Skip to content
Snippets Groups Projects
Commit f9adad97 authored by David Seus's avatar David Seus
Browse files

fix weird git fuckug

parent 1d7fe539
No related branches found
No related tags found
No related merge requests found
#!/usr/bin/python3
import dolfin as df
# import mshr
# import numpy as np
import sympy as sym
# import typing as tp
# import domainPatch as dp
import LDDsimulation as ldd
import functools as ft
import helpers as hlp
# import ufl as ufl
# init sympy session
sym.init_printing()
use_case = "TP-R-multi-patch-zero-nonwetting-phase"
solver_tol = 1E-6
############ GRID #######################ü
mesh_resolution = 50
timestep_size = 0.001
number_of_timesteps = 1500
# decide how many timesteps you want analysed. Analysed means, that we write out
# subsequent errors of the L-iteration within the timestep.
number_of_timesteps_to_analyse = 10
starttime = 0
Lw = 0.25 #/timestep_size
Lnw=Lw
l_param_w = 40
l_param_nw = 40
include_gravity = False
debugflag = False
analyse_condition = True
output_string = "./output/number_of_timesteps{}_".format(number_of_timesteps)
# ----------------------------------------------------------------------------#
# ------------------- Domain and Interface -----------------------------------#
# ----------------------------------------------------------------------------#
# global simulation domain domain
sub_domain0_vertices = [df.Point(-1.0, -1.0),
df.Point(1.0, -1.0),
df.Point(1.0, 1.0),
df.Point(-1.0, 1.0)]
# interfaces
interface12_vertices = [df.Point(0.0, 0.0),
df.Point(1.0, 0.0)]
interface14_vertices = [df.Point(0.0, 0.0),
df.Point(0.0, 1.0)]
interface23_vertices = [df.Point(0.0, 0.0),
df.Point(0.0, -1.0)]
interface34_vertices = [df.Point(-1.0, 0.0),
df.Point(0.0, 0.0)]
# subdomain1.
sub_domain1_vertices = [interface12_vertices[0],
interface12_vertices[1],
sub_domain0_vertices[2],
df.Point(0.0, 1.0)]
# vertex coordinates of the outer boundaries. If it can not be specified as a
# polygon, use an entry per boundary polygon. This information is used for
# defining the Dirichlet boundary conditions. If a domain is completely inter-
# nal, the dictionary entry should be 0: None
subdomain1_outer_boundary_verts = {
0: [interface12_vertices[1],
sub_domain0_vertices[2],
df.Point(0.0, 1.0)]
}
# subdomain2
sub_domain2_vertices = [interface23_vertices[1],
sub_domain0_vertices[1],
interface12_vertices[1],
interface12_vertices[0]]
subdomain2_outer_boundary_verts = {
0: [df.Point(0.0, -1.0),
sub_domain0_vertices[1],
interface12_vertices[1]]
}
sub_domain3_vertices = [interface34_vertices[0],
sub_domain0_vertices[0],
interface23_vertices[1],
interface23_vertices[0]]
subdomain3_outer_boundary_verts = {
0: [interface34_vertices[0],
sub_domain0_vertices[0],
interface23_vertices[1]]
}
sub_domain4_vertices = [interface34_vertices[0],
interface34_vertices[1],
interface14_vertices[1],
sub_domain0_vertices[3]]
subdomain4_outer_boundary_verts = {
0: [interface14_vertices[1],
sub_domain0_vertices[3],
interface34_vertices[0]]
}
# list of subdomains given by the boundary polygon vertices.
# Subdomains are given as a list of dolfin points forming
# a closed polygon, such that mshr.Polygon(subdomain_def_points[i]) can be used
# to create the subdomain. subdomain_def_points[0] contains the
# vertices of the global simulation domain and subdomain_def_points[i] contains
# the vertices of the subdomain i.
subdomain_def_points = [sub_domain0_vertices,
sub_domain1_vertices,
sub_domain2_vertices,
sub_domain3_vertices,
sub_domain4_vertices]
# in the below list, index 0 corresponds to the 12 interface which has global
# marker value 1
interface_def_points = [interface12_vertices,
interface14_vertices,
interface23_vertices,
interface34_vertices]
# adjacent_subdomains[i] contains the indices of the subdomains sharing the
# interface i (i.e. given by interface_def_points[i]).
adjacent_subdomains = [[1, 2], [1, 4], [2, 3], [3, 4]]
# if a subdomain has no outer boundary write None instead, i.e.
# i: None
# if i is the index of the inner subdomain.
outer_boundary_def_points = {
# subdomain number
1: subdomain1_outer_boundary_verts,
2: subdomain2_outer_boundary_verts,
3: subdomain3_outer_boundary_verts,
4: subdomain4_outer_boundary_verts
}
isRichards = {
1: True,
2: False,
3: False,
4: True
}
viscosity = {
1: {'wetting' :1,
'nonwetting': 1},
2: {'wetting' :1,
'nonwetting': 1},
3: {'wetting' :1,
'nonwetting': 1},
4: {'wetting' :1,
'nonwetting': 1},
}
# Dict of the form: { subdom_num : density }
densities = {
1: {'wetting': 1, #997
'nonwetting':1}, #1.225}},
2: {'wetting': 1, #997
'nonwetting':1}, #1.225}},
3: {'wetting': 1, #997
'nonwetting':1}, #1.225}},
4: {'wetting': 1, #997
'nonwetting':1}, #1.225}}
}
gravity_acceleration = 9.81
# porosities taken from
# https://www.geotechdata.info/parameter/soil-porosity.html
# Dict of the form: { subdom_num : porosity }
porosity = {
1: 1, #0.2, # Clayey gravels, clayey sandy gravels
2: 1, #0.22, # Silty gravels, silty sandy gravels
3: 1, #0.37, # Clayey sands
4: 1, #0.2 # Silty or sandy clay
}
# subdom_num : subdomain L for L-scheme
L = {
1: {'wetting' :Lw,
'nonwetting': Lnw},
2: {'wetting' :Lw,
'nonwetting': Lnw},
3: {'wetting' :Lw,
'nonwetting': Lnw},
4: {'wetting' :Lw,
'nonwetting': Lnw}
}
# subdom_num : lambda parameter for the L-scheme
lambda_param = {
1: {'wetting': l_param_w,
'nonwetting': l_param_nw},#
2: {'wetting': l_param_w,
'nonwetting': l_param_nw},#
3: {'wetting': l_param_w,
'nonwetting': l_param_nw},#
4: {'wetting': l_param_w,
'nonwetting': l_param_nw},#
}
# relative permeabilty functions on subdomain 1
def rel_perm1w(s):
# relative permeabilty on subdomain1
return s**2
def rel_perm1nw(s):
# relative permeabilty nonwetting on subdomain1
return (1-s)**2
## relative permeabilty functions on subdomain 2
# relative permeabilty functions on subdomain 2
def rel_perm2w(s):
# relative permeabilty on subdomain2
return s**3
def rel_perm2nw(s):
# relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2
return (1-s)**3
_rel_perm1w = ft.partial(rel_perm1w)
_rel_perm1nw = ft.partial(rel_perm1nw)
_rel_perm2w = ft.partial(rel_perm2w)
_rel_perm2nw = ft.partial(rel_perm2nw)
subdomain1_rel_perm = {
'wetting': _rel_perm1w,#
'nonwetting': _rel_perm1nw
}
subdomain2_rel_perm = {
'wetting': _rel_perm2w,#
'nonwetting': _rel_perm2nw
}
subdomain3_rel_perm = subdomain2_rel_perm.copy()
subdomain4_rel_perm = subdomain1_rel_perm.copy()
# dictionary of relative permeabilties on all domains.
relative_permeability = {
1: subdomain1_rel_perm,
2: subdomain2_rel_perm,
3: subdomain3_rel_perm,
4: subdomain4_rel_perm
}
# definition of the derivatives of the relative permeabilities
# relative permeabilty functions on subdomain 1
def rel_perm1w_prime(s):
# relative permeabilty on subdomain1
return 2*s
def rel_perm1nw_prime(s):
# relative permeabilty on subdomain1
return -2*(1-s)
# definition of the derivatives of the relative permeabilities
# relative permeabilty functions on subdomain 1
def rel_perm2w_prime(s):
# relative permeabilty on subdomain1
return 3*s**2
def rel_perm2nw_prime(s):
# relative permeabilty on subdomain1
return -3*(1-s)**2
_rel_perm1w_prime = ft.partial(rel_perm1w_prime)
_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime)
_rel_perm2w_prime = ft.partial(rel_perm2w_prime)
_rel_perm2nw_prime = ft.partial(rel_perm2nw_prime)
subdomain1_rel_perm_prime = {
'wetting': _rel_perm1w_prime,
'nonwetting': _rel_perm1nw_prime
}
subdomain2_rel_perm_prime = {
'wetting': _rel_perm2w_prime,
'nonwetting': _rel_perm2nw_prime
}
# _rel_perm3_prime = ft.partial(rel_perm2_prime)
subdomain3_rel_perm_prime = subdomain2_rel_perm_prime.copy()
# _rel_perm4_prime = ft.partial(rel_perm1_prime)
subdomain4_rel_perm_prime = subdomain1_rel_perm_prime.copy()
# dictionary of relative permeabilties on all domains.
ka_prime = {
1: subdomain1_rel_perm_prime,
2: subdomain2_rel_perm_prime,
3: subdomain3_rel_perm_prime,
4: subdomain4_rel_perm_prime
}
# this function needs to be monotonically decreasing in the capillary_pressure.
# since in the richards case pc=-pw, this becomes as a function of pw a mono
# tonically INCREASING function like in our Richards-Richards paper. However
# since we unify the treatment in the code for Richards and two-phase, we need
# the same requierment
# for both cases, two-phase and Richards.
def saturation(pc, index):
# inverse capillary pressure-saturation-relationship
return df.conditional(pc > 0, 1/((1 + pc)**(1/(index + 1))), 1)
def saturation_sym(pc, index):
# inverse capillary pressure-saturation-relationship
return 1/((1 + pc)**(1/(index + 1)))
# derivative of S-pc relationship with respect to pc. This is needed for the
# construction of a analytic solution.
def saturation_sym_prime(pc, index):
# inverse capillary pressure-saturation-relationship
return -1/((index+1)*(1 + pc)**((index+2)/(index+1)))
# note that the conditional definition of S-pc in the nonsymbolic part will be
# incorporated in the construction of the exact solution below.
S_pc_sym = {
1: ft.partial(saturation_sym, index=1),
2: ft.partial(saturation_sym, index=2),
3: ft.partial(saturation_sym, index=2),
4: ft.partial(saturation_sym, index=1)
}
S_pc_sym_prime = {
1: ft.partial(saturation_sym_prime, index=1),
2: ft.partial(saturation_sym_prime, index=2),
3: ft.partial(saturation_sym_prime, index=2),
4: ft.partial(saturation_sym_prime, index=1)
}
sat_pressure_relationship = {
1: ft.partial(saturation, index=1),
2: ft.partial(saturation, index=2),
3: ft.partial(saturation, index=2),
4: ft.partial(saturation, index=1)
}
#############################################
# Manufacture source expressions with sympy #
#############################################
x, y = sym.symbols('x[0], x[1]') # needed by UFL
t = sym.symbols('t', positive=True)
p_e_sym = {
1: {'wetting': (1.0 - (1.0 + t*t)*(1.0 + x*x + y*y)), #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2,
'nonwetting': 0.0*t},
2: {'wetting': (1.0 - (1.0 + t*t)*(1.0 + x*x)), #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2,
'nonwetting': 0.0*t},
3: {'wetting': (1.0 - (1.0 + t*t)*(1.0 + x*x)), #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2,
'nonwetting': 0.0*t},
4: {'wetting': (1.0 - (1.0 + t*t)*(1.0 + x*x + y*y)), #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2,
'nonwetting': 0.0*t}
}
# pc_e_sym = {
# 1: -1*p_e_sym[1]['wetting'],
# 2: -1*p_e_sym[2]['wetting'],
# 3: -1*p_e_sym[3]['wetting'],
# 4: -1*p_e_sym[4]['wetting']
# }
pc_e_sym = dict()
for subdomain, isR in isRichards.items():
if isR:
pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']})
else:
pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting']
- p_e_sym[subdomain]['wetting']})
symbols = {"x": x,
"y": y,
"t": t}
# turn above symbolic code into exact solution for dolphin and
# construct the rhs that matches the above exact solution.
exact_solution_example = hlp.generate_exact_solution_expressions(
symbols=symbols,
isRichards=isRichards,
symbolic_pressure=p_e_sym,
symbolic_capillary_pressure=pc_e_sym,
saturation_pressure_relationship=S_pc_sym,
saturation_pressure_relationship_prime=S_pc_sym_prime,
viscosity=viscosity,
porosity=porosity,
relative_permeability=relative_permeability,
relative_permeability_prime=ka_prime,
densities=densities,
gravity_acceleration=gravity_acceleration,
include_gravity=include_gravity,
)
source_expression = exact_solution_example['source']
exact_solution = exact_solution_example['exact_solution']
initial_condition = exact_solution_example['initial_condition']
# Dictionary of dirichlet boundary conditions.
dirichletBC = dict()
# similarly to the outer boundary dictionary, if a patch has no outer boundary
# None should be written instead of an expression.
# This is a bit of a brainfuck:
# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind.
# Since a domain patch can have several disjoint outer boundary parts, the
# expressions need to get an enumaration index which starts at 0.
# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of
# subdomain ind and boundary part j.
# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting']
# return the actual expression needed for the dirichlet condition for both
# phases if present.
# subdomain index: {outer boudary part index: {phase: expression}}
for subdomain in isRichards.keys():
# if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None
if outer_boundary_def_points[subdomain] is None:
dirichletBC.update({subdomain: None})
else:
dirichletBC.update({subdomain: dict()})
# set the dirichlet conditions to be the same code as exact solution on
# the subdomain.
for outer_boundary_ind in outer_boundary_def_points[subdomain].keys():
dirichletBC[subdomain].update(
{outer_boundary_ind: exact_solution[subdomain]}
)
write_to_file = {
'meshes_and_markers': True,
'L_iterations': True
}
# initialise LDD simulation class
simulation = ldd.LDDsimulation(tol=1E-14, LDDsolver_tol=solver_tol, debug=debugflag)
simulation.set_parameters(use_case=use_case,
output_dir=output_string,
subdomain_def_points=subdomain_def_points,
isRichards=isRichards,
interface_def_points=interface_def_points,
outer_boundary_def_points=outer_boundary_def_points,
adjacent_subdomains=adjacent_subdomains,
mesh_resolution=mesh_resolution,
viscosity=viscosity,
porosity=porosity,
L=L,
lambda_param=lambda_param,
relative_permeability=relative_permeability,
saturation=sat_pressure_relationship,
starttime=starttime,
number_of_timesteps=number_of_timesteps,
number_of_timesteps_to_analyse=number_of_timesteps_to_analyse,
timestep_size=timestep_size,
sources=source_expression,
initial_conditions=initial_condition,
dirichletBC_expression_strings=dirichletBC,
exact_solution=exact_solution,
densities=densities,
include_gravity=include_gravity,
write2file=write_to_file,
)
simulation.initialise()
# print(simulation.__dict__)
simulation.run(analyse_condition=analyse_condition)
# simulation.LDDsolver(time=0, debug=True, analyse_timestep=True)
# df.info(parameters, True)
...@@ -7,11 +7,31 @@ import typing as tp ...@@ -7,11 +7,31 @@ import typing as tp
import domainPatch as dp import domainPatch as dp
import LDDsimulation as ldd import LDDsimulation as ldd
import functools as ft import functools as ft
import helpers as hlp
#import ufl as ufl #import ufl as ufl
# init sympy session # init sympy session
sym.init_printing() sym.init_printing()
solver_tol = 5e-7
############ GRID #######################ü
mesh_resolution = 30
timestep_size = 0.0002
number_of_timesteps = 200
# decide how many timesteps you want analysed. Analysed means, that we write out
# subsequent errors of the L-iteration within the timestep.
number_of_timesteps_to_analyse = 10
starttime = 0
Lw = 100/timestep_size
Lnw=Lw
l_param_w = 40
l_param_nw = l_param_w
include_gravity = False
##### Domain and Interface #### ##### Domain and Interface ####
# global simulation domain domain # global simulation domain domain
sub_domain0_vertices = [df.Point(-1.0, -1.0), sub_domain0_vertices = [df.Point(-1.0, -1.0),
...@@ -88,15 +108,6 @@ isRichards = { ...@@ -88,15 +108,6 @@ isRichards = {
} }
############ GRID #######################ü
mesh_resolution = 20
timestep_size = 0.001
number_of_timesteps = 50
# decide how many timesteps you want analysed. Analysed means, that we write out
# subsequent errors of the L-iteration within the timestep.
number_of_timesteps_to_analyse = 11
starttime = 0
viscosity = {# viscosity = {#
# subdom_num : viscosity # subdom_num : viscosity
1 : {'wetting' :1}, 1 : {'wetting' :1},
...@@ -122,19 +133,19 @@ gravity_acceleration = 9.81 ...@@ -122,19 +133,19 @@ gravity_acceleration = 9.81
L = {# L = {#
# subdom_num : subdomain L for L-scheme # subdom_num : subdomain L for L-scheme
1 : {'wetting' :0.25}, 1 : {'wetting' :Lw},
# 'nonwetting': 0.25},# # 'nonwetting': 0.25},#
2 : {'wetting' :0.25, 2 : {'wetting' :Lw,
'nonwetting': 0.25} 'nonwetting': Lnw}
} }
l_param = 40
lambda_param = {# lambda_param = {#
# subdom_num : lambda parameter for the L-scheme # subdom_num : lambda parameter for the L-scheme
1 : {'wetting' :l_param}, 1 : {'wetting' :l_param_w},
# 'nonwetting': l_param},# # 'nonwetting': l_param},#
2 : {'wetting' :l_param, 2 : {'wetting' :l_param_w,
'nonwetting': l_param} 'nonwetting': l_param_nw}
} }
## relative permeabilty functions on subdomain 1 ## relative permeabilty functions on subdomain 1
...@@ -193,7 +204,7 @@ def rel_perm2w_prime(s): ...@@ -193,7 +204,7 @@ def rel_perm2w_prime(s):
def rel_perm2nw_prime(s): def rel_perm2nw_prime(s):
# relative permeabilty on subdomain1 # relative permeabilty on subdomain1
return 2*(1-s) return -2*(1-s)
_rel_perm1w_prime = ft.partial(rel_perm1w_prime) _rel_perm1w_prime = ft.partial(rel_perm1w_prime)
# _rel_perm1nw_prime = ft.partial(rel_perm1nw_prime) # _rel_perm1nw_prime = ft.partial(rel_perm1nw_prime)
...@@ -281,81 +292,38 @@ p_e_sym = { ...@@ -281,81 +292,38 @@ p_e_sym = {
} #-(y-0.5)*(y-0.5)*(sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t)) - t*t*x*(0.5-y)*y*(1-x) } #-(y-0.5)*(y-0.5)*(sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t)) - t*t*x*(0.5-y)*y*(1-x)
pc_e_sym = { pc_e_sym = dict()
1: -1*p_e_sym[1]['wetting'],
2: p_e_sym[2]['nonwetting'] - p_e_sym[2]['wetting']
}
# turn above symbolic code into exact solution for dolphin and
# construct the rhs that matches the above exact solution.
dtS = dict()
div_flux = dict()
source_expression = dict()
exact_solution = dict()
initial_condition = dict()
for subdomain, isR in isRichards.items(): for subdomain, isR in isRichards.items():
dtS.update({subdomain: dict()})
div_flux.update({subdomain: dict()})
source_expression.update({subdomain: dict()})
exact_solution.update({subdomain: dict()})
initial_condition.update({subdomain: dict()})
if isR: if isR:
subdomain_has_phases = ["wetting"] pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']})
else:
subdomain_has_phases = ["wetting", "nonwetting"]
# conditional for S_pc_prime
pc = pc_e_sym[subdomain]
dtpc = sym.diff(pc, t, 1)
dxpc = sym.diff(pc, x, 1)
dypc = sym.diff(pc, y, 1)
S = sym.Piecewise((S_pc_sym[subdomain](pc), pc > 0), (1, True))
dS = sym.Piecewise((S_pc_sym_prime[subdomain](pc), pc > 0), (0, True))
for phase in subdomain_has_phases:
# Turn above symbolic expression for exact solution into c code
exact_solution[subdomain].update(
{phase: sym.printing.ccode(p_e_sym[subdomain][phase])}
)
# save the c code for initial conditions
initial_condition[subdomain].update(
{phase: sym.printing.ccode(p_e_sym[subdomain][phase].subs(t, 0))}
)
if phase == "nonwetting":
dtS[subdomain].update(
{phase: -porosity[subdomain]*dS*dtpc}
)
else: else:
dtS[subdomain].update( pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting']
{phase: porosity[subdomain]*dS*dtpc} - p_e_sym[subdomain]['wetting']})
)
pa = p_e_sym[subdomain][phase]
dxpa = sym.diff(pa, x, 1) symbols = {"x": x,
dxdxpa = sym.diff(pa, x, 2) "y": y,
dypa = sym.diff(pa, y, 1) "t": t}
dydypa = sym.diff(pa, y, 2) # turn above symbolic code into exact solution for dolphin and
mu = viscosity[subdomain][phase] # construct the rhs that matches the above exact solution.
ka = relative_permeability[subdomain][phase] exact_solution_example = hlp.generate_exact_solution_expressions(
dka = ka_prime[subdomain][phase] symbols=symbols,
rho = densities[subdomain][phase] isRichards=isRichards,
g = gravity_acceleration symbolic_pressure=p_e_sym,
symbolic_capillary_pressure=pc_e_sym,
if phase == "nonwetting": saturation_pressure_relationship=S_pc_sym,
# x part of div(flux) for nonwetting saturation_pressure_relationship_prime=S_pc_sym_prime,
dxdxflux = -1/mu*dka(1-S)*dS*dxpc*dxpa + 1/mu*dxdxpa*ka(1-S) viscosity=viscosity,
# y part of div(flux) for nonwetting porosity=porosity,
dydyflux = -1/mu*dka(1-S)*dS*dypc*(dypa - rho*g) \ relative_permeability=relative_permeability,
+ 1/mu*dydypa*ka(1-S) relative_permeability_prime=ka_prime,
else: densities=densities,
# x part of div(flux) for wetting gravity_acceleration=gravity_acceleration,
dxdxflux = 1/mu*dka(S)*dS*dxpc*dxpa + 1/mu*dxdxpa*ka(S) include_gravity=include_gravity,
# y part of div(flux) for wetting
dydyflux = 1/mu*dka(S)*dS*dypc*(dypa - rho*g) + 1/mu*dydypa*ka(S)
div_flux[subdomain].update({phase: dxdxflux + dydyflux})
contructed_rhs = dtS[subdomain][phase] - div_flux[subdomain][phase]
source_expression[subdomain].update(
{phase: sym.printing.ccode(contructed_rhs)}
) )
# print(f"source_expression[{subdomain}][{phase}] =", source_expression[subdomain][phase]) source_expression = exact_solution_example['source']
exact_solution = exact_solution_example['exact_solution']
initial_condition = exact_solution_example['initial_condition']
# Dictionary of dirichlet boundary conditions. # Dictionary of dirichlet boundary conditions.
dirichletBC = dict() dirichletBC = dict()
...@@ -399,7 +367,7 @@ write_to_file = { ...@@ -399,7 +367,7 @@ write_to_file = {
# initialise LDD simulation class # initialise LDD simulation class
simulation = ldd.LDDsimulation(tol = 1E-14, LDDsolver_tol = 5E-4, debug = True) simulation = ldd.LDDsimulation(tol = 1E-14, LDDsolver_tol=solver_tol, debug=False)
simulation.set_parameters(output_dir = "./output/",# simulation.set_parameters(output_dir = "./output/",#
subdomain_def_points = subdomain_def_points,# subdomain_def_points = subdomain_def_points,#
isRichards = isRichards,# isRichards = isRichards,#
...@@ -422,7 +390,7 @@ simulation.set_parameters(output_dir = "./output/",# ...@@ -422,7 +390,7 @@ simulation.set_parameters(output_dir = "./output/",#
dirichletBC_expression_strings = dirichletBC,# dirichletBC_expression_strings = dirichletBC,#
exact_solution = exact_solution,# exact_solution = exact_solution,#
densities=densities, densities=densities,
include_gravity=True, include_gravity=include_gravity,
write2file = write_to_file,# write2file = write_to_file,#
) )
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment