Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
L
LDD-for-two-phase-flow-systems
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
David Seus
LDD-for-two-phase-flow-systems
Commits
dba620b3
Commit
dba620b3
authored
5 years ago
by
David Seus
Browse files
Options
Downloads
Patches
Plain Diff
fix weird git fuckug
parent
dff5e996
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
TP-TP-patch-test-case/TP-TP-2-patch-test.py
+348
-0
348 additions, 0 deletions
TP-TP-patch-test-case/TP-TP-2-patch-test.py
with
348 additions
and
0 deletions
TP-TP-patch-test-case/TP-TP-2-patch-test.py
0 → 100755
+
348
−
0
View file @
dba620b3
#!/usr/bin/python3
import
dolfin
as
df
import
mshr
import
numpy
as
np
import
sympy
as
sym
import
typing
as
tp
import
domainPatch
as
dp
import
LDDsimulation
as
ldd
import
functools
as
ft
#import ufl as ufl
# init sympy session
sym
.
init_printing
()
##### Domain and Interface ####
# global simulation domain domain
sub_domain0_vertices
=
[
df
.
Point
(
0.0
,
0.0
),
#
df
.
Point
(
1.0
,
0.0
),
#
df
.
Point
(
1.0
,
1.0
),
#
df
.
Point
(
0.0
,
1.0
)]
# interface between subdomain1 and subdomain2
interface12_vertices
=
[
df
.
Point
(
0.0
,
0.5
),
df
.
Point
(
1.0
,
0.5
)
]
# subdomain1.
sub_domain1_vertices
=
[
interface12_vertices
[
0
],
interface12_vertices
[
1
],
df
.
Point
(
1.0
,
1.0
),
df
.
Point
(
0.0
,
1.0
)
]
# vertex coordinates of the outer boundaries. If it can not be specified as a
# polygon, use an entry per boundary polygon. This information is used for defining
# the Dirichlet boundary conditions. If a domain is completely internal, the
# dictionary entry should be 0: None
subdomain1_outer_boundary_verts
=
{
0
:
[
interface12_vertices
[
0
],
#
df
.
Point
(
0.0
,
1.0
),
#
df
.
Point
(
1.0
,
1.0
),
#
interface12_vertices
[
1
]]
}
# subdomain2
sub_domain2_vertices
=
[
df
.
Point
(
0.0
,
0.0
),
df
.
Point
(
1.0
,
0.0
),
interface12_vertices
[
1
],
interface12_vertices
[
0
]
]
subdomain2_outer_boundary_verts
=
{
0
:
[
interface12_vertices
[
1
],
#
df
.
Point
(
1.0
,
0.0
),
#
df
.
Point
(
0.0
,
0.0
),
#
interface12_vertices
[
0
]]
}
# subdomain2_outer_boundary_verts = {
# 0: [interface12_vertices[0], df.Point(0.0,0.0)],#
# 1: [df.Point(0.0,0.0), df.Point(1.0,0.0)], #
# 2: [df.Point(1.0,0.0), interface12_vertices[1]]
# }
# subdomain2_outer_boundary_verts = {
# 0: None
# }
# list of subdomains given by the boundary polygon vertices.
# Subdomains are given as a list of dolfin points forming
# a closed polygon, such that mshr.Polygon(subdomain_def_points[i]) can be used
# to create the subdomain. subdomain_def_points[0] contains the
# vertices of the global simulation domain and subdomain_def_points[i] contains the
# vertices of the subdomain i.
subdomain_def_points
=
[
sub_domain0_vertices
,
#
sub_domain1_vertices
,
#
sub_domain2_vertices
]
# in the below list, index 0 corresponds to the 12 interface which has index 1
interface_def_points
=
[
interface12_vertices
]
# if a subdomain has no outer boundary write None instead, i.e.
# i: None
# if i is the index of the inner subdomain.
outer_boundary_def_points
=
{
# subdomain number
1
:
subdomain1_outer_boundary_verts
,
2
:
subdomain2_outer_boundary_verts
}
# adjacent_subdomains[i] contains the indices of the subdomains sharing the
# interface i (i.e. given by interface_def_points[i]).
adjacent_subdomains
=
[[
1
,
2
]]
isRichards
=
{
1
:
False
,
#
2
:
False
}
############ GRID ########################ü
mesh_resolution
=
40
timestep_size
=
5
*
0.0001
number_of_timesteps
=
1000
# decide how many timesteps you want analysed. Analysed means, that we write out
# subsequent errors of the L-iteration within the timestep.
number_of_timesteps_to_analyse
=
11
starttime
=
0
viscosity
=
{
#
# subdom_num : viscosity
1
:
{
'
wetting
'
:
1
,
'
nonwetting
'
:
1
/
50
},
#
2
:
{
'
wetting
'
:
1
,
'
nonwetting
'
:
1
/
50
}
}
porosity
=
{
#
# subdom_num : porosity
1
:
1
,
#
2
:
1
}
L
=
{
#
# subdom_num : subdomain L for L-scheme
1
:
{
'
wetting
'
:
0.25
,
'
nonwetting
'
:
0.25
},
#
2
:
{
'
wetting
'
:
0.25
,
'
nonwetting
'
:
0.25
}
}
lambda_param
=
{
#
# subdom_num : lambda parameter for the L-scheme
1
:
{
'
wetting
'
:
20
,
'
nonwetting
'
:
35
},
#
2
:
{
'
wetting
'
:
20
,
'
nonwetting
'
:
35
}
}
## relative permeabilty functions on subdomain 1
def
rel_perm1w
(
s
):
# relative permeabilty wetting on subdomain1
return
s
**
2
def
rel_perm1nw
(
s
):
# relative permeabilty nonwetting on subdomain1
return
(
1
-
s
)
**
3
_rel_perm1w
=
ft
.
partial
(
rel_perm1w
)
_rel_perm1nw
=
ft
.
partial
(
rel_perm1nw
)
subdomain1_rel_perm
=
{
'
wetting
'
:
_rel_perm1w
,
#
'
nonwetting
'
:
_rel_perm1nw
}
## relative permeabilty functions on subdomain 2
def
rel_perm2w
(
s
):
# relative permeabilty wetting on subdomain2
return
s
**
3
def
rel_perm2nw
(
s
):
# relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2
return
(
1
-
s
)
**
2
_rel_perm2w
=
ft
.
partial
(
rel_perm2w
)
_rel_perm2nw
=
ft
.
partial
(
rel_perm2nw
)
subdomain2_rel_perm
=
{
'
wetting
'
:
_rel_perm2w
,
#
'
nonwetting
'
:
_rel_perm2nw
}
## dictionary of relative permeabilties on all domains.
relative_permeability
=
{
#
1
:
subdomain1_rel_perm
,
2
:
subdomain2_rel_perm
}
# S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where
# we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw
def
saturation
(
capillary_pressure
,
n_index
,
alpha
):
# inverse capillary pressure-saturation-relationship
return
df
.
conditional
(
capillary_pressure
>
0
,
1
/
((
1
+
(
alpha
*
capillary_pressure
)
**
n_index
)
**
((
n_index
-
1
)
/
n_index
)),
1
)
# S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where
# we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw
def
saturation_sym
(
capillary_pressure
,
n_index
,
alpha
):
# inverse capillary pressure-saturation-relationship
#df.conditional(capillary_pressure > 0,
return
1
/
((
1
+
(
alpha
*
capillary_pressure
)
**
n_index
)
**
((
n_index
-
1
)
/
n_index
))
S_pc_rel
=
{
#
1
:
ft
.
partial
(
saturation_sym
,
n_index
=
3
,
alpha
=
0.001
),
# n= 3 stands for non-uniform porous media
2
:
ft
.
partial
(
saturation_sym
,
n_index
=
6
,
alpha
=
0.001
)
# n=6 stands for uniform porous media matrix (siehe Helmig)
}
S_pc_rel_sym
=
{
#
1
:
ft
.
partial
(
saturation_sym
,
n_index
=
sym
.
Symbol
(
'
n
'
),
alpha
=
sym
.
Symbol
(
'
a
'
)),
# n= 3 stands for non-uniform porous media
2
:
ft
.
partial
(
saturation_sym
,
n_index
=
sym
.
Symbol
(
'
n
'
),
alpha
=
sym
.
Symbol
(
'
a
'
))
# n=6 stands for uniform porous media matrix (siehe Helmig)
}
#### Manufacture source expressions with sympy
###############################################################################
## subdomain1
x
,
y
=
sym
.
symbols
(
'
x[0], x[1]
'
)
# needed by UFL
t
=
sym
.
symbols
(
'
t
'
,
positive
=
True
)
#f = -sym.diff(u, x, 2) - sym.diff(u, y, 2) # -Laplace(u)
#f = sym.simplify(f) # simplify f
p1_w
=
1
-
(
1
+
t
**
2
)
*
(
1
+
x
**
2
+
(
y
-
0.5
)
**
2
)
p1_nw
=
t
*
(
1
-
(
y
-
0.5
)
-
x
**
2
)
**
2
-
sym
.
sqrt
(
2
+
t
**
2
)
*
(
1
-
(
y
-
0.5
))
#dtS1_w = sym.diff(S_pc_rel_sym[1](p1_nw - p1_w), t, 1)
#dtS1_nw = -sym.diff(S_pc_rel_sym[1](p1_nw - p1_w), t, 1)
dtS1_w
=
porosity
[
1
]
*
sym
.
diff
(
S_pc_rel
[
1
](
p1_nw
-
p1_w
),
t
,
1
)
dtS1_nw
=
-
porosity
[
1
]
*
sym
.
diff
(
S_pc_rel
[
1
](
p1_nw
-
p1_w
),
t
,
1
)
print
(
"
dtS1_w =
"
,
dtS1_w
,
"
\n
"
)
print
(
"
dtS1_nw =
"
,
dtS1_nw
,
"
\n
"
)
#dxdxflux1_w = -sym.diff(relative_permeability[1]['wetting'](S_pc_rel_sym[1](p1_nw - p1_w))*sym.diff(p1_w, x, 1), x, 1)
#dydyflux1_w = -sym.diff(relative_permeability[1]['wetting'](S_pc_rel_sym[1](p1_nw - p1_w))*sym.diff(p1_w, y, 1), y, 1)
dxdxflux1_w
=
-
1
/
viscosity
[
1
][
'
wetting
'
]
*
sym
.
diff
(
relative_permeability
[
1
][
'
wetting
'
](
S_pc_rel
[
1
](
p1_nw
-
p1_w
))
*
sym
.
diff
(
p1_w
,
x
,
1
),
x
,
1
)
dydyflux1_w
=
-
1
/
viscosity
[
1
][
'
wetting
'
]
*
sym
.
diff
(
relative_permeability
[
1
][
'
wetting
'
](
S_pc_rel
[
1
](
p1_nw
-
p1_w
))
*
sym
.
diff
(
p1_w
,
y
,
1
),
y
,
1
)
rhs1_w
=
dtS1_w
+
dxdxflux1_w
+
dydyflux1_w
rhs1_w
=
sym
.
printing
.
ccode
(
rhs1_w
)
print
(
"
rhs_w =
"
,
rhs1_w
,
"
\n
"
)
#rhs_w = sym.expand(rhs_w)
#print("rhs_w", rhs_w, "\n")
#rhs_w = sym.collect(rhs_w, x)
#print("rhs_w", rhs_w, "\n")
#dxdxflux1_nw = -sym.diff(relative_permeability[1]['nonwetting'](S_pc_rel_sym[1](p1_nw - p1_w))*sym.diff(p1_nw, x, 1), x, 1)
#dydyflux1_nw = -sym.diff(relative_permeability[1]['nonwetting'](S_pc_rel_sym[1](p1_nw - p1_w))*sym.diff(p1_nw, y, 1), y, 1)
dxdxflux1_nw
=
-
1
/
viscosity
[
1
][
'
nonwetting
'
]
*
sym
.
diff
(
relative_permeability
[
1
][
'
nonwetting
'
](
1
-
S_pc_rel
[
1
](
p1_nw
-
p1_w
))
*
sym
.
diff
(
p1_nw
,
x
,
1
),
x
,
1
)
dydyflux1_nw
=
-
1
/
viscosity
[
1
][
'
nonwetting
'
]
*
sym
.
diff
(
relative_permeability
[
1
][
'
nonwetting
'
](
1
-
S_pc_rel
[
1
](
p1_nw
-
p1_w
))
*
sym
.
diff
(
p1_nw
,
y
,
1
),
y
,
1
)
rhs1_nw
=
dtS1_nw
+
dxdxflux1_nw
+
dydyflux1_nw
rhs1_nw
=
sym
.
printing
.
ccode
(
rhs1_nw
)
print
(
"
rhs_nw =
"
,
rhs1_nw
,
"
\n
"
)
## subdomain2
p2_w
=
1
-
(
1
+
t
**
2
)
*
(
1
+
x
**
2
)
p2_nw
=
t
*
(
1
-
x
**
2
)
**
2
-
sym
.
sqrt
(
2
+
t
**
2
)
*
(
1
-
(
y
-
0.5
))
#dtS2_w = sym.diff(S_pc_rel_sym[2](p2_nw - p2_w), t, 1)
#dtS2_nw = -sym.diff(S_pc_rel_sym[2](p2_nw - p2_w), t, 1)
dtS2_w
=
porosity
[
2
]
*
sym
.
diff
(
S_pc_rel
[
2
](
p2_nw
-
p2_w
),
t
,
1
)
dtS2_nw
=
-
porosity
[
2
]
*
sym
.
diff
(
S_pc_rel
[
2
](
p2_nw
-
p2_w
),
t
,
1
)
print
(
"
dtS2_w =
"
,
dtS2_w
,
"
\n
"
)
print
(
"
dtS2_nw =
"
,
dtS2_nw
,
"
\n
"
)
#dxdxflux2_w = -sym.diff(relative_permeability[2]['wetting'](S_pc_rel_sym[2](p2_nw - p2_w))*sym.diff(p2_w, x, 1), x, 1)
#dydyflux2_w = -sym.diff(relative_permeability[2]['wetting'](S_pc_rel_sym[2](p2_nw - p2_w))*sym.diff(p2_w, y, 1), y, 1)
dxdxflux2_w
=
-
1
/
viscosity
[
2
][
'
wetting
'
]
*
sym
.
diff
(
relative_permeability
[
2
][
'
wetting
'
](
S_pc_rel
[
2
](
p2_nw
-
p2_w
))
*
sym
.
diff
(
p2_w
,
x
,
1
),
x
,
1
)
dydyflux2_w
=
-
1
/
viscosity
[
2
][
'
wetting
'
]
*
sym
.
diff
(
relative_permeability
[
2
][
'
wetting
'
](
S_pc_rel
[
2
](
p2_nw
-
p2_w
))
*
sym
.
diff
(
p2_w
,
y
,
1
),
y
,
1
)
rhs2_w
=
dtS2_w
+
dxdxflux2_w
+
dydyflux2_w
rhs2_w
=
sym
.
printing
.
ccode
(
rhs2_w
)
print
(
"
rhs2_w =
"
,
rhs2_w
,
"
\n
"
)
#rhs_w = sym.expand(rhs_w)
#print("rhs_w", rhs_w, "\n")
#rhs_w = sym.collect(rhs_w, x)
#print("rhs_w", rhs_w, "\n")
#dxdxflux2_nw = -sym.diff(relative_permeability[2]['nonwetting'](S_pc_rel_sym[2](p2_nw - p2_w))*sym.diff(p2_nw, x, 1), x, 1)
#dydyflux2_nw = -sym.diff(relative_permeability[2]['nonwetting'](S_pc_rel_sym[2](p2_nw - p2_w))*sym.diff(p2_nw, y, 1), y, 1)
dxdxflux2_nw
=
-
1
/
viscosity
[
2
][
'
nonwetting
'
]
*
sym
.
diff
(
relative_permeability
[
2
][
'
nonwetting
'
](
1
-
S_pc_rel
[
2
](
p2_nw
-
p2_w
))
*
sym
.
diff
(
p2_nw
,
x
,
1
),
x
,
1
)
dydyflux2_nw
=
-
1
/
viscosity
[
2
][
'
nonwetting
'
]
*
sym
.
diff
(
relative_permeability
[
2
][
'
nonwetting
'
](
1
-
S_pc_rel
[
2
](
p2_nw
-
p2_w
))
*
sym
.
diff
(
p2_nw
,
y
,
1
),
y
,
1
)
rhs2_nw
=
dtS2_nw
+
dxdxflux2_nw
+
dydyflux2_nw
rhs2_nw
=
sym
.
printing
.
ccode
(
rhs2_nw
)
print
(
"
rhs2_nw =
"
,
rhs2_nw
,
"
\n
"
)
###############################################################################
source_expression
=
{
1
:
{
'
wetting
'
:
rhs1_w
,
'
nonwetting
'
:
rhs1_nw
},
2
:
{
'
wetting
'
:
rhs2_w
,
'
nonwetting
'
:
rhs2_nw
}
}
p1_w_00
=
p1_w
.
subs
(
t
,
0
)
p1_nw_00
=
p1_nw
.
subs
(
t
,
0
)
p2_w_00
=
p2_w
.
subs
(
t
,
0
)
p2_nw_00
=
p2_nw
.
subs
(
t
,
0
)
# p1_w_00 = sym.printing.ccode(p1_w_00)
initial_condition
=
{
1
:
{
'
wetting
'
:
sym
.
printing
.
ccode
(
p1_w_00
),
'
nonwetting
'
:
sym
.
printing
.
ccode
(
p1_nw_00
)},
#
2
:
{
'
wetting
'
:
sym
.
printing
.
ccode
(
p2_w_00
),
'
nonwetting
'
:
sym
.
printing
.
ccode
(
p2_nw_00
)}
}
exact_solution
=
{
1
:
{
'
wetting
'
:
sym
.
printing
.
ccode
(
p1_w
),
'
nonwetting
'
:
sym
.
printing
.
ccode
(
p1_nw
)},
#
2
:
{
'
wetting
'
:
sym
.
printing
.
ccode
(
p2_w
),
'
nonwetting
'
:
sym
.
printing
.
ccode
(
p2_nw
)}
}
# similary to the outer boundary dictionary, if a patch has no outer boundary
# None should be written instead of an expression. This is a bit of a brainfuck:
# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind.
# Since a domain patch can have several disjoint outer boundary parts, the expressions
# need to get an enumaration index which starts at 0. So dirichletBC[ind][j] is
# the dictionary of outer dirichlet conditions of subdomain ind and boundary part j.
# finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting'] return
# the actual expression needed for the dirichlet condition for both phases if present.
dirichletBC
=
{
#subdomain index: {outer boudary part index: {phase: expression}}
1
:
{
0
:
{
'
wetting
'
:
sym
.
printing
.
ccode
(
p1_w
),
'
nonwetting
'
:
sym
.
printing
.
ccode
(
p1_nw
)}},
2
:
{
0
:
{
'
wetting
'
:
sym
.
printing
.
ccode
(
p2_w
),
'
nonwetting
'
:
sym
.
printing
.
ccode
(
p2_nw
)}}
}
# def saturation(pressure, subdomain_index):
# # inverse capillary pressure-saturation-relationship
# return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1)
#
# sa
write_to_file
=
{
'
meshes_and_markers
'
:
True
,
'
L_iterations
'
:
True
}
# initialise LDD simulation class
simulation
=
ldd
.
LDDsimulation
(
tol
=
1E-14
,
debug
=
False
)
simulation
.
set_parameters
(
output_dir
=
"
./output/
"
,
#
subdomain_def_points
=
subdomain_def_points
,
#
isRichards
=
isRichards
,
#
interface_def_points
=
interface_def_points
,
#
outer_boundary_def_points
=
outer_boundary_def_points
,
#
adjacent_subdomains
=
adjacent_subdomains
,
#
mesh_resolution
=
mesh_resolution
,
#
viscosity
=
viscosity
,
#
porosity
=
porosity
,
#
L
=
L
,
#
lambda_param
=
lambda_param
,
#
relative_permeability
=
relative_permeability
,
#
saturation
=
S_pc_rel
,
#
starttime
=
starttime
,
#
number_of_timesteps
=
number_of_timesteps
,
number_of_timesteps_to_analyse
=
number_of_timesteps_to_analyse
,
timestep_size
=
timestep_size
,
#
sources
=
source_expression
,
#
initial_conditions
=
initial_condition
,
#
dirichletBC_expression_strings
=
dirichletBC
,
#
exact_solution
=
exact_solution
,
#
write2file
=
write_to_file
,
#
)
simulation
.
initialise
()
# simulation.write_exact_solution_to_xdmf()
simulation
.
run
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment