Skip to content
Snippets Groups Projects
Commit e0544e67 authored by David Seus's avatar David Seus
Browse files

setup same intrinsic

parent a335adf6
No related branches found
No related tags found
No related merge requests found
......@@ -29,7 +29,7 @@ date = datetime.datetime.now()
datestr = date.strftime("%Y-%m-%d")
# Name of the usecase that will be printed during simulation.
use_case = "TP-TP-layeredSoilIP-model-change-interface12-intrinsic-one"
use_case = "TP-TP-layeredSoilIP-model-change-interface12-same-intrinsic"
# The name of this very file. Needed for creating log output.
thisfile = "TP-TP-layered_soil_with_inner_patch-model-change-interface12.py"
......@@ -47,7 +47,7 @@ resolutions = {
# 8: 5e-5,
# 16: 3e-5,
32: 1e-6,
64: 5e-7,
# 64: 5e-7,
# 128: 1e-6,
# 256: 1e-6,
}
......@@ -216,7 +216,7 @@ gravity_acceleration = 9.81
# Dict of the form: { subdom_num : porosity }
porosity = {
1: 0.4, #0.2, # Clayey gravels, clayey sandy gravels
2: 0.0022, #0.22, # Silty gravels, silty sandy gravels
2: 0.22, #0.22, # Silty gravels, silty sandy gravels
3: 0.22, #0.37, # Clayey sands
4: 0.27, #0.2 # Silty or sandy clay
5: 0.2, #
......@@ -233,12 +233,12 @@ porosity = {
# 6: 0.03, #10e-3
# }
intrinsic_permeability = {
1: 1, # sand
2: 1, # sand, there is a range
3: 1, #10e-2, # clay has a range
4: 1, #10e-3
5: 1, #10e-2, # clay has a range
6: 1, #10e-3
1: 0.1, # sand
2: 0.1, # sand, there is a range
3: 0.1, #10e-2, # clay has a range
4: 0.1, #10e-3
5: 0.1, #10e-2, # clay has a range
6: 0.1, #10e-3
}
# subdom_num : subdomain L for L-scheme
L = {
......@@ -317,24 +317,24 @@ relative_permeability = rel_perm_dict["ka"]
ka_prime = rel_perm_dict["ka_prime"]
# S-pc relation
Spc_on_subdomains = {
1: {"testSpc": {"index": 1}},
2: {"testSpc": {"index": 2}},
3: {"testSpc": {"index": 2}},
4: {"testSpc": {"index": 2}},
5: {"testSpc": {"index": 2}},
6: {"testSpc": {"index": 2}},
}
# Spc_on_subdomains = {
# 1: {"vanGenuchten": {"n": 3, "alpha": 0.001}},
# 2: {"vanGenuchten": {"n": 6, "alpha": 0.001}},
# 3: {"vanGenuchten": {"n": 6, "alpha": 0.001}},
# 4: {"vanGenuchten": {"n": 6, "alpha": 0.001}},
# 5: {"vanGenuchten": {"n": 6, "alpha": 0.001}},
# 6: {"vanGenuchten": {"n": 6, "alpha": 0.001}},
# 1: {"testSpc": {"index": 1}},
# 2: {"testSpc": {"index": 2}},
# 3: {"testSpc": {"index": 2}},
# 4: {"testSpc": {"index": 2}},
# 5: {"testSpc": {"index": 2}},
# 6: {"testSpc": {"index": 2}},
# }
Spc_on_subdomains = {
1: {"vanGenuchten": {"n": 3, "alpha": 0.001}},
2: {"vanGenuchten": {"n": 6, "alpha": 0.001}},
3: {"vanGenuchten": {"n": 6, "alpha": 0.001}},
4: {"vanGenuchten": {"n": 6, "alpha": 0.001}},
5: {"vanGenuchten": {"n": 6, "alpha": 0.001}},
6: {"vanGenuchten": {"n": 6, "alpha": 0.001}},
}
Spc = fts.generate_Spc_dicts(Spc_on_subdomains)
S_pc_sym = Spc["symbolic"]
S_pc_sym_prime = Spc["prime_symbolic"]
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment