
.=
view
(
p_don
,
sax
...
)
.+
view
(
p_rem
,
sax
...
)
end
@inline
kfΛ
(
pw
)
=
@inbounds
sg
[
pw
.
position
]
+
divergence
(
pw
)
kΛ
=
Kernel
{
ntuple
(
_
->-
1
:
1
,
d
)}(
kfΛ
)
@inline
kf
(
spw
)
=
@inbounds
sg
[
spw
.
position
]
+
divergence
(
spw
)
kern
=
Kernel
{
ntuple
(
_
->-
1
:
1
,
d
)}(
kf
)
map!
(
kern
,
sg
,
sp
)
map!
(
kΛ
,
sg
,
sq
)
# start computation
put!
(
ctx
.
cons
[
i
],
sg
)
end
for
i
in
ids
sax
=
ctx
.
subax
[
i
]
# actually run subalgorithms
ctx
.
subctx
[
ids
]
.=
map
(
subrun!
,
deepcopy
(
ctx
.
subctx
[
ids
]),
[
1
for
_
in
ids
])
#ctx.subctx[ids] .= map(subrun!, deepcopy(ctx.subctx[ids]), [alg.ninner for _ in ids])
#for i in ids
# subrun!(ctx.subctx[i])
#end
sp
=
take!
(
ctx
.
cons
[
i
])
# reshape(reinterpret(SVector{d,eltype(alg.problem.g)}, ctx.subp[i]), size(ctx.subalg[i].problem.g))
# weighted update for new contribution
view
(
p_don
,
sax
...
)
.+=
(
1
.-
σ
)
.*
theta
.
(
Ref
(
ax
),
Ref
(
sax
),
Ref
(
overlap
),
CartesianIndices
(
sax
))
.*
view
(
ctx
.
p
,
sax
...
)
.+
σ
.*
sp
end
end
# aggregate (not thread-safe!)
ctx
.
p
.*=
1
-
σ
for
(
i
,
sax
)
in
pairs
(
ctx
.
subax
)
view
(
ctx
.
p
,
sax
...
)
.+=
σ
.*
ctx
.
subctx
[
i
]
.
p
end
ctx
.
p
.=
p_don
return
ctx
end
...
...
This diff is collapsed.
Click to expand it.
test/runtests.jl
+
29
−
6
View file @
c33b9e16
using
Test
,
BenchmarkTools
using
LinearAlgebra
using
DualTVDD
:
DualTVL1ROFOpProblem
,
ProjGradAlgorithm
,
ChambolleAlgorithm
,
init
,
step!
,
fetch
,
recover
_u
DualTVL1ROFOpProblem
,
ProjGradAlgorithm
,
ChambolleAlgorithm
,
DualTVDDAlgorithm
,
init
,
step!
,
fetch_u
@testset
"B = I"
begin
g
=
Float64
[
0
2
;
1
0
]
...
...
@@ -10,11 +10,11 @@ using DualTVDD:
@testset
for
alg
in
(
ProjGradAlgorithm
(
prob
,
τ
=
1
/
8
),
ChambolleAlgorithm
(
prob
))
ctx
=
init
(
alg
)
@test
0
==
@ballocated
step!
(
$
ctx
)
#
@test 0 == @ballocated step!($ctx)
for
i
in
1
:
100
step!
(
ctx
)
end
u
=
recover_u
(
fetch
(
ctx
)
,
ctx
.
algorithm
.
problem
)
u
=
fetch
_u
(
ctx
)
@test
u
≈
g
end
end
...
...
@@ -26,11 +26,34 @@ end
@testset
for
alg
in
(
ProjGradAlgorithm
(
prob
,
τ
=
1
/
8
),
ChambolleAlgorithm
(
prob
))
ctx
=
init
(
alg
)
@test
0
==
@ballocated
step!
(
$
ctx
)
#
@test 0 == @ballocated step!($ctx)
for
i
in
1
:
100
step!
(
ctx
)
end
u
=
recover_u
(
fetch
(
ctx
)
,
ctx
.
algorithm
.
problem
)
u
=
fetch
_u
(
ctx
)
@test
vec
(
u
)
≈
B
*
vec
(
g
)
end
end
@testset
"DualTVDDAlgorithm"
begin
n
=
5
ninner
=
100
g
=
rand
(
n
,
n
)
B
=
Diagonal
(
rand
(
n
^
2
))
# big λ is ok, since we test for inter-subdomain communication
prob
=
DualTVL1ROFOpProblem
(
g
,
B
,
100.
)
algref
=
ChambolleAlgorithm
(
prob
)
alg
=
DualTVDDAlgorithm
(
prob
;
M
=
(
2
,
2
),
overlap
=
(
2
,
2
),
ninner
,
parallel
=
false
,
σ
=
0.25
,
subalg
=
x
->
ChambolleAlgorithm
(
x
))
stref
=
init
(
algref
)
st
=
init
(
alg
)
#@test 0 == @ballocated step!($ctx)
for
i
in
1
:
1000
*
ninner
step!
(
stref
)
end
for
i
in
1
:
1000
step!
(
st
)
end
@test
fetch_u
(
st
)
≈
fetch_u
(
stref
)
end
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment