Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
L
LDD-for-two-phase-flow-systems
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
David Seus
LDD-for-two-phase-flow-systems
Commits
cae6e8ce
Commit
cae6e8ce
authored
Sep 6, 2019
by
David Seus
Browse files
Options
Downloads
Patches
Plain Diff
add mesh study example
parent
c0d7a7d2
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
TP-TP-2-patch-pure-dd-avoid-interface-at-origin/mesh_study_convergence/TP-TP-2-patch-pure-dd-convergence-study.py
+565
-0
565 additions, 0 deletions
...dy_convergence/TP-TP-2-patch-pure-dd-convergence-study.py
with
565 additions
and
0 deletions
TP-TP-2-patch-pure-dd-avoid-interface-at-origin/mesh_study_convergence/TP-TP-2-patch-pure-dd-convergence-study.py
0 → 100755
+
565
−
0
View file @
cae6e8ce
#!/usr/bin/python3
import
dolfin
as
df
import
mshr
import
numpy
as
np
import
sympy
as
sym
import
typing
as
tp
import
domainPatch
as
dp
import
LDDsimulation
as
ldd
import
functools
as
ft
import
helpers
as
hlp
import
datetime
date
=
datetime
.
datetime
.
now
()
datestr
=
date
.
strftime
(
"
%Y-%m-%d
"
)
#import ufl as ufl
# init sympy session
sym
.
init_printing
()
use_case
=
"
TP-TP-2-patch-pure-dd
"
solver_tol
=
6E-7
max_iter_num
=
1000
FEM_Lagrange_degree
=
1
############ GRID #######################
# mesh_resolution = 20
timestep_size
=
0.0001
number_of_timesteps
=
1000
plot_timestep_every
=
10
# decide how many timesteps you want analysed. Analysed means, that we write out
# subsequent errors of the L-iteration within the timestep.
number_of_timesteps_to_analyse
=
0
starttime
=
0
Lw
=
0.25
#/timestep_size
Lnw
=
Lw
lambda_w
=
40
lambda_nw
=
40
include_gravity
=
False
debugflag
=
False
analyse_condition
=
True
output_string
=
"
./output/{}-{}_timesteps{}_P{}-solver_tol{}
"
.
format
(
datestr
,
use_case
,
number_of_timesteps
,
FEM_Lagrange_degree
,
solver_tol
)
##### Domain and Interface ####
# global simulation domain domain
sub_domain0_vertices
=
[
df
.
Point
(
-
1.0
,
-
1.0
),
#
df
.
Point
(
1.0
,
-
1.0
),
#
df
.
Point
(
1.0
,
1.0
),
#
df
.
Point
(
-
1.0
,
1.0
)]
# interface between subdomain1 and subdomain2
interface12_vertices
=
[
df
.
Point
(
-
1.0
,
0.0
),
df
.
Point
(
1.0
,
0.0
)
]
# subdomain1.
sub_domain1_vertices
=
[
interface12_vertices
[
0
],
interface12_vertices
[
1
],
sub_domain0_vertices
[
2
],
sub_domain0_vertices
[
3
]
]
# vertex coordinates of the outer boundaries. If it can not be specified as a
# polygon, use an entry per boundary polygon. This information is used for defining
# the Dirichlet boundary conditions. If a domain is completely internal, the
# dictionary entry should be 0: None
subdomain1_outer_boundary_verts
=
{
0
:
[
interface12_vertices
[
1
],
sub_domain0_vertices
[
2
],
sub_domain0_vertices
[
3
],
#
interface12_vertices
[
0
]]
}
# subdomain2
sub_domain2_vertices
=
[
sub_domain0_vertices
[
0
],
sub_domain0_vertices
[
1
],
interface12_vertices
[
1
],
interface12_vertices
[
0
]
]
subdomain2_outer_boundary_verts
=
{
0
:
[
interface12_vertices
[
0
],
#
sub_domain0_vertices
[
0
],
sub_domain0_vertices
[
1
],
interface12_vertices
[
1
]]
}
# subdomain2_outer_boundary_verts = {
# 0: [interface12_vertices[0], df.Point(0.0,0.0)],#
# 1: [df.Point(0.0,0.0), df.Point(1.0,0.0)], #
# 2: [df.Point(1.0,0.0), interface12_vertices[1]]
# }
# subdomain2_outer_boundary_verts = {
# 0: None
# }
# list of subdomains given by the boundary polygon vertices.
# Subdomains are given as a list of dolfin points forming
# a closed polygon, such that mshr.Polygon(subdomain_def_points[i]) can be used
# to create the subdomain. subdomain_def_points[0] contains the
# vertices of the global simulation domain and subdomain_def_points[i] contains the
# vertices of the subdomain i.
subdomain_def_points
=
[
sub_domain0_vertices
,
#
sub_domain1_vertices
,
#
sub_domain2_vertices
]
# in the below list, index 0 corresponds to the 12 interface which has index 1
interface_def_points
=
[
interface12_vertices
]
# if a subdomain has no outer boundary write None instead, i.e.
# i: None
# if i is the index of the inner subdomain.
outer_boundary_def_points
=
{
# subdomain number
1
:
subdomain1_outer_boundary_verts
,
2
:
subdomain2_outer_boundary_verts
}
# adjacent_subdomains[i] contains the indices of the subdomains sharing the
# interface i (i.e. given by interface_def_points[i]).
adjacent_subdomains
=
[[
1
,
2
]]
isRichards
=
{
1
:
False
,
#
2
:
False
}
viscosity
=
{
#
# subdom_num : viscosity
1
:
{
'
wetting
'
:
1
,
'
nonwetting
'
:
1
},
#
2
:
{
'
wetting
'
:
1
,
'
nonwetting
'
:
1
}
}
porosity
=
{
#
# subdom_num : porosity
1
:
1
,
#
2
:
1
}
# Dict of the form: { subdom_num : density }
densities
=
{
1
:
{
'
wetting
'
:
1
,
#997,
'
nonwetting
'
:
1
},
#1225},
2
:
{
'
wetting
'
:
1
,
#997,
'
nonwetting
'
:
1
},
#1225},
}
gravity_acceleration
=
9.81
L
=
{
#
# subdom_num : subdomain L for L-scheme
1
:
{
'
wetting
'
:
Lw
,
'
nonwetting
'
:
Lnw
},
#
2
:
{
'
wetting
'
:
Lw
,
'
nonwetting
'
:
Lnw
}
}
lambda_param
=
{
#
# subdom_num : lambda parameter for the L-scheme
1
:
{
'
wetting
'
:
lambda_w
,
'
nonwetting
'
:
lambda_nw
},
#
2
:
{
'
wetting
'
:
lambda_w
,
'
nonwetting
'
:
lambda_nw
}
}
## relative permeabilty functions on subdomain 1
def
rel_perm1w
(
s
):
# relative permeabilty wetting on subdomain1
return
s
**
2
def
rel_perm1nw
(
s
):
# relative permeabilty nonwetting on subdomain1
return
(
1
-
s
)
**
2
_rel_perm1w
=
ft
.
partial
(
rel_perm1w
)
_rel_perm1nw
=
ft
.
partial
(
rel_perm1nw
)
subdomain1_rel_perm
=
{
'
wetting
'
:
_rel_perm1w
,
#
'
nonwetting
'
:
_rel_perm1nw
}
## relative permeabilty functions on subdomain 2
def
rel_perm2w
(
s
):
# relative permeabilty wetting on subdomain2
return
s
**
2
def
rel_perm2nw
(
s
):
# relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2
return
(
1
-
s
)
**
2
_rel_perm2w
=
ft
.
partial
(
rel_perm2w
)
_rel_perm2nw
=
ft
.
partial
(
rel_perm2nw
)
subdomain2_rel_perm
=
{
'
wetting
'
:
_rel_perm2w
,
#
'
nonwetting
'
:
_rel_perm2nw
}
## dictionary of relative permeabilties on all domains.
relative_permeability
=
{
#
1
:
subdomain1_rel_perm
,
2
:
subdomain2_rel_perm
}
# definition of the derivatives of the relative permeabilities
# relative permeabilty functions on subdomain 1
def
rel_perm1w_prime
(
s
):
# relative permeabilty on subdomain1
return
2
*
s
def
rel_perm1nw_prime
(
s
):
# relative permeabilty on subdomain1
return
-
2
*
(
1
-
s
)
# # definition of the derivatives of the relative permeabilities
# # relative permeabilty functions on subdomain 1
def
rel_perm2w_prime
(
s
):
# relative permeabilty on subdomain1
return
2
*
s
def
rel_perm2nw_prime
(
s
):
# relative permeabilty on subdomain1
return
-
2
*
(
1
-
s
)
_rel_perm1w_prime
=
ft
.
partial
(
rel_perm1w_prime
)
_rel_perm1nw_prime
=
ft
.
partial
(
rel_perm1nw_prime
)
_rel_perm2w_prime
=
ft
.
partial
(
rel_perm2w_prime
)
_rel_perm2nw_prime
=
ft
.
partial
(
rel_perm2nw_prime
)
subdomain1_rel_perm_prime
=
{
'
wetting
'
:
_rel_perm1w_prime
,
'
nonwetting
'
:
_rel_perm1nw_prime
}
subdomain2_rel_perm_prime
=
{
'
wetting
'
:
_rel_perm2w_prime
,
'
nonwetting
'
:
_rel_perm2nw_prime
}
# dictionary of relative permeabilties on all domains.
ka_prime
=
{
1
:
subdomain1_rel_perm_prime
,
2
:
subdomain2_rel_perm_prime
,
}
def
saturation
(
pc
,
index
):
# inverse capillary pressure-saturation-relationship
return
df
.
conditional
(
pc
>
0
,
1
/
((
1
+
pc
)
**
(
1
/
(
index
+
1
))),
1
)
def
pc_sat_rel_sym
(
S
,
index
):
# capillary pressure-saturation-relationship
return
1
/
S
**
(
index
+
1
)
-
1
pc_saturation_sym
=
{
1
:
ft
.
partial
(
pc_sat_rel_sym
,
index
=
1
),
2
:
ft
.
partial
(
pc_sat_rel_sym
,
index
=
1
),
}
def
saturation_sym
(
pc
,
index
):
# inverse capillary pressure-saturation-relationship
return
1
/
((
1
+
pc
)
**
(
1
/
(
index
+
1
)))
# derivative of S-pc relationship with respect to pc. This is needed for the
# construction of a analytic solution.
def
saturation_sym_prime
(
pc
,
index
):
# inverse capillary pressure-saturation-relationship
return
-
1
/
((
index
+
1
)
*
(
1
+
pc
)
**
((
index
+
2
)
/
(
index
+
1
)))
# note that the conditional definition of S-pc in the nonsymbolic part will be
# incorporated in the construction of the exact solution below.
S_pc_sym
=
{
1
:
ft
.
partial
(
saturation_sym
,
index
=
1
),
2
:
ft
.
partial
(
saturation_sym
,
index
=
1
),
# 3: ft.partial(saturation_sym, index=2),
# 4: ft.partial(saturation_sym, index=1)
}
S_pc_sym_prime
=
{
1
:
ft
.
partial
(
saturation_sym_prime
,
index
=
1
),
2
:
ft
.
partial
(
saturation_sym_prime
,
index
=
1
),
# 3: ft.partial(saturation_sym_prime, index=2),
# 4: ft.partial(saturation_sym_prime, index=1)
}
sat_pressure_relationship
=
{
1
:
ft
.
partial
(
saturation
,
index
=
1
),
2
:
ft
.
partial
(
saturation
,
index
=
1
),
# 3: ft.partial(saturation, index=2),
# 4: ft.partial(saturation, index=1)
}
#
# def saturation(pc, n_index, alpha):
# # inverse capillary pressure-saturation-relationship
# return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1)
#
# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where
# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw
# def saturation_sym(pc, n_index, alpha):
# # inverse capillary pressure-saturation-relationship
# #df.conditional(pc > 0,
# return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index))
#
#
# # derivative of S-pc relationship with respect to pc. This is needed for the
# # construction of a analytic solution.
# def saturation_sym_prime(pc, n_index, alpha):
# # inverse capillary pressure-saturation-relationship
# return -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1)) / ( (1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index) )
#
# # note that the conditional definition of S-pc in the nonsymbolic part will be
# # incorporated in the construction of the exact solution below.
# S_pc_sym = {
# 1: ft.partial(saturation_sym, n_index=3, alpha=0.001),
# 2: ft.partial(saturation_sym, n_index=6, alpha=0.001),
# # 3: ft.partial(saturation_sym, n_index=3, alpha=0.001),
# # 4: ft.partial(saturation_sym, n_index=3, alpha=0.001),
# # 5: ft.partial(saturation_sym, n_index=3, alpha=0.001),
# # 6: ft.partial(saturation_sym, n_index=3, alpha=0.001)
# }
#
# S_pc_sym_prime = {
# 1: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
# 2: ft.partial(saturation_sym_prime, n_index=6, alpha=0.001),
# # 3: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
# # 4: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
# # 5: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
# # 6: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001)
# }
#
# sat_pressure_relationship = {
# 1: ft.partial(saturation, n_index=3, alpha=0.001),
# 2: ft.partial(saturation, n_index=6, alpha=0.001),p1w + Spc[1]
# # 3: ft.partial(saturation, n_index=3, alpha=0.001),
# # 4: ft.partial(saturation, n_index=3, alpha=0.001),
# # 5: ft.partial(saturation, n_index=3, alpha=0.001),
# # 6: ft.partial(saturation, n_index=3, alpha=0.001)
# }
#
#############################################
# Manufacture source expressions with sympy #
#############################################
x
,
y
=
sym
.
symbols
(
'
x[0], x[1]
'
)
# needed by UFL
t
=
sym
.
symbols
(
'
t
'
,
positive
=
True
)
symbols
=
{
"
x
"
:
x
,
"
y
"
:
y
,
"
t
"
:
t
}
# epsilon_x_inner = 0.7
# epsilon_x_outer = 0.99
# epsilon_y_inner = epsilon_x_inner
# epsilon_y_outer = epsilon_x_outer
#
# def mollifier(x, epsilon):
# """ one d mollifier """
# out_expr = sym.exp(-1/(1-(x/epsilon)**2) + 1)
# return out_expr
#
# mollifier_handle = ft.partial(mollifier, epsilon=epsilon_x_inner)
#
# pw_sym_x = sym.Piecewise(
# (mollifier_handle(x), x**2 < epsilon_x_outer**2),
# (0, True)
# )
# pw_sym_y = sym.Piecewise(
# (mollifier_handle(y), y**2 < epsilon_y_outer**2),
# (0, True)
# )
#
# def mollifier2d(x, y, epsilon):
# """ one d mollifier """
# out_expr = sym.exp(-1/(1-(x**2 + y**2)/epsilon**2) + 1)
# return out_expr
#
# mollifier2d_handle = ft.partial(mollifier2d, epsilon=epsilon_x_outer)
#
# pw_sym2d_x = sym.Piecewise(
# (mollifier2d_handle(x, y), x**2 + y**2 < epsilon_x_outer**2),
# (0, True)
# )
#
# zero_on_epsilon_shrinking_of_subdomain = sym.Piecewise(
# (mollifier_handle(sym.sqrt(x**2 + y**2)+2*epsilon_x_inner), ((-2*epsilon_x_inner<sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<-epsilon_x_inner))),
# (0, ((-epsilon_x_inner<=sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<=epsilon_x_inner))),
# (mollifier_handle(sym.sqrt(x**2 + y**2)-2*epsilon_x_inner), ((epsilon_x_inner<sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<2*epsilon_x_inner))),
# (1, True),
# )
#
# zero_on_epsilon_shrinking_of_subdomain_x = sym.Piecewise(
# (mollifier_handle(x+2*epsilon_x_inner), ((-2*epsilon_x_inner<x) & (x<-epsilon_x_inner))),
# (0, ((-epsilon_x_inner<=x) & (x<=epsilon_x_inner))),
# (mollifier_handle(x-2*epsilon_x_inner), ((epsilon_x_inner<x) & (x<2*epsilon_x_inner))),
# (1, True),
# )
#
# zero_on_epsilon_shrinking_of_subdomain_y = sym.Piecewise(
# (1, y<=-2*epsilon_x_inner),
# (mollifier_handle(y+2*epsilon_x_inner), ((-2*epsilon_x_inner<y) & (y<-epsilon_x_inner))),
# (0, ((-epsilon_x_inner<=y) & (y<=epsilon_x_inner))),
# (mollifier_handle(y-2*epsilon_x_inner), ((epsilon_x_inner<y) & (y<2*epsilon_x_inner))),
# (1, True),
# )
#
# zero_on_shrinking = zero_on_epsilon_shrinking_of_subdomain #zero_on_epsilon_shrinking_of_subdomain_x + zero_on_epsilon_shrinking_of_subdomain_y
# gaussian = pw_sym2d_x# pw_sym_y*pw_sym_x
# cutoff = gaussian/(gaussian + zero_on_shrinking)
#
#
# sat_sym = {
# 1: 0.5 + 0.25*sym.sin(x-t)*sym.cos(y-t),
# 2: 0.5 + 0.25*sym.sin(x-t)*sym.cos(y-t)
# }
#
# Spc = {
# 1: sym.Piecewise((pc_saturation_sym[1](sat_sym[1]), sat_sym[1] > 0), (pc_saturation_sym[1](sat_sym[1]), 1>=sat_sym[1]), (0, True)),
# 2: sym.Piecewise((pc_saturation_sym[2](sat_sym[2]), sat_sym[2] > 0), (pc_saturation_sym[2](sat_sym[2]), 2>=sat_sym[2]), (0, True))
# }
#
# p1w = (-1 - (1+t*t)*(1 + x*x + y*y))#*cutoff
# p2w = p1w
# p_e_sym = {
# 1: {'wetting': p1w,
# 'nonwetting': (p1w + Spc[1])}, #*cutoff},
# 2: {'wetting': p2w,
# 'nonwetting': (p2w + Spc[2])}, #*cutoff},
# }
p_e_sym
=
{
1
:
{
'
wetting
'
:
(
-
6
-
(
1
+
t
*
t
)
*
(
1
+
x
*
x
+
y
*
y
)),
#*cutoff,
'
nonwetting
'
:
(
-
1
-
t
*
(
1.1
+
y
+
x
**
2
))},
#*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2},
2
:
{
'
wetting
'
:
(
-
6
-
(
1
+
t
*
t
)
*
(
1
+
x
*
x
+
y
*
y
)),
#*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2,
'
nonwetting
'
:
(
-
1
-
t
*
(
1.1
+
y
+
x
**
2
))},
#*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2},
# 1: {'wetting': (-5 - (1+t*t)*(1 + x*x + y*y)), #*cutoff,
# 'nonwetting': (-1 -t*(1.1+y + x**2))}, #*cutoff},
# 2: {'wetting': (-5 - (1+t*t)*(1 + x*x + y*y)), #*cutoff,
# 'nonwetting': (-1 -t*(1.1+y + x**2))}, #*cutoff},
}
pc_e_sym
=
dict
()
for
subdomain
,
isR
in
isRichards
.
items
():
if
isR
:
pc_e_sym
.
update
({
subdomain
:
-
p_e_sym
[
subdomain
][
'
wetting
'
]})
else
:
pc_e_sym
.
update
({
subdomain
:
p_e_sym
[
subdomain
][
'
nonwetting
'
]
-
p_e_sym
[
subdomain
][
'
wetting
'
]})
exact_solution_example
=
hlp
.
generate_exact_solution_expressions
(
symbols
=
symbols
,
isRichards
=
isRichards
,
symbolic_pressure
=
p_e_sym
,
symbolic_capillary_pressure
=
pc_e_sym
,
saturation_pressure_relationship
=
S_pc_sym
,
saturation_pressure_relationship_prime
=
S_pc_sym_prime
,
viscosity
=
viscosity
,
#
porosity
=
porosity
,
relative_permeability
=
relative_permeability
,
#
relative_permeability_prime
=
ka_prime
,
densities
=
densities
,
#
gravity_acceleration
=
gravity_acceleration
,
include_gravity
=
include_gravity
,
)
source_expression
=
exact_solution_example
[
'
source
'
]
exact_solution
=
exact_solution_example
[
'
exact_solution
'
]
initial_condition
=
exact_solution_example
[
'
initial_condition
'
]
# Dictionary of dirichlet boundary conditions.
dirichletBC
=
dict
()
# similarly to the outer boundary dictionary, if a patch has no outer boundary
# None should be written instead of an expression.
# This is a bit of a brainfuck:
# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind.
# Since a domain patch can have several disjoint outer boundary parts, the
# expressions need to get an enumaration index which starts at 0.
# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of
# subdomain ind and boundary part j.
# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting']
# return the actual expression needed for the dirichlet condition for both
# phases if present.
# subdomain index: {outer boudary part index: {phase: expression}}
for
subdomain
in
isRichards
.
keys
():
# if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None
if
outer_boundary_def_points
[
subdomain
]
is
None
:
dirichletBC
.
update
({
subdomain
:
None
})
else
:
dirichletBC
.
update
({
subdomain
:
dict
()})
# set the dirichlet conditions to be the same code as exact solution on
# the subdomain.
for
outer_boundary_ind
in
outer_boundary_def_points
[
subdomain
].
keys
():
dirichletBC
[
subdomain
].
update
(
{
outer_boundary_ind
:
exact_solution
[
subdomain
]}
)
# def saturation(pressure, subdomain_index):
# # inverse capillary pressure-saturation-relationship
# return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1)
#
# sa
write_to_file
=
{
'
meshes_and_markers
'
:
True
,
'
L_iterations
'
:
True
,
'
solutions
'
:
False
,
'
absolute_differences
'
:
False
,
'
condition_numbers
'
:
False
,
'
subsequent_errors
'
:
False
}
# initialise LDD simulation class
simulation
=
ldd
.
LDDsimulation
(
tol
=
1E-14
,
LDDsolver_tol
=
solver_tol
,
debug
=
debugflag
,
max_iter_num
=
max_iter_num
,
FEM_Lagrange_degree
=
FEM_Lagrange_degree
,
plot_timestep_every
=
plot_timestep_every
)
resolutions
=
[
5
,
10
,
15
]
#, 20, 25, 30, 35, 40, 45, 50]
for
mesh_resolution
in
resolutions
:
simulation
.
set_parameters
(
use_case
=
use_case
,
output_dir
=
output_string
,
subdomain_def_points
=
subdomain_def_points
,
isRichards
=
isRichards
,
interface_def_points
=
interface_def_points
,
outer_boundary_def_points
=
outer_boundary_def_points
,
adjacent_subdomains
=
adjacent_subdomains
,
mesh_resolution
=
mesh_resolution
,
viscosity
=
viscosity
,
porosity
=
porosity
,
L
=
L
,
lambda_param
=
lambda_param
,
relative_permeability
=
relative_permeability
,
saturation
=
sat_pressure_relationship
,
starttime
=
starttime
,
number_of_timesteps
=
number_of_timesteps
,
number_of_timesteps_to_analyse
=
number_of_timesteps_to_analyse
,
timestep_size
=
timestep_size
,
sources
=
source_expression
,
initial_conditions
=
initial_condition
,
dirichletBC_expression_strings
=
dirichletBC
,
exact_solution
=
exact_solution
,
densities
=
densities
,
include_gravity
=
include_gravity
,
write2file
=
write_to_file
,
)
simulation
.
initialise
()
# simulation.write_exact_solution_to_xdmf()
simulation
.
run
(
analyse_condition
=
analyse_condition
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment