Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
DualTVDD.jl
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Stephan Hilb
DualTVDD.jl
Commits
97157af2
Commit
97157af2
authored
May 18, 2020
by
Stephan Hilb
Browse files
Options
Downloads
Patches
Plain Diff
got crude dd working
parent
bd6205aa
No related branches found
No related tags found
No related merge requests found
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
src/DualTVDD.jl
+78
-0
78 additions, 0 deletions
src/DualTVDD.jl
src/chambolle.jl
+1
-0
1 addition, 0 deletions
src/chambolle.jl
src/dualtvdd.jl
+166
-6
166 additions, 6 deletions
src/dualtvdd.jl
with
245 additions
and
6 deletions
src/DualTVDD.jl
+
78
−
0
View file @
97157af2
...
@@ -2,6 +2,84 @@ module DualTVDD
...
@@ -2,6 +2,84 @@ module DualTVDD
include
(
"types.jl"
)
include
(
"types.jl"
)
include
(
"chambolle.jl"
)
include
(
"chambolle.jl"
)
include
(
"dualtvdd.jl"
)
using
Makie
:
heatmap
function
run
()
g
=
rand
(
50
,
50
)
#g = [0. 2; 1 0.]
A
=
diagm
(
ones
(
length
(
g
)))
α
=
0.25
md
=
DualTVDD
.
OpROFModel
(
g
,
A
,
α
)
alg
=
DualTVDD
.
ChambolleAlgorithm
()
ctx
=
DualTVDD
.
init
(
md
,
alg
)
scene
=
heatmap
(
ctx
.
s
,
colorrange
=
(
0
,
1
),
colormap
=:
gray
,
scale_plot
=
false
)
display
(
scene
)
hm
=
last
(
scene
)
for
i
in
1
:
100
step!
(
ctx
)
hm
[
1
]
=
ctx
.
s
yield
()
#sleep(0.2)
end
ctx
#hm[1] = ctx.s
#yield()
end
function
rundd
()
f
=
zeros
(
8
)
f
[
1
,
:
]
.=
1
#g = [0. 2; 1 0.]
A
=
diagm
(
ones
(
length
(
f
)))
α
=
0.25
md
=
DualTVDD
.
DualTVDDModel
(
f
,
A
,
α
,
0.
,
0.
)
alg
=
DualTVDD
.
DualTVDDAlgorithm
(
M
=
(
2
,),
overlap
=
(
2
,),
σ
=
0.25
)
ctx
=
DualTVDD
.
init
(
md
,
alg
)
md2
=
DualTVDD
.
OpROFModel
(
f
,
A
,
α
)
alg2
=
DualTVDD
.
ChambolleAlgorithm
()
ctx2
=
DualTVDD
.
init
(
md2
,
alg2
)
for
i
in
1
:
150
step!
(
ctx
)
step!
(
ctx2
)
end
#scene = heatmap(ctx.s,
# colorrange=(0,1), colormap=:gray, scale_plot=false)
#display(scene)
#hm = last(scene)
#for i in 1:100
# step!(ctx)
# hm[1] = ctx.s
# yield()
# #sleep(0.2)
#end
#hm[1] = ctx.s
#yield()
println
(
"p result"
)
display
(
ctx
.
p
)
display
(
ctx2
.
p
)
println
(
"u result"
)
display
(
recover_u!
(
ctx
))
display
((
recover_u!
(
ctx2
);
ctx2
.
s
))
ctx
,
ctx2
end
end
# module
end
# module
This diff is collapsed.
Click to expand it.
src/chambolle.jl
+
1
−
0
View file @
97157af2
...
@@ -62,6 +62,7 @@ function init(md::OpROFModel, alg::ChambolleAlgorithm)
...
@@ -62,6 +62,7 @@ function init(md::OpROFModel, alg::ChambolleAlgorithm)
k1
=
Kernel
{
ntuple
(
_
->-
1
:
1
,
d
)}(
kf1
)
k1
=
Kernel
{
ntuple
(
_
->-
1
:
1
,
d
)}(
kf1
)
@inline
function
kf2
(
pw
,
sw
)
@inline
function
kf2
(
pw
,
sw
)
iszero
(
λ
[
pw
.
position
])
&&
return
zero
(
pw
[
z
])
sgrad
=
alg
.
τ
*
gradient
(
sw
)
sgrad
=
alg
.
τ
*
gradient
(
sw
)
return
@inbounds
(
pw
[
z
]
+
sgrad
)
/
(
1
+
norm
(
sgrad
)
/
λ
[
pw
.
position
])
return
@inbounds
(
pw
[
z
]
+
sgrad
)
/
(
1
+
norm
(
sgrad
)
/
λ
[
pw
.
position
])
end
end
...
...
This diff is collapsed.
Click to expand it.
src/dualtvdd.jl
+
166
−
6
View file @
97157af2
struct
DualTVDDAlgorithm
{
d
}
<:
Algorithm
struct
DualTVDDAlgorithm
{
d
}
<:
Algorithm
"number of subdomains in each dimension"
"number of subdomains in each dimension"
M
::
NTuple
{
d
,
Int
}
M
::
NTuple
{
d
,
Int
}
"overlap in pixels per dimension"
overlap
::
NTuple
{
d
,
Int
}
"inertia parameter"
"inertia parameter"
σ
::
Float64
σ
::
Float64
function
DualTVDDAlgorithm
(;
M
,
σ
)
function
DualTVDDAlgorithm
(;
M
,
overlap
,
σ
)
return
new
{
length
(
M
)}(
M
,
σ
)
return
new
{
length
(
M
)}(
M
,
overlap
,
σ
)
end
end
end
end
struct
DualTVDDContext
{
d
,
U
,
V
,
Vview
,
SC
}
struct
DualTVDDContext
{
M
,
A
,
G
,
d
,
U
,
V
,
VV
,
SAx
,
Vview
,
SC
}
model
::
M
algorithm
::
A
"precomputed A'f"
g
::
G
"global dual optimization variable"
"global dual optimization variable"
p
::
V
p
::
V
"(A'A + βI)^(-1)"
B
::
VV
"subdomain axes wrt global indices"
subax
::
SAx
"local views on p per subdomain"
"local views on p per subdomain"
pviews
::
Array
{
Vview
,
d
}
pviews
::
Array
{
Vview
,
d
}
"
data for subproblems
"
"
subproblem data, subg[i] == subctx[i].model.g
"
g
::
Array
{
U
,
d
}
sub
g
::
Array
{
U
,
d
}
"context for subproblems"
"context for subproblems"
subctx
::
Array
{
SC
,
d
}
subctx
::
Array
{
SC
,
d
}
end
end
function
solve
(
model
::
DualTVDDModel
,
algorithm
::
DualTVDDAlgorithm
)
function
init
(
md
::
DualTVDDModel
,
alg
::
DualTVDDAlgorithm
)
d
=
ndims
(
md
.
f
)
ax
=
axes
(
md
.
f
)
# subdomain axes
subax
=
subaxes
(
md
.
f
,
alg
.
M
,
alg
.
overlap
)
# data for subproblems
subg
=
[
Array
{
Float64
,
d
}(
undef
,
length
.
(
subax
[
i
]))
for
i
in
CartesianIndices
(
subax
)]
# locally dependent tv parameter
subα
=
[
md
.
α
.*
theta
.
(
Ref
(
ax
),
Ref
(
subax
[
i
]),
Ref
(
alg
.
overlap
),
CartesianIndices
(
subax
[
i
]))
for
i
in
CartesianIndices
(
subax
)]
g
=
reshape
(
md
.
A
'
*
vec
(
md
.
f
),
size
(
md
.
f
))
p
=
zeros
(
SVector
{
d
,
Float64
},
size
(
md
.
f
))
#g[i] = md.f
# TODO: initialize g per subdomain with partition function
B
=
inv
(
md
.
A
'
*
md
.
A
+
md
.
β
*
I
)
# create models for subproblems
# TODO: extraction of B subparts only makes sense for blockdiagonal B (i.e. A too)
li
=
LinearIndices
(
size
(
md
.
f
))
models
=
[
OpROFModel
(
subg
[
i
],
B
[
vec
(
li
[
subax
[
i
]
...
]),
vec
(
li
[
subax
[
i
]
...
])],
subα
[
i
])
for
i
in
CartesianIndices
(
subax
)]
subalg
=
ChambolleAlgorithm
()
subctx
=
[
init
(
models
[
i
],
subalg
)
for
i
in
CartesianIndices
(
subax
)]
return
DualTVDDContext
(
md
,
alg
,
g
,
p
,
B
,
subax
,
subg
,
subg
,
subctx
)
end
function
step!
(
ctx
::
DualTVDDContext
)
d
=
ndims
(
ctx
.
p
)
ax
=
axes
(
ctx
.
p
)
overlap
=
ctx
.
algorithm
.
overlap
@inline
kfΛ
(
w
)
=
@inbounds
divergence_global
(
w
)
kΛ
=
Kernel
{
ntuple
(
_
->-
1
:
1
,
d
)}(
kfΛ
)
println
(
"global p"
)
display
(
ctx
.
p
)
# call run! on each cell (this can be threaded)
for
i
in
eachindex
(
ctx
.
subctx
)
sax
=
ctx
.
subax
[
i
]
ci
=
CartesianIndices
(
sax
)
# g_i = (A*f - Λ(1-theta_i)p^n)|_{\Omega_i}
# subctx[i].p is used as a buffer
tmp
=
(
1
.-
theta
.
(
Ref
(
ax
),
Ref
(
sax
),
Ref
(
overlap
),
CartesianIndices
(
ctx
.
p
)))
.*
ctx
.
p
#tmp3 = .-(1 .- theta.(Ref(ax), Ref(sax), Ref(overlap), CartesianIndices(ctx.p)))
#ctx.subctx[i].p .= .-(1 .- theta.(Ref(ax), Ref(sax), Ref(overlap), ci)) .* ctx.p[ctx.subax[i]...]
tmp2
=
map
(
kΛ
,
extend
(
tmp
,
StaticKernels
.
ExtensionNothing
()))
ctx
.
subg
[
i
]
.=
tmp2
[
sax
...
]
#map!(kΛ, ctx.subg[i], ctx.subctx[i].p)
println
(
"### ITERATION
$
i ###"
)
display
(
tmp
)
#display(ctx.subctx[i].p)
display
(
ctx
.
subg
[
i
])
ctx
.
subg
[
i
]
.+=
ctx
.
g
[
sax
...
]
# set sensible starting value
ctx
.
subctx
[
i
]
.
p
.=
Ref
(
zero
(
eltype
(
ctx
.
subctx
[
i
]
.
p
)))
for
j
in
1
:
100
step!
(
ctx
.
subctx
[
i
])
end
end
# aggregate (not thread-safe!)
σ
=
ctx
.
algorithm
.
σ
ctx
.
p
.*=
1
-
σ
for
i
in
CartesianIndices
(
ctx
.
subax
)
ctx
.
p
[
ctx
.
subax
[
i
]
...
]
.+=
σ
.*
ctx
.
subctx
[
i
]
.
p
end
end
@generated
function
divergence_global
(
w
::
StaticKernels
.
Window
{
SVector
{
N
,
T
},
N
})
where
{
N
,
T
}
i0
=
ntuple
(
_
->
0
,
N
)
i1
(
k
)
=
ntuple
(
i
->
Int
(
k
==
i
),
N
)
wi
=
(
:
(
w
[
$
(
i0
...
)][
$
k
]
-
(
isnothing
(
w
[
$
((
.-
i1
(
k
))
...
)])
?
zero
(
T
)
:
w
[
$
((
.-
i1
(
k
))
...
)][
$
k
]))
for
k
in
1
:
N
)
return
quote
Base
.
@_inline_meta
return
@inbounds
+
(
$
(
wi
...
))
end
end
#FD.GridFunction(grid, (A'*A + β*I) \ (FD.divergence_z(p).data[:] .+ A'*f.data[:]))
function
recover_u!
(
ctx
::
DualTVDDContext
)
d
=
ndims
(
ctx
.
g
)
u
=
similar
(
ctx
.
g
)
v
=
similar
(
ctx
.
g
)
@inline
kfΛ
(
w
)
=
@inbounds
divergence
(
w
)
kΛ
=
Kernel
{
ntuple
(
_
->-
1
:
1
,
d
)}(
kfΛ
)
# u = div(p) + A'*f
map!
(
kΛ
,
v
,
extend
(
ctx
.
p
,
StaticKernels
.
ExtensionNothing
()))
v
.+=
ctx
.
g
# u = B * u
mul!
(
vec
(
u
),
ctx
.
B
,
vec
(
v
))
return
u
end
"""
theta(ax, sax, overlap, i)
Return value of the partition function at index `i` given global axes `ax`,
subdomain axes `sax` and overlap count `overlap`.
This assumes that subdomains have size at least 2 .* overlap.
"""
theta
(
ax
,
sax
,
overlap
,
i
::
CartesianIndex
)
=
prod
(
theta
.
(
ax
,
sax
,
overlap
,
Tuple
(
i
)))
theta
(
ax
,
sax
,
overlap
::
Int
,
i
::
Int
)
=
max
(
0.
,
min
(
1.
,
first
(
ax
)
==
first
(
sax
)
&&
i
<
first
(
ax
)
+
overlap
?
1.
:
(
i
-
first
(
sax
))
/
overlap
,
last
(
ax
)
==
last
(
sax
)
&&
i
>
last
(
ax
)
-
overlap
?
1.
:
(
last
(
sax
)
-
i
)
/
overlap
))
"""
subaxes(domain, pnum, overlap)
Determine axes for all subdomains, given per dimension number of domains
`pnum` and overlap `overlap`
"""
function
subaxes
(
domain
,
pnum
,
overlap
)
overlap
=
1
.+
overlap
d
=
ndims
(
domain
)
tsize
=
size
(
domain
)
.+
(
pnum
.-
1
)
.*
overlap
psize
=
tsize
.÷
pnum
osize
=
tsize
.-
pnum
.*
psize
overhang
(
I
,
j
)
=
I
[
j
]
==
pnum
[
j
]
?
osize
[
j
]
:
0
indices
=
Array
{
NTuple
{
d
,
UnitRange
{
Int
}},
d
}(
undef
,
pnum
)
for
I
in
CartesianIndices
(
pnum
)
indices
[
I
]
=
ntuple
(
j
->
((
I
[
j
]
-
1
)
*
psize
[
j
]
-
(
I
[
j
]
-
1
)
*
overlap
[
j
]
+
1
)
:
(
I
[
j
]
*
psize
[
j
]
-
(
I
[
j
]
-
1
)
*
overlap
[
j
]
+
overhang
(
I
,
j
)),
d
)
end
@assert
all
(
length
.
(
sax
)
>=
1
.*
overlap
for
sax
in
indices
)
return
indices
end
end
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment