Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
L
LDD-for-two-phase-flow-systems
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
David Seus
LDD-for-two-phase-flow-systems
Commits
0b9933b0
Commit
0b9933b0
authored
5 years ago
by
David
Browse files
Options
Downloads
Patches
Plain Diff
add TPR layered soil example
parent
66f72c93
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Two-phase-Richards/multi-patch/layered_soil/TP-R-layered_soil.py
+627
-0
627 additions, 0 deletions
...se-Richards/multi-patch/layered_soil/TP-R-layered_soil.py
with
627 additions
and
0 deletions
Two-phase-Richards/multi-patch/layered_soil/TP-R-layered_soil.py
0 → 100755
+
627
−
0
View file @
0b9933b0
#!/usr/bin/python3
"""
This program sets up a domain together with a decomposition into subdomains
modelling layered soil. This is used for our LDD article with tp-tp and tp-r
coupling.
Along with the subdomains and the mesh domain markers are set upself.
The resulting mesh is saved into files for later use.
"""
#!/usr/bin/python3
import
dolfin
as
df
import
mshr
import
numpy
as
np
import
sympy
as
sym
import
typing
as
tp
import
functools
as
ft
import
domainPatch
as
dp
import
LDDsimulation
as
ldd
import
helpers
as
hlp
import
datetime
import
os
import
pandas
as
pd
date
=
datetime
.
datetime
.
now
()
datestr
=
date
.
strftime
(
"
%Y-%m-%d
"
)
# init sympy session
sym
.
init_printing
()
# solver_tol = 6E-7
use_case
=
"
TP-R-layered-soil-all-params-set-one
"
max_iter_num
=
1000
FEM_Lagrange_degree
=
1
mesh_study
=
False
resolutions
=
{
# 1: 1e-7, # h=2
# 2: 2e-5, # h=1.1180
# 4: 1e-6, # h=0.5590
# 8: 1e-6, # h=0.2814
16
:
1e-6
,
# h=0.1412
# 32: 1e-6,
# 64: 5e-7,
# 128: 5e-7
}
############ GRID #######################
# mesh_resolution = 20
timestep_size
=
0.001
number_of_timesteps
=
40
plot_timestep_every
=
1
# decide how many timesteps you want analysed. Analysed means, that we write out
# subsequent errors of the L-iteration within the timestep.
number_of_timesteps_to_analyse
=
0
starttimes
=
[
0.0
]
Lw
=
0.025
#/timestep_size
Lnw
=
Lw
lambda_w
=
40
lambda_nw
=
40
include_gravity
=
True
debugflag
=
False
analyse_condition
=
False
if
mesh_study
:
output_string
=
"
./output/{}-{}_timesteps{}_P{}
"
.
format
(
datestr
,
use_case
,
number_of_timesteps
,
FEM_Lagrange_degree
)
else
:
for
tol
in
resolutions
.
values
():
solver_tol
=
tol
output_string
=
"
./output/{}-{}_timesteps{}_P{}_solver_tol{}
"
.
format
(
datestr
,
use_case
,
number_of_timesteps
,
FEM_Lagrange_degree
,
solver_tol
)
# toggle what should be written to files
if
mesh_study
:
write_to_file
=
{
'
space_errornorms
'
:
True
,
'
meshes_and_markers
'
:
True
,
'
L_iterations_per_timestep
'
:
True
,
'
solutions
'
:
True
,
'
absolute_differences
'
:
True
,
'
condition_numbers
'
:
analyse_condition
,
'
subsequent_errors
'
:
True
}
else
:
write_to_file
=
{
'
space_errornorms
'
:
True
,
'
meshes_and_markers
'
:
True
,
'
L_iterations_per_timestep
'
:
False
,
'
solutions
'
:
True
,
'
absolute_differences
'
:
True
,
'
condition_numbers
'
:
analyse_condition
,
'
subsequent_errors
'
:
True
}
# global domain
subdomain0_vertices
=
[
df
.
Point
(
-
1.0
,
-
1.0
),
#
df
.
Point
(
1.0
,
-
1.0
),
#
df
.
Point
(
1.0
,
1.0
),
#
df
.
Point
(
-
1.0
,
1.0
)]
interface12_vertices
=
[
df
.
Point
(
-
1.0
,
0.8
),
df
.
Point
(
0.3
,
0.8
),
df
.
Point
(
0.5
,
0.9
),
df
.
Point
(
0.8
,
0.7
),
df
.
Point
(
1.0
,
0.65
)]
# subdomain1.
subdomain1_vertices
=
[
interface12_vertices
[
0
],
interface12_vertices
[
1
],
interface12_vertices
[
2
],
interface12_vertices
[
3
],
interface12_vertices
[
4
],
# southern boundary, 12 interface
subdomain0_vertices
[
2
],
# eastern boundary, outer boundary
subdomain0_vertices
[
3
]]
# northern boundary, outer on_boundary
# vertex coordinates of the outer boundaries. If it can not be specified as a
# polygon, use an entry per boundary polygon. This information is used for defining
# the Dirichlet boundary conditions. If a domain is completely internal, the
# dictionary entry should be 0: None
subdomain1_outer_boundary_verts
=
{
0
:
[
interface12_vertices
[
4
],
#
subdomain0_vertices
[
2
],
# eastern boundary, outer boundary
subdomain0_vertices
[
3
],
interface12_vertices
[
0
]]
}
# interface23
interface23_vertices
=
[
df
.
Point
(
-
1.0
,
0.0
),
df
.
Point
(
-
0.35
,
0.0
),
# df.Point(6.5, 4.5),
df
.
Point
(
0.0
,
0.0
),
df
.
Point
(
0.5
,
0.0
),
# df.Point(11.5, 3.5),
# df.Point(13.0, 3)
df
.
Point
(
0.85
,
0.0
),
df
.
Point
(
1.0
,
0.0
)
]
#subdomain1
subdomain2_vertices
=
[
interface23_vertices
[
0
],
interface23_vertices
[
1
],
interface23_vertices
[
2
],
interface23_vertices
[
3
],
interface23_vertices
[
4
],
interface23_vertices
[
5
],
# southern boundary, 23 interface
subdomain1_vertices
[
4
],
# eastern boundary, outer boundary
subdomain1_vertices
[
3
],
subdomain1_vertices
[
2
],
subdomain1_vertices
[
1
],
subdomain1_vertices
[
0
]
]
# northern boundary, 12 interface
subdomain2_outer_boundary_verts
=
{
0
:
[
interface23_vertices
[
5
],
subdomain1_vertices
[
4
]],
1
:
[
subdomain1_vertices
[
0
],
interface23_vertices
[
0
]]
}
# interface34
interface34_vertices
=
[
df
.
Point
(
-
1.0
,
-
0.6
),
df
.
Point
(
-
0.6
,
-
0.45
),
df
.
Point
(
0.3
,
-
0.25
),
df
.
Point
(
0.65
,
-
0.6
),
df
.
Point
(
1.0
,
-
0.7
)]
# subdomain3
subdomain3_vertices
=
[
interface34_vertices
[
0
],
interface34_vertices
[
1
],
interface34_vertices
[
2
],
interface34_vertices
[
3
],
interface34_vertices
[
4
],
# southern boundary, 34 interface
subdomain2_vertices
[
5
],
# eastern boundary, outer boundary
subdomain2_vertices
[
4
],
subdomain2_vertices
[
3
],
subdomain2_vertices
[
2
],
subdomain2_vertices
[
1
],
subdomain2_vertices
[
0
]
]
# northern boundary, 23 interface
subdomain3_outer_boundary_verts
=
{
0
:
[
interface34_vertices
[
4
],
subdomain2_vertices
[
5
]],
1
:
[
subdomain2_vertices
[
0
],
interface34_vertices
[
0
]]
}
# subdomain4
subdomain4_vertices
=
[
subdomain0_vertices
[
0
],
subdomain0_vertices
[
1
],
# southern boundary, outer boundary
subdomain3_vertices
[
4
],
# eastern boundary, outer boundary
subdomain3_vertices
[
3
],
subdomain3_vertices
[
2
],
subdomain3_vertices
[
1
],
subdomain3_vertices
[
0
]
]
# northern boundary, 34 interface
subdomain4_outer_boundary_verts
=
{
0
:
[
subdomain4_vertices
[
6
],
subdomain4_vertices
[
0
],
subdomain4_vertices
[
1
],
subdomain4_vertices
[
2
]]
}
subdomain_def_points
=
[
subdomain0_vertices
,
#
subdomain1_vertices
,
#
subdomain2_vertices
,
#
subdomain3_vertices
,
#
subdomain4_vertices
]
# interface_vertices introduces a global numbering of interfaces.
interface_def_points
=
[
interface12_vertices
,
interface23_vertices
,
interface34_vertices
]
adjacent_subdomains
=
[[
1
,
2
],
[
2
,
3
],
[
3
,
4
]]
# if a subdomain has no outer boundary write None instead, i.e.
# i: None
# if i is the index of the inner subdomain.
outer_boundary_def_points
=
{
# subdomain number
1
:
subdomain1_outer_boundary_verts
,
2
:
subdomain2_outer_boundary_verts
,
3
:
subdomain3_outer_boundary_verts
,
4
:
subdomain4_outer_boundary_verts
}
isRichards
=
{
1
:
True
,
2
:
True
,
3
:
False
,
4
:
False
}
# isRichards = {
# 1: True,
# 2: True,
# 3: True,
# 4: True
# }
# Dict of the form: { subdom_num : viscosity }
viscosity
=
{
1
:
{
'
wetting
'
:
1
,
'
nonwetting
'
:
1
},
2
:
{
'
wetting
'
:
1
,
'
nonwetting
'
:
1
},
3
:
{
'
wetting
'
:
1
,
'
nonwetting
'
:
1
},
4
:
{
'
wetting
'
:
1
,
'
nonwetting
'
:
1
},
}
# Dict of the form: { subdom_num : density }
densities
=
{
1
:
{
'
wetting
'
:
1
,
#997
'
nonwetting
'
:
1
},
#1.225}},
2
:
{
'
wetting
'
:
1
,
#997
'
nonwetting
'
:
1
},
#1.225}},
3
:
{
'
wetting
'
:
1
,
#997
'
nonwetting
'
:
1
},
#1.225}},
4
:
{
'
wetting
'
:
1
,
#997
'
nonwetting
'
:
1
},
#1.225}}
}
gravity_acceleration
=
1
# porosities taken from
# https://www.geotechdata.info/parameter/soil-porosity.html
# Dict of the form: { subdom_num : porosity }
porosity
=
{
1
:
1
,
#0.2, # Clayey gravels, clayey sandy gravels
2
:
1
,
#0.22, # Silty gravels, silty sandy gravels
3
:
1
,
#0.37, # Clayey sands
4
:
1
,
#0.2 # Silty or sandy clay
}
# subdom_num : subdomain L for L-scheme
L
=
{
1
:
{
'
wetting
'
:
Lw
,
'
nonwetting
'
:
Lnw
},
2
:
{
'
wetting
'
:
Lw
,
'
nonwetting
'
:
Lnw
},
3
:
{
'
wetting
'
:
Lw
,
'
nonwetting
'
:
Lnw
},
4
:
{
'
wetting
'
:
Lw
,
'
nonwetting
'
:
Lnw
}
}
# subdom_num : lambda parameter for the L-scheme
lambda_param
=
{
1
:
{
'
wetting
'
:
lambda_w
,
'
nonwetting
'
:
lambda_nw
},
#
2
:
{
'
wetting
'
:
lambda_w
,
'
nonwetting
'
:
lambda_nw
},
#
3
:
{
'
wetting
'
:
lambda_w
,
'
nonwetting
'
:
lambda_nw
},
#
4
:
{
'
wetting
'
:
lambda_w
,
'
nonwetting
'
:
lambda_nw
},
#
}
intrinsic_permeability
=
{
1
:
1
,
2
:
1
,
3
:
1
,
4
:
1
}
## relative permeabilty functions on subdomain 1
def
rel_perm1w
(
s
):
# relative permeabilty wetting on subdomain1
return
intrinsic_permeability
[
1
]
*
s
**
2
def
rel_perm1nw
(
s
):
# relative permeabilty nonwetting on subdomain1
return
intrinsic_permeability
[
1
]
*
(
1
-
s
)
**
2
## relative permeabilty functions on subdomain 2
def
rel_perm2w
(
s
):
# relative permeabilty wetting on subdomain2
return
intrinsic_permeability
[
2
]
*
s
**
3
def
rel_perm2nw
(
s
):
# relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2
return
intrinsic_permeability
[
2
]
*
(
1
-
s
)
**
3
_rel_perm1w
=
ft
.
partial
(
rel_perm1w
)
_rel_perm1nw
=
ft
.
partial
(
rel_perm1nw
)
_rel_perm2w
=
ft
.
partial
(
rel_perm2w
)
_rel_perm2nw
=
ft
.
partial
(
rel_perm2nw
)
subdomain1_rel_perm
=
{
'
wetting
'
:
_rel_perm1w
,
#
'
nonwetting
'
:
_rel_perm1nw
}
subdomain2_rel_perm
=
{
'
wetting
'
:
_rel_perm2w
,
#
'
nonwetting
'
:
_rel_perm2nw
}
# _rel_perm3 = ft.partial(rel_perm2)
# subdomain3_rel_perm = subdomain2_rel_perm.copy()
#
# _rel_perm4 = ft.partial(rel_perm1)
# subdomain4_rel_perm = subdomain1_rel_perm.copy()
# dictionary of relative permeabilties on all domains.
relative_permeability
=
{
1
:
subdomain1_rel_perm
,
2
:
subdomain1_rel_perm
,
3
:
subdomain2_rel_perm
,
4
:
subdomain2_rel_perm
}
# definition of the derivatives of the relative permeabilities
# relative permeabilty functions on subdomain 1
def
rel_perm1w_prime
(
s
):
# relative permeabilty on subdomain1
return
intrinsic_permeability
[
1
]
*
2
*
s
def
rel_perm1nw_prime
(
s
):
# relative permeabilty on subdomain1
return
-
1
*
intrinsic_permeability
[
1
]
*
2
*
(
1
-
s
)
# definition of the derivatives of the relative permeabilities
# relative permeabilty functions on subdomain 1
def
rel_perm2w_prime
(
s
):
# relative permeabilty on subdomain1
return
intrinsic_permeability
[
2
]
*
3
*
s
**
2
def
rel_perm2nw_prime
(
s
):
# relative permeabilty on subdomain1
return
-
1
*
intrinsic_permeability
[
2
]
*
3
*
(
1
-
s
)
**
2
_rel_perm1w_prime
=
ft
.
partial
(
rel_perm1w_prime
)
_rel_perm1nw_prime
=
ft
.
partial
(
rel_perm1nw_prime
)
_rel_perm2w_prime
=
ft
.
partial
(
rel_perm2w_prime
)
_rel_perm2nw_prime
=
ft
.
partial
(
rel_perm2nw_prime
)
subdomain1_rel_perm_prime
=
{
'
wetting
'
:
_rel_perm1w_prime
,
'
nonwetting
'
:
_rel_perm1nw_prime
}
subdomain2_rel_perm_prime
=
{
'
wetting
'
:
_rel_perm2w_prime
,
'
nonwetting
'
:
_rel_perm2nw_prime
}
# dictionary of relative permeabilties on all domains.
ka_prime
=
{
1
:
subdomain1_rel_perm_prime
,
2
:
subdomain1_rel_perm_prime
,
3
:
subdomain2_rel_perm_prime
,
4
:
subdomain2_rel_perm_prime
}
# S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where
# we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw
# this function needs to be monotonically decreasing in the capillary pressure pc.
# since in the richards case pc=-pw, this becomes as a function of pw a mono
# tonically INCREASING function like in our Richards-Richards paper. However
# since we unify the treatment in the code for Richards and two-phase, we need
# the same requierment
# for both cases, two-phase and Richards.
def
saturation
(
pc
,
n_index
,
alpha
):
# inverse capillary pressure-saturation-relationship
return
df
.
conditional
(
pc
>
0
,
1
/
((
1
+
(
alpha
*
pc
)
**
n_index
)
**
((
n_index
-
1
)
/
n_index
)),
1
)
# S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where
# we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw
def
saturation_sym
(
pc
,
n_index
,
alpha
):
# inverse capillary pressure-saturation-relationship
#df.conditional(pc > 0,
return
1
/
((
1
+
(
alpha
*
pc
)
**
n_index
)
**
((
n_index
-
1
)
/
n_index
))
# derivative of S-pc relationship with respect to pc. This is needed for the
# construction of a analytic solution.
def
saturation_sym_prime
(
pc
,
n_index
,
alpha
):
# inverse capillary pressure-saturation-relationship
return
-
(
alpha
*
(
n_index
-
1
)
*
(
alpha
*
pc
)
**
(
n_index
-
1
))
/
(
(
1
+
(
alpha
*
pc
)
**
n_index
)
**
((
2
*
n_index
-
1
)
/
n_index
)
)
# note that the conditional definition of S-pc in the nonsymbolic part will be
# incorporated in the construction of the exact solution below.
S_pc_sym
=
{
1
:
ft
.
partial
(
saturation_sym
,
n_index
=
3
,
alpha
=
0.001
),
2
:
ft
.
partial
(
saturation_sym
,
n_index
=
3
,
alpha
=
0.001
),
3
:
ft
.
partial
(
saturation_sym
,
n_index
=
6
,
alpha
=
0.001
),
4
:
ft
.
partial
(
saturation_sym
,
n_index
=
6
,
alpha
=
0.001
)
}
S_pc_sym_prime
=
{
1
:
ft
.
partial
(
saturation_sym_prime
,
n_index
=
3
,
alpha
=
0.001
),
2
:
ft
.
partial
(
saturation_sym_prime
,
n_index
=
3
,
alpha
=
0.001
),
3
:
ft
.
partial
(
saturation_sym_prime
,
n_index
=
6
,
alpha
=
0.001
),
4
:
ft
.
partial
(
saturation_sym_prime
,
n_index
=
6
,
alpha
=
0.001
)
}
sat_pressure_relationship
=
{
1
:
ft
.
partial
(
saturation
,
n_index
=
3
,
alpha
=
0.001
),
2
:
ft
.
partial
(
saturation
,
n_index
=
3
,
alpha
=
0.001
),
3
:
ft
.
partial
(
saturation
,
n_index
=
6
,
alpha
=
0.001
),
4
:
ft
.
partial
(
saturation
,
n_index
=
6
,
alpha
=
0.001
)
}
#############################################
# Manufacture source expressions with sympy #
#############################################
x
,
y
=
sym
.
symbols
(
'
x[0], x[1]
'
)
# needed by UFL
t
=
sym
.
symbols
(
'
t
'
,
positive
=
True
)
p_e_sym_2patch
=
{
1
:
{
'
wetting
'
:
-
7
-
(
1
+
t
*
t
)
*
(
1
+
x
*
x
+
y
*
y
),
'
nonwetting
'
:
0.0
*
t
},
#-1-t*(1.1 + y + x**2)**2},
2
:
{
'
wetting
'
:
-
7.0
-
(
1.0
+
t
*
t
)
*
(
1.0
+
x
*
x
),
'
nonwetting
'
:
(
-
1
-
t
*
(
1.1
+
x
**
2
)
**
2
-
sym
.
sqrt
(
5
+
t
**
2
))
*
y
**
2
},
}
p_e_sym
=
{
1
:
{
'
wetting
'
:
p_e_sym_2patch
[
1
][
'
wetting
'
],
'
nonwetting
'
:
p_e_sym_2patch
[
1
][
'
nonwetting
'
]},
2
:
{
'
wetting
'
:
p_e_sym_2patch
[
1
][
'
wetting
'
],
'
nonwetting
'
:
p_e_sym_2patch
[
1
][
'
nonwetting
'
]},
3
:
{
'
wetting
'
:
p_e_sym_2patch
[
2
][
'
wetting
'
],
'
nonwetting
'
:
p_e_sym_2patch
[
2
][
'
nonwetting
'
]},
4
:
{
'
wetting
'
:
p_e_sym_2patch
[
2
][
'
wetting
'
],
'
nonwetting
'
:
p_e_sym_2patch
[
2
][
'
nonwetting
'
]}
}
# p_e_sym = {
# 1: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-5.0)*(y-5.0)),
# 'nonwetting': - 2 - t*(1 + (y-5.0) + x**2)**2 -sym.sqrt(2+t**2)*(1 + (y-5.0)) },
# 2: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-5.0)*(y-5.0)),
# 'nonwetting': - 2 - t*(1 + (y-5.0) + x**2)**2 -sym.sqrt(2+t**2)*(1 + (y-5.0))},
# 3: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-5.0)*(y-5.0)) - (y-5.0)*(y-5.0)*3*sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t),
# 'nonwetting': - 2 - t*(1 + x**2)**2 -sym.sqrt(2+t**2)},
# 4: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-5.0)*(y-5.0)) - (y-5.0)*(y-5.0)*3*sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t),
# 'nonwetting': - 2 - t*(1 + x**2)**2 -sym.sqrt(2+t**2)}
# }
pc_e_sym
=
dict
()
for
subdomain
,
isR
in
isRichards
.
items
():
if
isR
:
pc_e_sym
.
update
({
subdomain
:
-
p_e_sym
[
subdomain
][
'
wetting
'
]})
else
:
pc_e_sym
.
update
({
subdomain
:
p_e_sym
[
subdomain
][
'
nonwetting
'
]
-
p_e_sym
[
subdomain
][
'
wetting
'
]})
symbols
=
{
"
x
"
:
x
,
"
y
"
:
y
,
"
t
"
:
t
}
# turn above symbolic code into exact solution for dolphin and
# construct the rhs that matches the above exact solution.
exact_solution_example
=
hlp
.
generate_exact_solution_expressions
(
symbols
=
symbols
,
isRichards
=
isRichards
,
symbolic_pressure
=
p_e_sym
,
symbolic_capillary_pressure
=
pc_e_sym
,
saturation_pressure_relationship
=
S_pc_sym
,
saturation_pressure_relationship_prime
=
S_pc_sym_prime
,
viscosity
=
viscosity
,
porosity
=
porosity
,
relative_permeability
=
relative_permeability
,
relative_permeability_prime
=
ka_prime
,
densities
=
densities
,
gravity_acceleration
=
gravity_acceleration
,
include_gravity
=
include_gravity
,
)
source_expression
=
exact_solution_example
[
'
source
'
]
exact_solution
=
exact_solution_example
[
'
exact_solution
'
]
initial_condition
=
exact_solution_example
[
'
initial_condition
'
]
# Dictionary of dirichlet boundary conditions.
dirichletBC
=
dict
()
# similarly to the outer boundary dictionary, if a patch has no outer boundary
# None should be written instead of an expression.
# This is a bit of a brainfuck:
# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind.
# Since a domain patch can have several disjoint outer boundary parts, the
# expressions need to get an enumaration index which starts at 0.
# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of
# subdomain ind and boundary part j.
# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting']
# return the actual expression needed for the dirichlet condition for both
# phases if present.
# subdomain index: {outer boudary part index: {phase: expression}}
for
subdomain
in
isRichards
.
keys
():
# if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None
if
outer_boundary_def_points
[
subdomain
]
is
None
:
dirichletBC
.
update
({
subdomain
:
None
})
else
:
dirichletBC
.
update
({
subdomain
:
dict
()})
# set the dirichlet conditions to be the same code as exact solution on
# the subdomain.
for
outer_boundary_ind
in
outer_boundary_def_points
[
subdomain
].
keys
():
dirichletBC
[
subdomain
].
update
(
{
outer_boundary_ind
:
exact_solution
[
subdomain
]}
)
# read this file and print it to std out. This way the simulation can produce a
# log file with ./TP-R-layered_soil.py | tee simulation.log
f
=
open
(
'
TP-R-layered_soil.py
'
,
'
r
'
)
print
(
f
.
read
())
f
.
close
()
for
starttime
in
starttimes
:
for
mesh_resolution
,
solver_tol
in
resolutions
.
items
():
# initialise LDD simulation class
simulation
=
ldd
.
LDDsimulation
(
tol
=
1E-14
,
LDDsolver_tol
=
solver_tol
,
debug
=
debugflag
,
max_iter_num
=
max_iter_num
,
FEM_Lagrange_degree
=
FEM_Lagrange_degree
,
mesh_study
=
mesh_study
)
simulation
.
set_parameters
(
use_case
=
use_case
,
output_dir
=
output_string
,
subdomain_def_points
=
subdomain_def_points
,
isRichards
=
isRichards
,
interface_def_points
=
interface_def_points
,
outer_boundary_def_points
=
outer_boundary_def_points
,
adjacent_subdomains
=
adjacent_subdomains
,
mesh_resolution
=
mesh_resolution
,
viscosity
=
viscosity
,
porosity
=
porosity
,
L
=
L
,
lambda_param
=
lambda_param
,
relative_permeability
=
relative_permeability
,
saturation
=
sat_pressure_relationship
,
starttime
=
starttime
,
number_of_timesteps
=
number_of_timesteps
,
number_of_timesteps_to_analyse
=
number_of_timesteps_to_analyse
,
plot_timestep_every
=
plot_timestep_every
,
timestep_size
=
timestep_size
,
sources
=
source_expression
,
initial_conditions
=
initial_condition
,
dirichletBC_expression_strings
=
dirichletBC
,
exact_solution
=
exact_solution
,
densities
=
densities
,
include_gravity
=
include_gravity
,
write2file
=
write_to_file
,
)
simulation
.
initialise
()
output_dir
=
simulation
.
output_dir
# simulation.write_exact_solution_to_xdmf()
output
=
simulation
.
run
(
analyse_condition
=
analyse_condition
)
for
subdomain_index
,
subdomain_output
in
output
.
items
():
mesh_h
=
subdomain_output
[
'
mesh_size
'
]
for
phase
,
different_errornorms
in
subdomain_output
[
'
errornorm
'
].
items
():
filename
=
output_dir
+
"
subdomain{}-space-time-errornorm-{}-phase.csv
"
.
format
(
subdomain_index
,
phase
)
# for errortype, errornorm in different_errornorms.items():
# eocfile = open("eoc_filename", "a")
# eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" )
# eocfile.close()
# if subdomain.isRichards:mesh_h
data_dict
=
{
'
mesh_parameter
'
:
mesh_resolution
,
'
mesh_h
'
:
mesh_h
,
}
for
error_type
,
errornorms
in
different_errornorms
.
items
():
data_dict
.
update
(
{
error_type
:
errornorms
}
)
errors
=
pd
.
DataFrame
(
data_dict
,
index
=
[
mesh_resolution
])
# check if file exists
if
os
.
path
.
isfile
(
filename
)
==
True
:
with
open
(
filename
,
'
a
'
)
as
f
:
errors
.
to_csv
(
f
,
header
=
False
,
sep
=
'
\t
'
,
encoding
=
'
utf-8
'
,
index
=
False
)
else
:
errors
.
to_csv
(
filename
,
sep
=
'
\t
'
,
encoding
=
'
utf-8
'
,
index
=
False
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment