Skip to content
Snippets Groups Projects
Commit a6c6b8bf authored by David Seus's avatar David Seus
Browse files

adjust readme, bring TP-R-2-patch-test.py up to par.

parent 2a5e9934
No related branches found
No related tags found
No related merge requests found
......@@ -69,3 +69,256 @@ simulation data. Chose a descriptive name for the usecase you are simulating.!
output the content of the script to stdout and into the logfile if the script
`run_simulation` is used to start the simulation. The latter should be
contained in all folders.
### SOLVER CONFIG
~~~python
# GENERAL SOLVER CONFIG ######################################################
# maximal iteration per timestep
max_iter_num = 500
FEM_Lagrange_degree = 1
~~~
This block sets the maximal number of L-iterations `max_iter_num` that the
LDD solver gets for the calculation of each time step.
`FEM_Lagrange_degree` sets the degree of FEM ansatz functions that are used.
While the communication of dofs over interfaces has been writen in a way to
allow for general anasatz functions, other parts of the code have not.
If higher order FEM methods are to be used, the code will have to be adjusted.
### GRID AND MESH STUDY CONFIG
~~~python
# GRID AND MESH STUDY SPECIFICATIONS #########################################
mesh_study = True
resolutions = {
# 1: 1e-6,
# 2: 1e-6,
# 4: 1e-6,
# 8: 1e-6,
# 16: 5e-6,
# 32: 5e-6,
64: 2e-6,
# 128: 1e-6,
# 256: 1e-6,
}
# starttimes gives a list of starttimes to run the simulation from.
# The list is looped over and a simulation is run with t_0 as initial time
# for each element t_0 in starttimes.
starttimes = {0: 0.0}
timestep_size = 0.001
number_of_timesteps = 20
~~~
This block sets mesh parameters, number of timesteps to be simulated, timestep
size as well as whether or not a mesh study is being performed.
In detail:
- ~python mesh_study = True/False~ Toggle mesh study mode.
This changes the output slightly. Have a look at examples in the `mesh_study`
folders.
- resolutions = {
# 1: 1e-6,
# 2: 1e-6,
# 4: 1e-6,
# 8: 1e-6,
# 16: 5e-6,
# 32: 5e-6,
64: 2e-6,
# 128: 1e-6,
# 256: 1e-6,
}
- # starttimes gives a list of starttimes to run the simulation from.
# The list is looped over and a simulation is run with t_0 as initial time
# for each element t_0 in starttimes.
starttimes = {0: 0.0}
- timestep_size = 0.001
- number_of_timesteps = 20
### LDD SCHEME PARAMATERS
~~~python
# LDD scheme parameters ######################################################
Lw1 = 0.25 #/timestep_size
Lnw1= 0.25
Lw2 = 0.5 #/timestep_size
Lnw2= 0.25
lambda_w = 40
lambda_nw = 40
include_gravity = True
debugflag = True
analyse_condition = False
~~~
### I/O CONFIG
~~~python
# I/O CONFIG #################################################################
# when number_of_timesteps is high, it might take a long time to write all
# timesteps to disk. Therefore, you can choose to only write data of every
# plot_timestep_every timestep to disk.
plot_timestep_every = 4
# Decide how many timesteps you want analysed. Analysed means, that
# subsequent errors of the L-iteration within the timestep are written out.
number_of_timesteps_to_analyse = 5
# fine grained control over data to be written to disk in the mesh study case
# as well as for a regular simuation for a fixed grid.
if mesh_study:
write_to_file = {
# output the relative errornorm (integration in space) w.r.t. an exact
# solution for each timestep into a csv file.
'space_errornorms': True,
# save the mesh and marker functions to disk
'meshes_and_markers': True,
# save xdmf/h5 data for each LDD iteration for timesteps determined by
# number_of_timesteps_to_analyse. I/O intensive!
'L_iterations_per_timestep': False,
# save solution to xdmf/h5.
'solutions': True,
# save absolute differences w.r.t an exact solution to xdmf/h5 file
# to monitor where on the domains errors happen
'absolute_differences': True,
# analyise condition numbers for timesteps determined by
# number_of_timesteps_to_analyse and save them over time to csv.
'condition_numbers': analyse_condition,
# output subsequent iteration errors measured in L^2 to csv for
# timesteps determined by number_of_timesteps_to_analyse.
# Usefull to monitor convergence of the acutal LDD solver.
'subsequent_errors': True
}
else:
write_to_file = {
'space_errornorms': True,
'meshes_and_markers': True,
'L_iterations_per_timestep': False,
'solutions': True,
'absolute_differences': True,
'condition_numbers': analyse_condition,
'subsequent_errors': True
}
~~~
### OUTPUT FILE STRING
~~~python
# OUTPUT FILE STRING #########################################################
output_string = "./output/{}-{}_timesteps{}_P{}".format(
datestr, use_case, number_of_timesteps, FEM_Lagrange_degree
)
~~~
### DOMAIN SUBSTRUCTURING
~~~python
# DOMAIN AND INTERFACE #######################################################
substructuring = dss.twoSoilLayers()
interface_def_points = substructuring.interface_def_points
adjacent_subdomains = substructuring.adjacent_subdomains
subdomain_def_points = substructuring.subdomain_def_points
outer_boundary_def_points = substructuring.outer_boundary_def_points
~~
### MODEL CONFIGURATION
~~~python
# MODEL CONFIGURATION #########################################################
isRichards = {
1: True, #
2: False
}
viscosity = {#
# subdom_num : viscosity
1: {'wetting' :1,
'nonwetting': 1/50}, #
2: {'wetting' :1,
'nonwetting': 1/50}
}
porosity = {#
# subdom_num : porosity
1: 0.22,#
2: 0.22
}
# Dict of the form: { subdom_num : density }
densities = {
1: {'wetting': 997,
'nonwetting': 1.225},
2: {'wetting': 997,
'nonwetting': 1.225}
}
gravity_acceleration = 9.81
L = {#
# subdom_num : subdomain L for L-scheme
1 : {'wetting' :Lw1,
'nonwetting': Lnw1},#
2 : {'wetting' :Lw2,
'nonwetting': Lnw2}
}
lambda_param = {#
# subdom_num : lambda parameter for the L-scheme
0 : {'wetting' :lambda_w,
'nonwetting': lambda_nw},#
}
intrinsic_permeability = {
1: 0.01,
2: 0.01,
}
# relative permeabilties
rel_perm_definition = {
1: {"wetting": "Spow2",
"nonwetting": "oneMinusSpow2"},
2: {"wetting": "Spow3",
"nonwetting": "oneMinusSpow3"},
}
rel_perm_dict = fts.generate_relative_permeability_dicts(rel_perm_definition)
relative_permeability = rel_perm_dict["ka"]
ka_prime = rel_perm_dict["ka_prime"]
# S-pc relation
Spc_on_subdomains = {
1: {"testSpc": {"index": 1}},
2: {"testSpc": {"index": 2}},
}
Spc = fts.generate_Spc_dicts(Spc_on_subdomains)
S_pc_sym = Spc["symbolic"]
S_pc_sym_prime = Spc["prime_symbolic"]
sat_pressure_relationship = Spc["dolfin"]
~~~
### MANUFACTURED SOLUTION/SOURCE EXPRESSION
~~~python
###############################################################################
# Manufacture source expressions with sympy #
###############################################################################
x, y = sym.symbols('x[0], x[1]') # needed by UFL
t = sym.symbols('t', positive=True)
p_e_sym = {
1: {'wetting': (-7.0 - (1.0 + t*t)*(1.0 + x*x + y*y))}, #*(1-x)**2*(1+x)**2*(1-y)**2},
2: {'wetting': (-7.0 - (1.0 + t*t)*(1.0 + x*x)), #*(1-x)**2*(1+x)**2*(1+y)**2,
'nonwetting': (-2-t*(1.1+y + x**2))*y**2}, #*(1-x)**2*(1+x)**2*(1+y)**2},
} #-y*y*(sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t)) - t*t*x*(0.5-y)*y*(1-x)
~~~
### BOUNDARY CONDITIONS
~~~python
# BOUNDARY CONDITIONS #########################################################
# Dictionary of dirichlet boundary conditions. If an exact solution case is
# used, use the hlp.generate_exact_DirichletBC() method to generate the
# Dirichlet Boundary conditions from the exact solution.
dirichletBC = hlp.generate_exact_DirichletBC(
isRichards=isRichards,
outer_boundary_def_points=outer_boundary_def_points,
exact_solution=exact_solution
)
# If no exact solution is provided you need to provide a dictionary of boundary
# conditions. See the definiton of hlp.generate_exact_DirichletBC() to see
# the structure.
~~~
......@@ -201,177 +201,28 @@ intrinsic_permeability = {
2: 0.01,
}
## relative permeabilty functions on subdomain 1
def rel_perm1w(s):
# relative permeabilty wetting on subdomain1
return intrinsic_permeability[1]*s**2
def rel_perm1nw(s):
# relative permeabilty nonwetting on subdomain1
return intrinsic_permeability[1]*(1-s)**2
_rel_perm1w = ft.partial(rel_perm1w)
_rel_perm1nw = ft.partial(rel_perm1nw)
subdomain1_rel_perm = {
'wetting': _rel_perm1w,#
'nonwetting': _rel_perm1nw
}
## relative permeabilty functions on subdomain 2
def rel_perm2w(s):
# relative permeabilty wetting on subdomain2
return intrinsic_permeability[2]*s**3
def rel_perm2nw(s):
# relative permeabilty nonwetting on subdomain2
return intrinsic_permeability[2]*(1-s)**3
_rel_perm2w = ft.partial(rel_perm2w)
_rel_perm2nw = ft.partial(rel_perm2nw)
subdomain2_rel_perm = {
'wetting': _rel_perm2w,#
'nonwetting': _rel_perm2nw
}
## dictionary of relative permeabilties on all domains.
relative_permeability = {#
1: subdomain1_rel_perm,
2: subdomain2_rel_perm
# relative permeabilties
rel_perm_definition = {
1: {"wetting": "Spow2",
"nonwetting": "oneMinusSpow2"},
2: {"wetting": "Spow3",
"nonwetting": "oneMinusSpow3"},
}
rel_perm_dict = fts.generate_relative_permeability_dicts(rel_perm_definition)
relative_permeability = rel_perm_dict["ka"]
ka_prime = rel_perm_dict["ka_prime"]
# definition of the derivatives of the relative permeabilities
# relative permeabilty functions on subdomain 1
def rel_perm1w_prime(s):
# relative permeabilty on subdomain1
return intrinsic_permeability[1]*2*s
def rel_perm1nw_prime(s):
# relative permeabilty on subdomain1
return -1*intrinsic_permeability[1]*2*(1-s)
# definition of the derivatives of the relative permeabilities
# relative permeabilty functions on subdomain 1
def rel_perm2w_prime(s):
# relative permeabilty on subdomain2
return intrinsic_permeability[2]*3*s**2
def rel_perm2nw_prime(s):
# relative permeabilty on subdomain2
return -3*intrinsic_permeability[2]*(1-s)**2
_rel_perm1w_prime = ft.partial(rel_perm1w_prime)
_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime)
_rel_perm2w_prime = ft.partial(rel_perm2w_prime)
_rel_perm2nw_prime = ft.partial(rel_perm2nw_prime)
subdomain1_rel_perm_prime = {
'wetting': _rel_perm1w_prime,
'nonwetting': _rel_perm1nw_prime
}
subdomain2_rel_perm_prime = {
'wetting': _rel_perm2w_prime,
'nonwetting': _rel_perm2nw_prime
}
# dictionary of relative permeabilties on all domains.
ka_prime = {
1: subdomain1_rel_perm_prime,
2: subdomain2_rel_perm_prime,
}
# def saturation1(pc, subdomain_index):
# # inverse capillary pressure-saturation-relationship
# return df.conditional(pc > 0, 1/((1 + pc)**(1/(subdomain_index + 1))), 1)
#
# def saturation2(pc, n_index, alpha):
# # inverse capillary pressure-saturation-relationship
# return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1)
#
# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where
# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw
# def saturation1_sym(pc, subdomain_index):
# # inverse capillary pressure-saturation-relationship
# return 1/((1 + pc)**(1/(subdomain_index + 1)))
#
#
# def saturation2_sym(pc, n_index, alpha):
# # inverse capillary pressure-saturation-relationship
# #df.conditional(pc > 0,
# return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index))
#
#
# # derivative of S-pc relationship with respect to pc. This is needed for the
# # construction of a analytic solution.
# def saturation1_sym_prime(pc, subdomain_index):
# # inverse capillary pressure-saturation-relationship
# return -(1/(subdomain_index + 1))*(1 + pc)**((-subdomain_index - 2)/(subdomain_index + 1))
#
#
# def saturation2_sym_prime(pc, n_index, alpha):
# # inverse capillary pressure-saturation-relationship
# return -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1)) / ( (1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index) )
#
# # note that the conditional definition of S-pc in the nonsymbolic part will be
# # incorporated in the construction of the exact solution below.
# S_pc_sym = {
# 1: ft.partial(saturation1_sym, subdomain_index = 1),
# 2: ft.partial(saturation2_sym, n_index=3, alpha=0.001),
# }
#
# S_pc_sym_prime = {
# 1: ft.partial(saturation1_sym_prime, subdomain_index = 1),
# 2: ft.partial(saturation2_sym_prime, n_index=3, alpha=0.001),
# }
#
# sat_pressure_relationship = {
# 1: ft.partial(saturation1, subdomain_index = 1),#,
# 2: ft.partial(saturation2, n_index=3, alpha=0.001),
# }
def saturation(pc, index):
# inverse capillary pressure-saturation-relationship
return df.conditional(pc > 0, 1/((1 + pc)**(1/(index + 1))), 1)
def saturation_sym(pc, index):
# inverse capillary pressure-saturation-relationship
return 1/((1 + pc)**(1/(index + 1)))
# derivative of S-pc relationship with respect to pc. This is needed for the
# construction of a analytic solution.
def saturation_sym_prime(pc, index):
# inverse capillary pressure-saturation-relationship
return -1/((index+1)*(1 + pc)**((index+2)/(index+1)))
# note that the conditional definition of S-pc in the nonsymbolic part will be
# incorporated in the construction of the exact solution below.
S_pc_sym = {
1: ft.partial(saturation_sym, index=1),
2: ft.partial(saturation_sym, index=2),
# 3: ft.partial(saturation_sym, index=2),
# 4: ft.partial(saturation_sym, index=1)
}
S_pc_sym_prime = {
1: ft.partial(saturation_sym_prime, index=1),
2: ft.partial(saturation_sym_prime, index=2),
# 3: ft.partial(saturation_sym_prime, index=2),
# 4: ft.partial(saturation_sym_prime, index=1)
}
sat_pressure_relationship = {
1: ft.partial(saturation, index=1),
2: ft.partial(saturation, index=2),
# 3: ft.partial(saturation, index=2),
# 4: ft.partial(saturation, index=1)
# S-pc relation
Spc_on_subdomains = {
1: {"testSpc": {"index": 1}},
2: {"testSpc": {"index": 2}},
}
Spc = fts.generate_Spc_dicts(Spc_on_subdomains)
S_pc_sym = Spc["symbolic"]
S_pc_sym_prime = Spc["prime_symbolic"]
sat_pressure_relationship = Spc["dolfin"]
###############################################################################
# Manufacture source expressions with sympy #
......
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please to comment