Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
L
LDD-for-two-phase-flow-systems
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
David Seus
LDD-for-two-phase-flow-systems
Commits
667d1368
Commit
667d1368
authored
4 years ago
by
David
Browse files
Options
Downloads
Patches
Plain Diff
setup g but same intrinsic perm mesh study
parent
c2626e5d
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Two-phase-Richards/multi-patch/layered_soil/mesh_study/TP-R-layered_soil-g-but-same-perm-mesh-study.py
+798
-0
798 additions, 0 deletions
...esh_study/TP-R-layered_soil-g-but-same-perm-mesh-study.py
with
798 additions
and
0 deletions
Two-phase-Richards/multi-patch/layered_soil/mesh_study/TP-R-layered_soil-g-but-same-perm-mesh-study.py
0 → 100755
+
798
−
0
View file @
667d1368
#!/usr/bin/python3
"""
Layered soil simulation.
This program sets up an LDD simulation
"""
import
dolfin
as
df
import
sympy
as
sym
import
functools
as
ft
import
LDDsimulation
as
ldd
import
helpers
as
hlp
import
datetime
import
os
import
pandas
as
pd
# check if output directory exists
if
not
os
.
path
.
exists
(
'
./output
'
):
os
.
mkdir
(
'
./output
'
)
print
(
"
Directory
"
,
'
./output
'
,
"
created
"
)
else
:
print
(
"
Directory
"
,
'
./output
'
,
"
already exists. Will use as output
\
directory
"
)
date
=
datetime
.
datetime
.
now
()
datestr
=
date
.
strftime
(
"
%Y-%m-%d
"
)
# init sympy session
sym
.
init_printing
()
# solver_tol = 6E-7
use_case
=
"
TP-R-layered-soil-realistic-g-same-intrinsic-perm
"
# name of this very file. Needed for log output.
thisfile
=
"
TP-R-layered_soil-g-but-same-perm-mesh-study.py
"
max_iter_num
=
750
FEM_Lagrange_degree
=
1
mesh_study
=
True
resolutions
=
{
1
:
9e-6
,
# h=2
2
:
9e-6
,
# h=1.1180
4
:
9e-6
,
# h=0.5590
8
:
9e-6
,
# h=0.2814
16
:
5e-6
,
# h=0.1412
32
:
4e-6
,
64
:
1e-6
,
128
:
1e-6
}
# GRID #######################
# mesh_resolution = 20
timestep_size
=
0.001
number_of_timesteps
=
1000
plot_timestep_every
=
4
# decide how many timesteps you want analysed. Analysed means, that we write
# out subsequent errors of the L-iteration within the timestep.
number_of_timesteps_to_analyse
=
5
starttimes
=
[
0.0
]
Lw1
=
0.025
# /timestep_size
Lnw1
=
Lw1
Lw2
=
0.025
# /timestep_size
Lnw2
=
Lw2
Lw3
=
0.025
# /timestep_size
Lnw3
=
Lw3
Lw4
=
0.025
# /timestep_size
Lnw4
=
Lw4
lambda12_w
=
4
lambda12_nw
=
4
lambda23_w
=
4
lambda23_nw
=
4
lambda34_w
=
4
lambda34_nw
=
4
include_gravity
=
True
debugflag
=
False
analyse_condition
=
False
output_string
=
"
./output/{}-{}_timesteps{}_P{}
"
.
format
(
datestr
,
use_case
,
number_of_timesteps
,
FEM_Lagrange_degree
)
# toggle what should be written to files
if
mesh_study
:
write_to_file
=
{
'
space_errornorms
'
:
True
,
'
meshes_and_markers
'
:
True
,
'
L_iterations_per_timestep
'
:
False
,
'
solutions
'
:
True
,
'
absolute_differences
'
:
True
,
'
condition_numbers
'
:
analyse_condition
,
'
subsequent_errors
'
:
True
}
else
:
write_to_file
=
{
'
space_errornorms
'
:
True
,
'
meshes_and_markers
'
:
True
,
'
L_iterations_per_timestep
'
:
False
,
'
solutions
'
:
True
,
'
absolute_differences
'
:
True
,
'
condition_numbers
'
:
analyse_condition
,
'
subsequent_errors
'
:
True
}
# global domain
subdomain0_vertices
=
[
df
.
Point
(
-
1.0
,
-
1.0
),
df
.
Point
(
1.0
,
-
1.0
),
df
.
Point
(
1.0
,
1.0
),
df
.
Point
(
-
1.0
,
1.0
)
]
interface12_vertices
=
[
df
.
Point
(
-
1.0
,
0.8
),
df
.
Point
(
0.3
,
0.8
),
df
.
Point
(
0.5
,
0.9
),
df
.
Point
(
0.8
,
0.7
),
df
.
Point
(
1.0
,
0.65
)]
# subdomain1.
subdomain1_vertices
=
[
interface12_vertices
[
0
],
interface12_vertices
[
1
],
interface12_vertices
[
2
],
interface12_vertices
[
3
],
interface12_vertices
[
4
],
# southern boundary, 12 interface
subdomain0_vertices
[
2
],
# eastern boundary, outer boundary
subdomain0_vertices
[
3
]
# northern boundary, outer on_boundary
]
# vertex coordinates of the outer boundaries. If it can not be specified as a
# polygon, use an entry per boundary polygon. This information is used for
# defining the Dirichlet boundary conditions. If a domain is completely
# internal, the dictionary entry should be 0: None
subdomain1_outer_boundary_verts
=
{
0
:
[
interface12_vertices
[
4
],
subdomain0_vertices
[
2
],
# eastern boundary, outer boundary
subdomain0_vertices
[
3
],
interface12_vertices
[
0
]]
}
# interface23
interface23_vertices
=
[
df
.
Point
(
-
1.0
,
0.0
),
df
.
Point
(
-
0.35
,
0.0
),
# df.Point(6.5, 4.5),
df
.
Point
(
0.0
,
0.0
),
df
.
Point
(
0.5
,
0.0
),
# df.Point(11.5, 3.5),
# df.Point(13.0, 3)
df
.
Point
(
0.85
,
0.0
),
df
.
Point
(
1.0
,
0.0
)
]
# subdomain1
subdomain2_vertices
=
[
interface23_vertices
[
0
],
interface23_vertices
[
1
],
interface23_vertices
[
2
],
interface23_vertices
[
3
],
interface23_vertices
[
4
],
interface23_vertices
[
5
],
# southern boundary, 23 interface
subdomain1_vertices
[
4
],
# eastern boundary, outer boundary
subdomain1_vertices
[
3
],
subdomain1_vertices
[
2
],
subdomain1_vertices
[
1
],
subdomain1_vertices
[
0
]
# northern boundary, 12 interface
]
subdomain2_outer_boundary_verts
=
{
0
:
[
interface23_vertices
[
5
],
subdomain1_vertices
[
4
]],
1
:
[
subdomain1_vertices
[
0
],
interface23_vertices
[
0
]]
}
# interface34
interface34_vertices
=
[
df
.
Point
(
-
1.0
,
-
0.6
),
df
.
Point
(
-
0.6
,
-
0.45
),
df
.
Point
(
0.3
,
-
0.25
),
df
.
Point
(
0.65
,
-
0.6
),
df
.
Point
(
1.0
,
-
0.7
)]
# subdomain3
subdomain3_vertices
=
[
interface34_vertices
[
0
],
interface34_vertices
[
1
],
interface34_vertices
[
2
],
interface34_vertices
[
3
],
interface34_vertices
[
4
],
# southern boundary, 34 interface
subdomain2_vertices
[
5
],
# eastern boundary, outer boundary
subdomain2_vertices
[
4
],
subdomain2_vertices
[
3
],
subdomain2_vertices
[
2
],
subdomain2_vertices
[
1
],
subdomain2_vertices
[
0
]
# northern boundary, 23 interface
]
subdomain3_outer_boundary_verts
=
{
0
:
[
interface34_vertices
[
4
],
subdomain2_vertices
[
5
]],
1
:
[
subdomain2_vertices
[
0
],
interface34_vertices
[
0
]]
}
# subdomain4
subdomain4_vertices
=
[
subdomain0_vertices
[
0
],
subdomain0_vertices
[
1
],
# southern boundary, outer boundary
subdomain3_vertices
[
4
],
# eastern boundary, outer boundary
subdomain3_vertices
[
3
],
subdomain3_vertices
[
2
],
subdomain3_vertices
[
1
],
subdomain3_vertices
[
0
]
]
# northern boundary, 34 interface
subdomain4_outer_boundary_verts
=
{
0
:
[
subdomain4_vertices
[
6
],
subdomain4_vertices
[
0
],
subdomain4_vertices
[
1
],
subdomain4_vertices
[
2
]]
}
subdomain_def_points
=
[
subdomain0_vertices
,
subdomain1_vertices
,
subdomain2_vertices
,
subdomain3_vertices
,
subdomain4_vertices
]
# interface_vertices introduces a global numbering of interfaces.
interface_def_points
=
[
interface12_vertices
,
interface23_vertices
,
interface34_vertices
]
adjacent_subdomains
=
[[
1
,
2
],
[
2
,
3
],
[
3
,
4
]]
# if a subdomain has no outer boundary write None instead, i.e.
# i: None
# if i is the index of the inner subdomain.
outer_boundary_def_points
=
{
# subdomain number
1
:
subdomain1_outer_boundary_verts
,
2
:
subdomain2_outer_boundary_verts
,
3
:
subdomain3_outer_boundary_verts
,
4
:
subdomain4_outer_boundary_verts
}
isRichards
=
{
1
:
True
,
2
:
True
,
3
:
False
,
4
:
False
}
# Dict of the form: { subdom_num : viscosity }
viscosity
=
{
1
:
{
'
wetting
'
:
1
,
'
nonwetting
'
:
1
/
50
},
2
:
{
'
wetting
'
:
1
,
'
nonwetting
'
:
1
/
50
},
3
:
{
'
wetting
'
:
1
,
'
nonwetting
'
:
1
/
50
},
4
:
{
'
wetting
'
:
1
,
'
nonwetting
'
:
1
/
50
},
}
# Dict of the form: { subdom_num : density }
# densities = {
# 1: {'wetting': 9.97, # 997
# 'nonwetting': 0.01225}, # 1.225}},
# 2: {'wetting': 9.97, # 997
# 'nonwetting': 0.01225}, # 1.225}},
# 3: {'wetting': 9.97, # 997
# 'nonwetting': 0.01225}, # 1.225}},
# 4: {'wetting': 9.97, # 997
# 'nonwetting': 0.01225}, # 1.225}}
# }
densities
=
{
1
:
{
'
wetting
'
:
997
,
# 997
'
nonwetting
'
:
1.225
},
# 1.225}},
2
:
{
'
wetting
'
:
997
,
# 997
'
nonwetting
'
:
1.225
},
# 1.225}},
3
:
{
'
wetting
'
:
997
,
# 997
'
nonwetting
'
:
1.225
},
# 1.225}},
4
:
{
'
wetting
'
:
997
,
# 997
'
nonwetting
'
:
1.225
},
# 1.225}}
}
gravity_acceleration
=
9.81
# porosities taken from
# https://www.geotechdata.info/parameter/soil-porosity.html
# Dict of the form: { subdom_num : porosity }
porosity
=
{
1
:
0.37
,
# 0.2, # Clayey gravels, clayey sandy gravels
2
:
0.22
,
# 0.22, # Silty gravels, silty sandy gravels
3
:
0.2
,
# 0.37, # Clayey sands
4
:
0.22
,
# 0.2 # Silty or sandy clay
}
# subdom_num : subdomain L for L-scheme
L
=
{
1
:
{
'
wetting
'
:
Lw1
,
'
nonwetting
'
:
Lnw1
},
2
:
{
'
wetting
'
:
Lw2
,
'
nonwetting
'
:
Lnw2
},
3
:
{
'
wetting
'
:
Lw3
,
'
nonwetting
'
:
Lnw3
},
4
:
{
'
wetting
'
:
Lw4
,
'
nonwetting
'
:
Lnw4
}
}
# interface_num : lambda parameter for the L-scheme on that interface.
# Note that interfaces are numbered starting from 0, because
# adjacent_subdomains is a list and not a dict. Historic fuckup, I know
lambda_param
=
{
0
:
{
'
wetting
'
:
lambda12_w
,
'
nonwetting
'
:
lambda12_nw
},
1
:
{
'
wetting
'
:
lambda23_w
,
'
nonwetting
'
:
lambda23_nw
},
2
:
{
'
wetting
'
:
lambda34_w
,
'
nonwetting
'
:
lambda34_nw
},
}
# lambda_param = {
# 1: {'wetting': lambda_w,
# 'nonwetting': lambda_nw},
# 2: {'wetting': lambda_w,
# 'nonwetting': lambda_nw},
# 3: {'wetting': lambda_w,
# 'nonwetting': lambda_nw},
# 4: {'wetting': lambda_w,
# 'nonwetting': lambda_nw},
# }
# after Lewis, see pdf file
intrinsic_permeability
=
{
1
:
0.01
,
# sand
2
:
0.01
,
# sand, there is a range
3
:
0.01
,
# 10e-2, # clay has a range
4
:
0.01
,
# 10e-3
}
# relative permeabilty functions on subdomain 1
def
rel_perm1w
(
s
):
# relative permeabilty wetting on subdomain1
return
intrinsic_permeability
[
1
]
*
s
**
2
def
rel_perm1nw
(
s
):
# relative permeabilty nonwetting on subdomain1
return
intrinsic_permeability
[
1
]
*
(
1
-
s
)
**
2
# relative permeabilty functions on subdomain 2
def
rel_perm2w
(
s
):
# relative permeabilty wetting on subdomain2
return
intrinsic_permeability
[
2
]
*
s
**
2
def
rel_perm2nw
(
s
):
# relative permeabilty nonwetting on subdomain2
return
intrinsic_permeability
[
2
]
*
(
1
-
s
)
**
2
# relative permeabilty functions on subdomain 3
def
rel_perm3w
(
s
):
# relative permeabilty wetting on subdomain3
return
intrinsic_permeability
[
3
]
*
s
**
3
def
rel_perm3nw
(
s
):
# relative permeabilty nonwetting on subdomain3
return
intrinsic_permeability
[
3
]
*
(
1
-
s
)
**
3
# relative permeabilty functions on subdomain 4
def
rel_perm4w
(
s
):
# relative permeabilty wetting on subdomain4
return
intrinsic_permeability
[
4
]
*
s
**
3
def
rel_perm4nw
(
s
):
# relative permeabilty nonwetting on subdomain4
return
intrinsic_permeability
[
4
]
*
(
1
-
s
)
**
3
_rel_perm1w
=
ft
.
partial
(
rel_perm1w
)
_rel_perm1nw
=
ft
.
partial
(
rel_perm1nw
)
_rel_perm2w
=
ft
.
partial
(
rel_perm2w
)
_rel_perm2nw
=
ft
.
partial
(
rel_perm2nw
)
_rel_perm3w
=
ft
.
partial
(
rel_perm3w
)
_rel_perm3nw
=
ft
.
partial
(
rel_perm3nw
)
_rel_perm4w
=
ft
.
partial
(
rel_perm4w
)
_rel_perm4nw
=
ft
.
partial
(
rel_perm4nw
)
subdomain1_rel_perm
=
{
'
wetting
'
:
_rel_perm1w
,
'
nonwetting
'
:
_rel_perm1nw
}
subdomain2_rel_perm
=
{
'
wetting
'
:
_rel_perm2w
,
'
nonwetting
'
:
_rel_perm2nw
}
subdomain3_rel_perm
=
{
'
wetting
'
:
_rel_perm3w
,
'
nonwetting
'
:
_rel_perm3nw
}
subdomain4_rel_perm
=
{
'
wetting
'
:
_rel_perm4w
,
'
nonwetting
'
:
_rel_perm4nw
}
# dictionary of relative permeabilties on all domains.
# relative_permeability = {
# 1: subdomain1_rel_perm,
# 2: subdomain1_rel_perm,
# 3: subdomain2_rel_perm,
# 4: subdomain2_rel_perm
# }
relative_permeability
=
{
1
:
subdomain1_rel_perm
,
2
:
subdomain2_rel_perm
,
3
:
subdomain3_rel_perm
,
4
:
subdomain4_rel_perm
}
# definition of the derivatives of the relative permeabilities
# relative permeabilty functions on subdomain 1
def
rel_perm1w_prime
(
s
):
# relative permeabilty on subdomain1
return
intrinsic_permeability
[
1
]
*
2
*
s
def
rel_perm1nw_prime
(
s
):
# relative permeabilty on subdomain1
return
-
1
*
intrinsic_permeability
[
1
]
*
2
*
(
1
-
s
)
def
rel_perm2w_prime
(
s
):
# relative permeabilty on subdomain2
return
intrinsic_permeability
[
2
]
*
2
*
s
def
rel_perm2nw_prime
(
s
):
# relative permeabilty on subdomain2
return
-
1
*
intrinsic_permeability
[
2
]
*
2
*
(
1
-
s
)
# definition of the derivatives of the relative permeabilities
# relative permeabilty functions on subdomain 3
def
rel_perm3w_prime
(
s
):
# relative permeabilty on subdomain3
return
intrinsic_permeability
[
3
]
*
3
*
s
**
2
def
rel_perm3nw_prime
(
s
):
# relative permeabilty on subdomain3
return
-
1
*
intrinsic_permeability
[
3
]
*
3
*
(
1
-
s
)
**
2
# definition of the derivatives of the relative permeabilities
# relative permeabilty functions on subdomain 4
def
rel_perm4w_prime
(
s
):
# relative permeabilty on subdomain4
return
intrinsic_permeability
[
4
]
*
3
*
s
**
2
def
rel_perm4nw_prime
(
s
):
# relative permeabilty on subdomain4
return
-
1
*
intrinsic_permeability
[
4
]
*
3
*
(
1
-
s
)
**
2
_rel_perm1w_prime
=
ft
.
partial
(
rel_perm1w_prime
)
_rel_perm1nw_prime
=
ft
.
partial
(
rel_perm1nw_prime
)
_rel_perm2w_prime
=
ft
.
partial
(
rel_perm2w_prime
)
_rel_perm2nw_prime
=
ft
.
partial
(
rel_perm2nw_prime
)
_rel_perm3w_prime
=
ft
.
partial
(
rel_perm3w_prime
)
_rel_perm3nw_prime
=
ft
.
partial
(
rel_perm3nw_prime
)
_rel_perm4w_prime
=
ft
.
partial
(
rel_perm4w_prime
)
_rel_perm4nw_prime
=
ft
.
partial
(
rel_perm4nw_prime
)
subdomain1_rel_perm_prime
=
{
'
wetting
'
:
_rel_perm1w_prime
,
'
nonwetting
'
:
_rel_perm1nw_prime
}
subdomain2_rel_perm_prime
=
{
'
wetting
'
:
_rel_perm2w_prime
,
'
nonwetting
'
:
_rel_perm2nw_prime
}
subdomain3_rel_perm_prime
=
{
'
wetting
'
:
_rel_perm3w_prime
,
'
nonwetting
'
:
_rel_perm3nw_prime
}
subdomain4_rel_perm_prime
=
{
'
wetting
'
:
_rel_perm4w_prime
,
'
nonwetting
'
:
_rel_perm4nw_prime
}
# dictionary of relative permeabilties on all domains.
# ka_prime = {
# 1: subdomain1_rel_perm_prime,
# 2: subdomain1_rel_perm_prime,
# 3: subdomain2_rel_perm_prime,
# 4: subdomain2_rel_perm_prime
# }
ka_prime
=
{
1
:
subdomain1_rel_perm_prime
,
2
:
subdomain2_rel_perm_prime
,
3
:
subdomain3_rel_perm_prime
,
4
:
subdomain4_rel_perm_prime
}
# S-pc-relation ship. We use the van Genuchten approach, i.e.
# pc = 1/alpha*(S^{-1/m} -1)^1/n, where we set alpha = 0, assume m = 1-1/n
# (see Helmig) and assume that residual saturation is Sw
# this function needs to be monotonically decreasing in the capillary pressure
# pc. Since in the richards case pc=-pw, this becomes as a function of pw a
# mono tonically INCREASING function like in our Richards-Richards paper.
# However since we unify the treatment in the code for Richards and two-phase,
# we need the same requierment for both cases, two-phase and Richards.
def
saturation
(
pc
,
n_index
,
alpha
):
# inverse capillary pressure-saturation-relationship
expr
=
df
.
conditional
(
pc
>
0
,
1
/
((
1
+
(
alpha
*
pc
)
**
n_index
)
**
((
n_index
-
1
)
/
n_index
)),
1
)
return
expr
# S-pc-relation ship. We use the van Genuchten approach, i.e.
# pc = 1/alpha*(S^{-1/m} -1)^1/n, where we set alpha = 0, assume m = 1-1/n
# (see Helmig) and assume that residual saturation is Sw
def
saturation_sym
(
pc
,
n_index
,
alpha
):
# inverse capillary pressure-saturation-relationship
# df.conditional(pc > 0,
return
1
/
((
1
+
(
alpha
*
pc
)
**
n_index
)
**
((
n_index
-
1
)
/
n_index
))
# derivative of S-pc relationship with respect to pc. This is needed for the
# construction of a analytic solution.
def
saturation_sym_prime
(
pc
,
n_index
,
alpha
):
# inverse capillary pressure-saturation-relationship
expr
=
-
(
alpha
*
(
n_index
-
1
)
*
(
alpha
*
pc
)
**
(
n_index
-
1
))
\
/
((
1
+
(
alpha
*
pc
)
**
n_index
)
**
((
2
*
n_index
-
1
)
/
n_index
))
return
expr
# note that the conditional definition of S-pc in the nonsymbolic part will be
# incorporated in the construction of the exact solution below.
S_pc_sym
=
{
1
:
ft
.
partial
(
saturation_sym
,
n_index
=
3
,
alpha
=
0.001
),
2
:
ft
.
partial
(
saturation_sym
,
n_index
=
3
,
alpha
=
0.001
),
3
:
ft
.
partial
(
saturation_sym
,
n_index
=
6
,
alpha
=
0.001
),
4
:
ft
.
partial
(
saturation_sym
,
n_index
=
6
,
alpha
=
0.001
)
}
S_pc_sym_prime
=
{
1
:
ft
.
partial
(
saturation_sym_prime
,
n_index
=
3
,
alpha
=
0.001
),
2
:
ft
.
partial
(
saturation_sym_prime
,
n_index
=
3
,
alpha
=
0.001
),
3
:
ft
.
partial
(
saturation_sym_prime
,
n_index
=
6
,
alpha
=
0.001
),
4
:
ft
.
partial
(
saturation_sym_prime
,
n_index
=
6
,
alpha
=
0.001
)
}
sat_pressure_relationship
=
{
1
:
ft
.
partial
(
saturation
,
n_index
=
3
,
alpha
=
0.001
),
2
:
ft
.
partial
(
saturation
,
n_index
=
3
,
alpha
=
0.001
),
3
:
ft
.
partial
(
saturation
,
n_index
=
6
,
alpha
=
0.001
),
4
:
ft
.
partial
(
saturation
,
n_index
=
6
,
alpha
=
0.001
)
}
#############################################
# Manufacture source expressions with sympy #
#############################################
x
,
y
=
sym
.
symbols
(
'
x[0], x[1]
'
)
# needed by UFL
t
=
sym
.
symbols
(
'
t
'
,
positive
=
True
)
p_e_sym_2patch
=
{
1
:
{
'
wetting
'
:
-
6
-
(
1
+
t
*
t
)
*
(
1
+
x
*
x
+
y
*
y
),
'
nonwetting
'
:
0.0
*
t
},
# -1-t*(1.1 + y + x**2)**2},
2
:
{
'
wetting
'
:
-
6.0
-
(
1.0
+
t
*
t
)
*
(
1.0
+
x
*
x
),
'
nonwetting
'
:
(
-
1
-
t
*
(
1.1
+
y
+
x
**
2
))
*
y
**
2
},
# 'nonwetting': (-1-t*(1.1 + x**2)**2 - sym.sqrt(5+t**2))*y**2},
}
p_e_sym
=
{
1
:
{
'
wetting
'
:
p_e_sym_2patch
[
1
][
'
wetting
'
],
'
nonwetting
'
:
p_e_sym_2patch
[
1
][
'
nonwetting
'
]},
2
:
{
'
wetting
'
:
p_e_sym_2patch
[
1
][
'
wetting
'
],
'
nonwetting
'
:
p_e_sym_2patch
[
1
][
'
nonwetting
'
]},
3
:
{
'
wetting
'
:
p_e_sym_2patch
[
2
][
'
wetting
'
],
'
nonwetting
'
:
p_e_sym_2patch
[
2
][
'
nonwetting
'
]},
4
:
{
'
wetting
'
:
p_e_sym_2patch
[
2
][
'
wetting
'
],
'
nonwetting
'
:
p_e_sym_2patch
[
2
][
'
nonwetting
'
]}
}
# p_e_sym = {
# 1: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-5.0)*(y-5.0)),
# 'nonwetting':
# -2 - t*(1 + (y - 5.0) + x**2)**2
# - sym.sqrt(2 + t**2)*(1 + (y - 5.0))
# },
# 2: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-5.0)*(y-5.0)),
# 'nonwetting':
# - 2 - t*(1 + (y - 5.0) + x**2)**2
# - sym.sqrt(2 + t**2)*(1 + (y - 5.0))
# },
# 3: {'wetting':
# 1.0 - (1.0 + t*t)*(10.0 + x*x + (y - 5.0)*(y - 5.0))
# - (y - 5.0)*(y - 5.0)*3*sym.sin(-2*t + 2*x)*sym.sin(1/2*y - 1.2*t),
# 'nonwetting': - 2 - t*(1 + x**2)**2 - sym.sqrt(2 + t**2)
# },
# 4: {'wetting':
# 1.0 - (1.0 + t*t)*(10.0 + x*x + (y - 5.0)*(y - 5.0))
# - (y - 5.0)*(y - 5.0)*3*sym.sin(-2*t + 2*x)*sym.sin(1/2*y - 1.2*t),
# 'nonwetting': - 2 - t*(1 + x**2)**2 - sym.sqrt(2 + t**2)
# }
# }
pc_e_sym
=
dict
()
for
subdomain
,
isR
in
isRichards
.
items
():
if
isR
:
pc_e_sym
.
update
({
subdomain
:
-
p_e_sym
[
subdomain
][
'
wetting
'
]})
else
:
pc_e_sym
.
update
(
{
subdomain
:
p_e_sym
[
subdomain
][
'
nonwetting
'
]
-
p_e_sym
[
subdomain
][
'
wetting
'
]}
)
symbols
=
{
"
x
"
:
x
,
"
y
"
:
y
,
"
t
"
:
t
}
# turn above symbolic code into exact solution for dolphin and
# construct the rhs that matches the above exact solution.
exact_solution_example
=
hlp
.
generate_exact_solution_expressions
(
symbols
=
symbols
,
isRichards
=
isRichards
,
symbolic_pressure
=
p_e_sym
,
symbolic_capillary_pressure
=
pc_e_sym
,
saturation_pressure_relationship
=
S_pc_sym
,
saturation_pressure_relationship_prime
=
S_pc_sym_prime
,
viscosity
=
viscosity
,
porosity
=
porosity
,
relative_permeability
=
relative_permeability
,
relative_permeability_prime
=
ka_prime
,
densities
=
densities
,
gravity_acceleration
=
gravity_acceleration
,
include_gravity
=
include_gravity
,
)
source_expression
=
exact_solution_example
[
'
source
'
]
exact_solution
=
exact_solution_example
[
'
exact_solution
'
]
initial_condition
=
exact_solution_example
[
'
initial_condition
'
]
# Dictionary of dirichlet boundary conditions.
dirichletBC
=
dict
()
# similarly to the outer boundary dictionary, if a patch has no outer boundary
# None should be written instead of an expression.
# This is a bit of a brainfuck:
# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind.
# Since a domain patch can have several disjoint outer boundary parts, the
# expressions need to get an enumaration index which starts at 0.
# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of
# subdomain ind and boundary part j.
# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting']
# return the actual expression needed for the dirichlet condition for both
# phases if present.
# subdomain index: {outer boudary part index: {phase: expression}}
for
subdomain
in
isRichards
.
keys
():
# if subdomain has no outer boundary, outer_boundary_def_points[subdomain]
# is None
if
outer_boundary_def_points
[
subdomain
]
is
None
:
dirichletBC
.
update
({
subdomain
:
None
})
else
:
dirichletBC
.
update
({
subdomain
:
dict
()})
# set the dirichlet conditions to be the same code as exact solution on
# the subdomain.
for
outer_boundary_ind
in
outer_boundary_def_points
[
subdomain
].
keys
():
dirichletBC
[
subdomain
].
update
(
{
outer_boundary_ind
:
exact_solution
[
subdomain
]}
)
# LOG FILE OUTPUT #############################################################
# read this file and print it to std out. This way the simulation can produce a
# log file with ./TP-R-layered_soil.py | tee simulation.log
f
=
open
(
thisfile
,
'
r
'
)
print
(
f
.
read
())
f
.
close
()
# RUN #########################################################################
for
starttime
in
starttimes
:
for
mesh_resolution
,
solver_tol
in
resolutions
.
items
():
# initialise LDD simulation class
simulation
=
ldd
.
LDDsimulation
(
tol
=
1E-14
,
LDDsolver_tol
=
solver_tol
,
debug
=
debugflag
,
max_iter_num
=
max_iter_num
,
FEM_Lagrange_degree
=
FEM_Lagrange_degree
,
mesh_study
=
mesh_study
)
simulation
.
set_parameters
(
use_case
=
use_case
,
output_dir
=
output_string
,
subdomain_def_points
=
subdomain_def_points
,
isRichards
=
isRichards
,
interface_def_points
=
interface_def_points
,
outer_boundary_def_points
=
outer_boundary_def_points
,
adjacent_subdomains
=
adjacent_subdomains
,
mesh_resolution
=
mesh_resolution
,
viscosity
=
viscosity
,
porosity
=
porosity
,
L
=
L
,
lambda_param
=
lambda_param
,
relative_permeability
=
relative_permeability
,
saturation
=
sat_pressure_relationship
,
starttime
=
starttime
,
number_of_timesteps
=
number_of_timesteps
,
number_of_timesteps_to_analyse
=
number_of_timesteps_to_analyse
,
plot_timestep_every
=
plot_timestep_every
,
timestep_size
=
timestep_size
,
sources
=
source_expression
,
initial_conditions
=
initial_condition
,
dirichletBC_expression_strings
=
dirichletBC
,
exact_solution
=
exact_solution
,
densities
=
densities
,
include_gravity
=
include_gravity
,
gravity_acceleration
=
gravity_acceleration
,
write2file
=
write_to_file
,
)
simulation
.
initialise
()
output_dir
=
simulation
.
output_dir
# simulation.write_exact_solution_to_xdmf()
output
=
simulation
.
run
(
analyse_condition
=
analyse_condition
)
for
subdomain_index
,
subdomain_output
in
output
.
items
():
mesh_h
=
subdomain_output
[
'
mesh_size
'
]
for
phase
,
error_dict
in
subdomain_output
[
'
errornorm
'
].
items
():
filename
=
output_dir
\
+
"
subdomain{}
"
.
format
(
subdomain_index
)
\
+
"
-space-time-errornorm-{}-phase.csv
"
.
format
(
phase
)
# for errortype, errornorm in error_dict.items():
# eocfile = open("eoc_filename", "a")
# eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" )
# eocfile.close()
# if subdomain.isRichards:mesh_h
data_dict
=
{
'
mesh_parameter
'
:
mesh_resolution
,
'
mesh_h
'
:
mesh_h
,
}
for
norm_type
,
errornorm
in
error_dict
.
items
():
data_dict
.
update
(
{
norm_type
:
errornorm
}
)
errors
=
pd
.
DataFrame
(
data_dict
,
index
=
[
mesh_resolution
])
# check if file exists
if
os
.
path
.
isfile
(
filename
)
is
True
:
with
open
(
filename
,
'
a
'
)
as
f
:
errors
.
to_csv
(
f
,
header
=
False
,
sep
=
'
\t
'
,
encoding
=
'
utf-8
'
,
index
=
False
)
else
:
errors
.
to_csv
(
filename
,
sep
=
'
\t
'
,
encoding
=
'
utf-8
'
,
index
=
False
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment