Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
L
LDD-for-two-phase-flow-systems
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
David Seus
LDD-for-two-phase-flow-systems
Commits
0e062616
Commit
0e062616
authored
5 years ago
by
David Seus
Browse files
Options
Downloads
Patches
Plain Diff
set up one patch mesh study
parent
a3eafa69
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
TP-one-patch/mesh_study/TP-one-patch-mesh-study.py
+470
-0
470 additions, 0 deletions
TP-one-patch/mesh_study/TP-one-patch-mesh-study.py
with
470 additions
and
0 deletions
TP-one-patch/mesh_study/TP-one-patch-mesh-study.py
0 → 100755
+
470
−
0
View file @
0e062616
#!/usr/bin/python3
import
dolfin
as
df
import
mshr
import
numpy
as
np
import
sympy
as
sym
import
typing
as
tp
import
domainPatch
as
dp
import
LDDsimulation
as
ldd
import
functools
as
ft
import
helpers
as
hlp
import
datetime
import
os
import
pandas
as
pd
date
=
datetime
.
datetime
.
now
()
datestr
=
date
.
strftime
(
"
%Y-%m-%d
"
)
#import ufl as ufl
# init sympy session
sym
.
init_printing
()
use_case
=
"
TP-one-patch
"
# solver_tol = 5E-9
max_iter_num
=
500
FEM_Lagrange_degree
=
1
mesh_study
=
True
# resolutions = {128: 1e-7} #[1,2,3,4,5,10,20,40,75,100]
resolutions
=
{
1
:
1e-7
,
2
:
2e-5
,
4
:
1e-6
,
8
:
1e-6
,
16
:
6e-7
,
32
:
6e-7
,
64
:
6e-7
,
128
:
6e-7
}
############ GRID #######################
# mesh_resolution = 20
timestep_size
=
0.000025
number_of_timesteps
=
4000
plot_timestep_every
=
40
# decide how many timesteps you want analysed. Analysed means, that we write out
# subsequent errors of the L-iteration within the timestep.
number_of_timesteps_to_analyse
=
0
starttime
=
0.0
Lw
=
0.25
#/timestep_size
Lnw
=
Lw
lambda_w
=
40
lambda_nw
=
40
include_gravity
=
False
debugflag
=
False
analyse_condition
=
False
output_string
=
"
./output/{}-{}_timesteps{}_P{}
"
.
format
(
datestr
,
use_case
,
number_of_timesteps
,
FEM_Lagrange_degree
)
# toggle what should be written to files
if
mesh_study
:
write_to_file
=
{
'
space_errornorms
'
:
True
,
'
meshes_and_markers
'
:
True
,
'
L_iterations_per_timestep
'
:
False
,
'
solutions
'
:
True
,
'
absolute_differences
'
:
False
,
'
condition_numbers
'
:
analyse_condition
,
'
subsequent_errors
'
:
True
}
else
:
write_to_file
=
{
'
space_errornorms
'
:
True
,
'
meshes_and_markers
'
:
True
,
'
L_iterations_per_timestep
'
:
False
,
'
solutions
'
:
True
,
'
absolute_differences
'
:
True
,
'
condition_numbers
'
:
analyse_condition
,
'
subsequent_errors
'
:
True
}
##### Domain and Interface ####
# global simulation domain domain
sub_domain0_vertices
=
[
df
.
Point
(
-
1.0
,
-
1.0
),
#
df
.
Point
(
1.0
,
-
1.0
),
#
df
.
Point
(
1.0
,
1.0
),
#
df
.
Point
(
-
1.0
,
1.0
)]
subdomain0_outer_boundary_verts
=
{
0
:
[
sub_domain0_vertices
[
0
],
sub_domain0_vertices
[
1
],
sub_domain0_vertices
[
2
],
sub_domain0_vertices
[
3
],
sub_domain0_vertices
[
0
]]
}
# list of subdomains given by the boundary polygon vertices.
# Subdomains are given as a list of dolfin points forming
# a closed polygon, such that mshr.Polygon(subdomain_def_points[i]) can be used
# to create the subdomain. subdomain_def_points[0] contains the
# vertices of the global simulation domain and subdomain_def_points[i] contains the
# vertices of the subdomain i.
subdomain_def_points
=
[
sub_domain0_vertices
]
# in the below list, index 0 corresponds to the 12 interface which has index 1
interface_def_points
=
None
# if a subdomain has no outer boundary write None instead, i.e.
# i: None
# if i is the index of the inner subdomain.
outer_boundary_def_points
=
{
# subdomain number
0
:
subdomain0_outer_boundary_verts
}
# adjacent_subdomains[i] contains the indices of the subdomains sharing the
# interface i (i.e. given by interface_def_points[i]).
adjacent_subdomains
=
None
isRichards
=
{
0
:
False
,
#
}
viscosity
=
{
#
# subdom_num : viscosity
0
:
{
'
wetting
'
:
1
,
'
nonwetting
'
:
1
},
#
}
porosity
=
{
#
# subdom_num : porosity
0
:
1
,
#
}
# Dict of the form: { subdom_num : density }
densities
=
{
0
:
{
'
wetting
'
:
1
,
#997,
'
nonwetting
'
:
1
},
#1225}
}
gravity_acceleration
=
9.81
L
=
{
#
# subdom_num : subdomain L for L-scheme
0
:
{
'
wetting
'
:
Lw
,
'
nonwetting
'
:
Lnw
},
#
}
lambda_param
=
{
#
# subdom_num : lambda parameter for the L-scheme
0
:
{
'
wetting
'
:
lambda_w
,
'
nonwetting
'
:
lambda_nw
},
#
}
## relative permeabilty functions on subdomain 1
def
rel_perm1w
(
s
):
# relative permeabilty wetting on subdomain1
return
s
**
2
def
rel_perm1nw
(
s
):
# relative permeabilty nonwetting on subdomain1
return
(
1
-
s
)
**
2
_rel_perm1w
=
ft
.
partial
(
rel_perm1w
)
_rel_perm1nw
=
ft
.
partial
(
rel_perm1nw
)
subdomain1_rel_perm
=
{
'
wetting
'
:
_rel_perm1w
,
#
'
nonwetting
'
:
_rel_perm1nw
}
## dictionary of relative permeabilties on all domains.
relative_permeability
=
{
#
0
:
subdomain1_rel_perm
,
}
# definition of the derivatives of the relative permeabilities
# relative permeabilty functions on subdomain 1
def
rel_perm1w_prime
(
s
):
# relative permeabilty on subdomain1
return
2
*
s
def
rel_perm1nw_prime
(
s
):
# relative permeabilty on subdomain1
return
-
2
*
(
1
-
s
)
_rel_perm1w_prime
=
ft
.
partial
(
rel_perm1w_prime
)
_rel_perm1nw_prime
=
ft
.
partial
(
rel_perm1nw_prime
)
subdomain1_rel_perm_prime
=
{
'
wetting
'
:
_rel_perm1w_prime
,
'
nonwetting
'
:
_rel_perm1nw_prime
}
# dictionary of relative permeabilties on all domains.
ka_prime
=
{
0
:
subdomain1_rel_perm_prime
,
}
def
saturation
(
pc
,
index
):
# inverse capillary pressure-saturation-relationship
return
df
.
conditional
(
pc
>
0
,
1
/
((
1
+
pc
)
**
(
1
/
(
index
+
1
))),
1
)
def
saturation_sym
(
pc
,
index
):
# inverse capillary pressure-saturation-relationship
return
1
/
((
1
+
pc
)
**
(
1
/
(
index
+
1
)))
# derivative of S-pc relationship with respect to pc. This is needed for the
# construction of a analytic solution.
def
saturation_sym_prime
(
pc
,
index
):
# inverse capillary pressure-saturation-relationship
return
-
1
/
((
index
+
1
)
*
(
1
+
pc
)
**
((
index
+
2
)
/
(
index
+
1
)))
# def saturation(pc, index):
# # inverse capillary pressure-saturation-relationship
# return df.conditional(pc > 0, -index*pc, 1)
#
#
# def saturation_sym(pc, index):
# # inverse capillary pressure-saturation-relationship
# return -index*pc
#
#
# # derivative of S-pc relationship with respect to pc. This is needed for the
# # construction of a analytic solution.
# def saturation_sym_prime(pc, index):
# # inverse capillary pressure-saturation-relationship
# return -index
# note that the conditional definition of S-pc in the nonsymbolic part will be
# incorporated in the construction of the exact solution below.
S_pc_sym
=
{
0
:
ft
.
partial
(
saturation_sym
,
index
=
1
),
}
S_pc_sym_prime
=
{
0
:
ft
.
partial
(
saturation_sym_prime
,
index
=
1
),
}
sat_pressure_relationship
=
{
0
:
ft
.
partial
(
saturation
,
index
=
1
),
}
#############################################
# Manufacture source expressions with sympy #
#############################################
x
,
y
=
sym
.
symbols
(
'
x[0], x[1]
'
)
# needed by UFL
t
=
sym
.
symbols
(
'
t
'
,
positive
=
True
)
epsilon_x_inner
=
0.7
epsilon_x_outer
=
0.99
epsilon_y_inner
=
epsilon_x_inner
epsilon_y_outer
=
epsilon_x_outer
def
mollifier
(
x
,
epsilon
):
"""
one d mollifier
"""
out_expr
=
sym
.
exp
(
-
1
/
(
1
-
(
x
/
epsilon
)
**
2
)
+
1
)
return
out_expr
mollifier_handle
=
ft
.
partial
(
mollifier
,
epsilon
=
epsilon_x_inner
)
pw_sym_x
=
sym
.
Piecewise
(
(
mollifier_handle
(
x
),
x
**
2
<
epsilon_x_outer
**
2
),
(
0
,
True
)
)
pw_sym_y
=
sym
.
Piecewise
(
(
mollifier_handle
(
y
),
y
**
2
<
epsilon_y_outer
**
2
),
(
0
,
True
)
)
def
mollifier2d
(
x
,
y
,
epsilon
):
"""
one d mollifier
"""
out_expr
=
sym
.
exp
(
-
1
/
(
1
-
(
x
**
2
+
y
**
2
)
/
epsilon
**
2
)
+
1
)
return
out_expr
mollifier2d_handle
=
ft
.
partial
(
mollifier2d
,
epsilon
=
epsilon_x_outer
)
pw_sym2d_x
=
sym
.
Piecewise
(
(
mollifier2d_handle
(
x
,
y
),
x
**
2
+
y
**
2
<
epsilon_x_outer
**
2
),
(
0
,
True
)
)
zero_on_epsilon_shrinking_of_subdomain
=
sym
.
Piecewise
(
(
mollifier_handle
(
sym
.
sqrt
(
x
**
2
+
y
**
2
)
+
2
*
epsilon_x_inner
),
((
-
2
*
epsilon_x_inner
<
sym
.
sqrt
(
x
**
2
+
y
**
2
))
&
(
sym
.
sqrt
(
x
**
2
+
y
**
2
)
<-
epsilon_x_inner
))),
(
0
,
((
-
epsilon_x_inner
<=
sym
.
sqrt
(
x
**
2
+
y
**
2
))
&
(
sym
.
sqrt
(
x
**
2
+
y
**
2
)
<=
epsilon_x_inner
))),
(
mollifier_handle
(
sym
.
sqrt
(
x
**
2
+
y
**
2
)
-
2
*
epsilon_x_inner
),
((
epsilon_x_inner
<
sym
.
sqrt
(
x
**
2
+
y
**
2
))
&
(
sym
.
sqrt
(
x
**
2
+
y
**
2
)
<
2
*
epsilon_x_inner
))),
(
1
,
True
),
)
zero_on_epsilon_shrinking_of_subdomain_x
=
sym
.
Piecewise
(
(
mollifier_handle
(
x
+
2
*
epsilon_x_inner
),
((
-
2
*
epsilon_x_inner
<
x
)
&
(
x
<-
epsilon_x_inner
))),
(
0
,
((
-
epsilon_x_inner
<=
x
)
&
(
x
<=
epsilon_x_inner
))),
(
mollifier_handle
(
x
-
2
*
epsilon_x_inner
),
((
epsilon_x_inner
<
x
)
&
(
x
<
2
*
epsilon_x_inner
))),
(
1
,
True
),
)
zero_on_epsilon_shrinking_of_subdomain_y
=
sym
.
Piecewise
(
(
1
,
y
<=-
2
*
epsilon_x_inner
),
(
mollifier_handle
(
y
+
2
*
epsilon_x_inner
),
((
-
2
*
epsilon_x_inner
<
y
)
&
(
y
<-
epsilon_x_inner
))),
(
0
,
((
-
epsilon_x_inner
<=
y
)
&
(
y
<=
epsilon_x_inner
))),
(
mollifier_handle
(
y
-
2
*
epsilon_x_inner
),
((
epsilon_x_inner
<
y
)
&
(
y
<
2
*
epsilon_x_inner
))),
(
1
,
True
),
)
zero_on_shrinking
=
zero_on_epsilon_shrinking_of_subdomain
#zero_on_epsilon_shrinking_of_subdomain_x + zero_on_epsilon_shrinking_of_subdomain_y
gaussian
=
pw_sym2d_x
# pw_sym_y*pw_sym_x
cutoff
=
gaussian
/
(
gaussian
+
zero_on_shrinking
)
# # construction of differentiable characteristic function.
# def smooth_characteristic_func_on_epsilon_shrinking_of_subdomain0(x, y, epsilon_x_inner, epsilon_y_inner, epsilon_x_outer, epsilon_y_outer):
# dist_to_complement_x = ft.partial(mollifier, epsilon=epsilon_x_inner)
# dist_to_complement_y = ft.partial(mollifier, epsilon=epsilon_y_inner)
# dist_to_complement = dist_to_complement_y(y)*dist_to_complement_x(x)
# dist_to_eps_shrinking_x = ft.partial(zero_outside_epsilon_thickening_of_subdomain, epsilon=epsilon_x_outer)
# dist_to_eps_shrinking_y = ft.partial(zero_outside_epsilon_thickening_of_subdomain, epsilon=epsilon_y_outer)
# dist_to_eps_shrinking = dist_to_eps_shrinking_y(y)*dist_to_eps_shrinking_x(x)
# return dist_to_complement/(dist_to_eps_shrinking + dist_to_complement)
#
# def dist_to_epsilon_thickening_of_subdomain0_complement(x, y, epsilon):
# """ calculates the (euklidian distance)^2 of a point x,y to the epsilon
# thickening of the complement of the domain.
# """
# is_inside = ((1-sym.Abs(x) > epsilon) & (1-sym.Abs(y) > epsilon))
# sym.Piecewise((0, is_inside))
p_e_sym
=
{
0
:
{
'
wetting
'
:
(
-
7
-
(
1
+
t
*
t
)
*
(
1
+
x
*
x
+
y
*
y
)),
#*cutoff,
'
nonwetting
'
:
(
-
1
-
t
*
(
1.1
+
y
+
x
**
2
))},
#*cutoff},
}
pc_e_sym
=
dict
()
for
subdomain
,
isR
in
isRichards
.
items
():
if
isR
:
pc_e_sym
.
update
({
subdomain
:
-
p_e_sym
[
subdomain
][
'
wetting
'
]})
else
:
pc_e_sym
.
update
({
subdomain
:
p_e_sym
[
subdomain
][
'
nonwetting
'
]
-
p_e_sym
[
subdomain
][
'
wetting
'
]})
symbols
=
{
"
x
"
:
x
,
"
y
"
:
y
,
"
t
"
:
t
}
# turn above symbolic code into exact solution for dolphin and
# construct the rhs that matches the above exact solution.
exact_solution_example
=
hlp
.
generate_exact_solution_expressions
(
symbols
=
symbols
,
isRichards
=
isRichards
,
symbolic_pressure
=
p_e_sym
,
symbolic_capillary_pressure
=
pc_e_sym
,
saturation_pressure_relationship
=
S_pc_sym
,
saturation_pressure_relationship_prime
=
S_pc_sym_prime
,
viscosity
=
viscosity
,
porosity
=
porosity
,
relative_permeability
=
relative_permeability
,
relative_permeability_prime
=
ka_prime
,
densities
=
densities
,
gravity_acceleration
=
gravity_acceleration
,
include_gravity
=
include_gravity
,
)
source_expression
=
exact_solution_example
[
'
source
'
]
exact_solution
=
exact_solution_example
[
'
exact_solution
'
]
initial_condition
=
exact_solution_example
[
'
initial_condition
'
]
# Dictionary of dirichlet boundary conditions.
dirichletBC
=
dict
()
# similarly to the outer boundary dictionary, if a patch has no outer boundary
# None should be written instead of an expression.
# This is a bit of a brainfuck:
# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind.
# Since a domain patch can have several disjoint outer boundary parts, the
# expressions need to get an enumaration index which starts at 0.
# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of
# subdomain ind and boundary part j.
# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting']
# return the actual expression needed for the dirichlet condition for both
# phases if present.
# subdomain index: {outer boudary part index: {phase: expression}}
for
subdomain
in
isRichards
.
keys
():
# if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None
if
outer_boundary_def_points
[
subdomain
]
is
None
:
dirichletBC
.
update
({
subdomain
:
None
})
else
:
dirichletBC
.
update
({
subdomain
:
dict
()})
# set the dirichlet conditions to be the same code as exact solution on
# the subdomain.
for
outer_boundary_ind
in
outer_boundary_def_points
[
subdomain
].
keys
():
dirichletBC
[
subdomain
].
update
(
{
outer_boundary_ind
:
exact_solution
[
subdomain
]}
)
# def saturation(pressure, subdomain_index):
# # inverse capillary pressure-saturation-relationship
# return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1)
#
# sa
for
mesh_resolution
,
solver_tol
in
resolutions
.
items
():
# initialise LDD simulation class
simulation
=
ldd
.
LDDsimulation
(
tol
=
1E-14
,
LDDsolver_tol
=
solver_tol
,
debug
=
debugflag
,
max_iter_num
=
max_iter_num
,
FEM_Lagrange_degree
=
FEM_Lagrange_degree
,
mesh_study
=
mesh_study
)
simulation
.
set_parameters
(
use_case
=
use_case
,
output_dir
=
output_string
,
subdomain_def_points
=
subdomain_def_points
,
isRichards
=
isRichards
,
interface_def_points
=
interface_def_points
,
outer_boundary_def_points
=
outer_boundary_def_points
,
adjacent_subdomains
=
adjacent_subdomains
,
mesh_resolution
=
mesh_resolution
,
viscosity
=
viscosity
,
porosity
=
porosity
,
L
=
L
,
lambda_param
=
lambda_param
,
relative_permeability
=
relative_permeability
,
saturation
=
sat_pressure_relationship
,
starttime
=
starttime
,
number_of_timesteps
=
number_of_timesteps
,
number_of_timesteps_to_analyse
=
number_of_timesteps_to_analyse
,
plot_timestep_every
=
plot_timestep_every
,
timestep_size
=
timestep_size
,
sources
=
source_expression
,
initial_conditions
=
initial_condition
,
dirichletBC_expression_strings
=
dirichletBC
,
exact_solution
=
exact_solution
,
densities
=
densities
,
include_gravity
=
include_gravity
,
write2file
=
write_to_file
,
)
simulation
.
initialise
()
output_dir
=
simulation
.
output_dir
# simulation.write_exact_solution_to_xdmf()
output
=
simulation
.
run
(
analyse_condition
=
analyse_condition
)
for
subdomain_index
,
subdomain_output
in
output
.
items
():
mesh_h
=
subdomain_output
[
'
mesh_size
'
]
for
phase
,
different_errornorms
in
subdomain_output
[
'
errornorm
'
].
items
():
filename
=
output_dir
+
"
subdomain{}-space-time-errornorm-{}-phase.csv
"
.
format
(
subdomain_index
,
phase
)
# for errortype, errornorm in different_errornorms.items():
# eocfile = open("eoc_filename", "a")
# eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" )
# eocfile.close()
# if subdomain.isRichards:mesh_h
data_dict
=
{
'
mesh_parameter
'
:
mesh_resolution
,
'
mesh_h
'
:
mesh_h
,
}
for
error_type
,
errornorms
in
different_errornorms
.
items
():
data_dict
.
update
(
{
error_type
:
errornorms
}
)
errors
=
pd
.
DataFrame
(
data_dict
,
index
=
[
mesh_resolution
])
# check if file exists
if
os
.
path
.
isfile
(
filename
)
==
True
:
with
open
(
filename
,
'
a
'
)
as
f
:
errors
.
to_csv
(
f
,
header
=
False
,
sep
=
'
\t
'
,
encoding
=
'
utf-8
'
,
index
=
False
)
else
:
errors
.
to_csv
(
filename
,
sep
=
'
\t
'
,
encoding
=
'
utf-8
'
,
index
=
False
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment