Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
L
LDD-for-two-phase-flow-systems
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
David Seus
LDD-for-two-phase-flow-systems
Commits
a41a6494
Commit
a41a6494
authored
4 years ago
by
David Seus
Browse files
Options
Downloads
Patches
Plain Diff
set-up layered soil different intrinsic
parent
d958a53d
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case/TP-TP-layered_soil-different-intrinsic.py
+394
-0
394 additions, 0 deletions
...yered-soil-case/TP-TP-layered_soil-different-intrinsic.py
with
394 additions
and
0 deletions
Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case/TP-TP-layered_soil-different-intrinsic.py
0 → 100755
+
394
−
0
View file @
a41a6494
#!/usr/bin/python3
"""
TP-TP Layered soil simulation.
This program sets up an LDD simulation
"""
import
dolfin
as
df
import
sympy
as
sym
import
functions
as
fts
import
LDDsimulation
as
ldd
import
helpers
as
hlp
import
datetime
import
os
import
multiprocessing
as
mp
import
domainSubstructuring
as
dss
# init sympy session
sym
.
init_printing
()
# PREREQUISITS ###############################################################
# check if output directory "./output" exists. This will be used in
# the generation of the output string.
if
not
os
.
path
.
exists
(
'
./output
'
):
os
.
mkdir
(
'
./output
'
)
print
(
"
Directory
"
,
'
./output
'
,
"
created
"
)
else
:
print
(
"
Directory
"
,
'
./output
'
,
"
already exists. Will use as output
\
directory
"
)
date
=
datetime
.
datetime
.
now
()
datestr
=
date
.
strftime
(
"
%Y-%m-%d
"
)
# Name of the usecase that will be printed during simulation.
use_case
=
"
TP-TP-layered_soil-realistic-different-intrinsic
"
# The name of this very file. Needed for creating log output.
thisfile
=
"
TP-TP-layered_soil-different-intrinsic.py
"
# GENERAL SOLVER CONFIG ######################################################
# maximal iteration per timestep
max_iter_num
=
1000
FEM_Lagrange_degree
=
1
# GRID AND MESH STUDY SPECIFICATIONS #########################################
mesh_study
=
False
resolutions
=
{
# 1: 1e-6,
# 2: 1e-6,
# 4: 1e-6,
# 8: 1e-5,
# 16: 5e-6,
32
:
2e-6
,
# 64: 2e-6,
# 128: 1e-6,
# 256: 1e-6,
}
# starttimes gives a list of starttimes to run the simulation from.
# The list is looped over and a simulation is run with t_0 as initial time
# for each element t_0 in starttimes.
starttimes
=
{
0
:
0.0
,
1
:
0.3
,
2
:
0.6
,
3
:
0.9
}
# starttimes = {0: 0.0}
timestep_size
=
0.001
number_of_timesteps
=
1
# LDD scheme parameters ######################################################
Lw1
=
0.007
# /timestep_size
Lnw1
=
0.005
Lw2
=
0.007
# /timestep_size
Lnw2
=
0.005
Lw3
=
0.0007
# /timestep_size
Lnw3
=
0.0005
Lw4
=
0.0007
# /timestep_size
Lnw4
=
0.0005
lambda12_w
=
0.5
lambda12_nw
=
0.5
lambda23_w
=
0.5
lambda23_nw
=
0.5
lambda34_w
=
0.5
lambda34_nw
=
0.5
include_gravity
=
False
debugflag
=
False
analyse_condition
=
False
# I/O CONFIG #################################################################
# when number_of_timesteps is high, it might take a long time to write all
# timesteps to disk. Therefore, you can choose to only write data of every
# plot_timestep_every timestep to disk.
plot_timestep_every
=
1
# Decide how many timesteps you want analysed. Analysed means, that
# subsequent errors of the L-iteration within the timestep are written out.
number_of_timesteps_to_analyse
=
1
# fine grained control over data to be written to disk in the mesh study case
# as well as for a regular simuation for a fixed grid.
if
mesh_study
:
write_to_file
=
{
# output the relative errornorm (integration in space) w.r.t. an exact
# solution for each timestep into a csv file.
'
space_errornorms
'
:
True
,
# save the mesh and marker functions to disk
'
meshes_and_markers
'
:
True
,
# save xdmf/h5 data for each LDD iteration for timesteps determined by
# number_of_timesteps_to_analyse. I/O intensive!
'
L_iterations_per_timestep
'
:
False
,
# save solution to xdmf/h5.
'
solutions
'
:
True
,
# save absolute differences w.r.t an exact solution to xdmf/h5 file
# to monitor where on the domains errors happen
'
absolute_differences
'
:
True
,
# analyise condition numbers for timesteps determined by
# number_of_timesteps_to_analyse and save them over time to csv.
'
condition_numbers
'
:
analyse_condition
,
# output subsequent iteration errors measured in L^2 to csv for
# timesteps determined by number_of_timesteps_to_analyse.
# Usefull to monitor convergence of the acutal LDD solver.
'
subsequent_errors
'
:
True
}
else
:
write_to_file
=
{
'
space_errornorms
'
:
True
,
'
meshes_and_markers
'
:
True
,
'
L_iterations_per_timestep
'
:
False
,
'
solutions
'
:
True
,
'
absolute_differences
'
:
True
,
'
condition_numbers
'
:
analyse_condition
,
'
subsequent_errors
'
:
True
}
# OUTPUT FILE STRING #########################################################
output_string
=
"
./output/{}-{}_timesteps{}_P{}
"
.
format
(
datestr
,
use_case
,
number_of_timesteps
,
FEM_Lagrange_degree
)
# DOMAIN AND INTERFACE #######################################################
substructuring
=
dss
.
layeredSoil
()
interface_def_points
=
substructuring
.
interface_def_points
adjacent_subdomains
=
substructuring
.
adjacent_subdomains
subdomain_def_points
=
substructuring
.
subdomain_def_points
outer_boundary_def_points
=
substructuring
.
outer_boundary_def_points
# MODEL CONFIGURATION #########################################################
isRichards
=
{
1
:
False
,
2
:
False
,
3
:
False
,
4
:
False
}
# Dict of the form: { subdom_num : viscosity }
viscosity
=
{
1
:
{
'
wetting
'
:
1
,
'
nonwetting
'
:
1
/
50
},
2
:
{
'
wetting
'
:
1
,
'
nonwetting
'
:
1
/
50
},
3
:
{
'
wetting
'
:
1
,
'
nonwetting
'
:
1
/
50
},
4
:
{
'
wetting
'
:
1
,
'
nonwetting
'
:
1
/
50
},
}
densities
=
{
1
:
{
'
wetting
'
:
997
,
# 997
'
nonwetting
'
:
1.225
},
# 1.225}},
2
:
{
'
wetting
'
:
997
,
# 997
'
nonwetting
'
:
1.225
},
# 1.225}},
3
:
{
'
wetting
'
:
997
,
# 997
'
nonwetting
'
:
1.225
},
# 1.225}},
4
:
{
'
wetting
'
:
997
,
# 997
'
nonwetting
'
:
1.225
},
# 1.225}}
}
gravity_acceleration
=
9.81
# porosities taken from
# https://www.geotechdata.info/parameter/soil-porosity.html
# Dict of the form: { subdom_num : porosity }
porosity
=
{
1
:
0.37
,
# 0.2, # Clayey gravels, clayey sandy gravels
2
:
0.022
,
# 0.22, # Silty gravels, silty sandy gravels
3
:
0.002
,
# 0.37, # Clayey sands
4
:
0.00022
,
# 0.2 # Silty or sandy clay
}
# subdom_num : subdomain L for L-scheme
L
=
{
1
:
{
'
wetting
'
:
Lw1
,
'
nonwetting
'
:
Lnw1
},
2
:
{
'
wetting
'
:
Lw2
,
'
nonwetting
'
:
Lnw2
},
3
:
{
'
wetting
'
:
Lw3
,
'
nonwetting
'
:
Lnw3
},
4
:
{
'
wetting
'
:
Lw4
,
'
nonwetting
'
:
Lnw4
}
}
# interface_num : lambda parameter for the L-scheme on that interface.
# Note that interfaces are numbered starting from 0, because
# adjacent_subdomains is a list and not a dict. Historic fuckup, I know
lambda_param
=
{
0
:
{
'
wetting
'
:
lambda12_w
,
'
nonwetting
'
:
lambda12_nw
},
1
:
{
'
wetting
'
:
lambda23_w
,
'
nonwetting
'
:
lambda23_nw
},
2
:
{
'
wetting
'
:
lambda34_w
,
'
nonwetting
'
:
lambda34_nw
},
}
# after Lewis, see pdf file
intrinsic_permeability
=
{
1
:
0.1
,
# sand
2
:
0.01
,
# sand, there is a range
3
:
0.001
,
#10e-2, # clay has a range
4
:
0.0001
,
#10e-3
}
# relative permeabilties
rel_perm_definition
=
{
1
:
{
"
wetting
"
:
"
Spow2
"
,
"
nonwetting
"
:
"
oneMinusSpow2
"
},
2
:
{
"
wetting
"
:
"
Spow2
"
,
"
nonwetting
"
:
"
oneMinusSpow2
"
},
3
:
{
"
wetting
"
:
"
Spow3
"
,
"
nonwetting
"
:
"
oneMinusSpow3
"
},
4
:
{
"
wetting
"
:
"
Spow3
"
,
"
nonwetting
"
:
"
oneMinusSpow3
"
},
}
rel_perm_dict
=
fts
.
generate_relative_permeability_dicts
(
rel_perm_definition
)
relative_permeability
=
rel_perm_dict
[
"
ka
"
]
ka_prime
=
rel_perm_dict
[
"
ka_prime
"
]
# S-pc relation
Spc_on_subdomains
=
{
1
:
{
"
vanGenuchten
"
:
{
"
n
"
:
3
,
"
alpha
"
:
0.001
}},
2
:
{
"
vanGenuchten
"
:
{
"
n
"
:
3
,
"
alpha
"
:
0.001
}},
3
:
{
"
vanGenuchten
"
:
{
"
n
"
:
6
,
"
alpha
"
:
0.001
}},
4
:
{
"
vanGenuchten
"
:
{
"
n
"
:
6
,
"
alpha
"
:
0.001
}},
}
Spc
=
fts
.
generate_Spc_dicts
(
Spc_on_subdomains
)
S_pc_sym
=
Spc
[
"
symbolic
"
]
S_pc_sym_prime
=
Spc
[
"
prime_symbolic
"
]
sat_pressure_relationship
=
Spc
[
"
dolfin
"
]
###############################################################################
# Manufacture source expressions with sympy #
###############################################################################
x
,
y
=
sym
.
symbols
(
'
x[0], x[1]
'
)
# needed by UFL
t
=
sym
.
symbols
(
'
t
'
,
positive
=
True
)
p_e_sym_2patch
=
{
1
:
{
'
wetting
'
:
-
7
-
(
1
+
t
*
t
)
*
(
1
+
x
*
x
+
y
*
y
),
'
nonwetting
'
:
-
1
-
t
*
(
1.1
+
y
+
x
**
2
)
**
2
},
2
:
{
'
wetting
'
:
-
7.0
-
(
1.0
+
t
*
t
)
*
(
1.0
+
x
*
x
),
'
nonwetting
'
:
-
1
-
t
*
(
1.1
+
x
**
2
)
**
2
-
sym
.
sqrt
(
5
+
t
**
2
)
*
y
**
2
},
}
p_e_sym
=
{
1
:
{
'
wetting
'
:
p_e_sym_2patch
[
1
][
'
wetting
'
],
'
nonwetting
'
:
p_e_sym_2patch
[
1
][
'
nonwetting
'
]},
2
:
{
'
wetting
'
:
p_e_sym_2patch
[
1
][
'
wetting
'
],
'
nonwetting
'
:
p_e_sym_2patch
[
1
][
'
nonwetting
'
]},
3
:
{
'
wetting
'
:
p_e_sym_2patch
[
2
][
'
wetting
'
],
'
nonwetting
'
:
p_e_sym_2patch
[
2
][
'
nonwetting
'
]},
4
:
{
'
wetting
'
:
p_e_sym_2patch
[
2
][
'
wetting
'
],
'
nonwetting
'
:
p_e_sym_2patch
[
2
][
'
nonwetting
'
]}
}
pc_e_sym
=
hlp
.
generate_exact_symbolic_pc
(
isRichards
=
isRichards
,
symbolic_pressure
=
p_e_sym
)
symbols
=
{
"
x
"
:
x
,
"
y
"
:
y
,
"
t
"
:
t
}
# turn above symbolic code into exact solution for dolphin and
# construct the rhs that matches the above exact solution.
exact_solution_example
=
hlp
.
generate_exact_solution_expressions
(
symbols
=
symbols
,
isRichards
=
isRichards
,
symbolic_pressure
=
p_e_sym
,
symbolic_capillary_pressure
=
pc_e_sym
,
saturation_pressure_relationship
=
S_pc_sym
,
saturation_pressure_relationship_prime
=
S_pc_sym_prime
,
viscosity
=
viscosity
,
porosity
=
porosity
,
intrinsic_permeability
=
intrinsic_permeability
,
relative_permeability
=
relative_permeability
,
relative_permeability_prime
=
ka_prime
,
densities
=
densities
,
gravity_acceleration
=
gravity_acceleration
,
include_gravity
=
include_gravity
,
)
source_expression
=
exact_solution_example
[
'
source
'
]
exact_solution
=
exact_solution_example
[
'
exact_solution
'
]
initial_condition
=
exact_solution_example
[
'
initial_condition
'
]
# BOUNDARY CONDITIONS #########################################################
# Dictionary of dirichlet boundary conditions. If an exact solution case is
# used, use the hlp.generate_exact_DirichletBC() method to generate the
# Dirichlet Boundary conditions from the exact solution.
dirichletBC
=
hlp
.
generate_exact_DirichletBC
(
isRichards
=
isRichards
,
outer_boundary_def_points
=
outer_boundary_def_points
,
exact_solution
=
exact_solution
)
# If no exact solution is provided you need to provide a dictionary of boundary
# conditions. See the definiton of hlp.generate_exact_DirichletBC() to see
# the structure.
# LOG FILE OUTPUT #############################################################
# read this file and print it to std out. This way the simulation can produce a
# log file with ./TP-R-layered_soil.py | tee simulation.log
f
=
open
(
thisfile
,
'
r
'
)
print
(
f
.
read
())
f
.
close
()
# MAIN ########################################################################
if
__name__
==
'
__main__
'
:
# dictionary of simualation parameters to pass to the run function.
# mesh_resolution and starttime are excluded, as they get passed explicitly
# to achieve parallelisation in these parameters in these parameters for
# mesh studies etc.
simulation_parameter
=
{
"
tol
"
:
1E-14
,
"
debugflag
"
:
debugflag
,
"
max_iter_num
"
:
max_iter_num
,
"
FEM_Lagrange_degree
"
:
FEM_Lagrange_degree
,
"
mesh_study
"
:
mesh_study
,
"
use_case
"
:
use_case
,
"
output_string
"
:
output_string
,
"
subdomain_def_points
"
:
subdomain_def_points
,
"
isRichards
"
:
isRichards
,
"
interface_def_points
"
:
interface_def_points
,
"
outer_boundary_def_points
"
:
outer_boundary_def_points
,
"
adjacent_subdomains
"
:
adjacent_subdomains
,
# "mesh_resolution": mesh_resolution,
"
viscosity
"
:
viscosity
,
"
porosity
"
:
porosity
,
"
L
"
:
L
,
"
lambda_param
"
:
lambda_param
,
"
relative_permeability
"
:
relative_permeability
,
"
intrinsic_permeability
"
:
intrinsic_permeability
,
"
sat_pressure_relationship
"
:
sat_pressure_relationship
,
# "starttime": starttime,
"
number_of_timesteps
"
:
number_of_timesteps
,
"
number_of_timesteps_to_analyse
"
:
number_of_timesteps_to_analyse
,
"
plot_timestep_every
"
:
plot_timestep_every
,
"
timestep_size
"
:
timestep_size
,
"
source_expression
"
:
source_expression
,
"
initial_condition
"
:
initial_condition
,
"
dirichletBC
"
:
dirichletBC
,
"
exact_solution
"
:
exact_solution
,
"
densities
"
:
densities
,
"
include_gravity
"
:
include_gravity
,
"
gravity_acceleration
"
:
gravity_acceleration
,
"
write_to_file
"
:
write_to_file
,
"
analyse_condition
"
:
analyse_condition
}
for
number_shift
,
starttime
in
starttimes
.
items
():
simulation_parameter
.
update
(
{
"
starttime_timestep_number_shift
"
:
number_shift
}
)
for
mesh_resolution
,
solver_tol
in
resolutions
.
items
():
simulation_parameter
.
update
({
"
solver_tol
"
:
solver_tol
})
hlp
.
info
(
simulation_parameter
[
"
use_case
"
])
processQueue
=
mp
.
Queue
()
LDDsim
=
mp
.
Process
(
target
=
hlp
.
run_simulation
,
args
=
(
simulation_parameter
,
processQueue
,
starttime
,
mesh_resolution
)
)
LDDsim
.
start
()
# LDDsim.join()
# hlp.run_simulation(
# mesh_resolution=mesh_resolution,
# starttime=starttime,
# parameter=simulation_parameter
# )
# LDDsim.join()
if
mesh_study
:
simulation_output_dir
=
processQueue
.
get
()
hlp
.
merge_spacetime_errornorms
(
isRichards
=
isRichards
,
resolutions
=
resolutions
,
output_dir
=
simulation_output_dir
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment