Skip to content
Snippets Groups Projects
Select Git revision
  • 5e069bfbb61a87863f06d2692d9ee3a0dda6aa9d
  • master default protected
  • parallelistation_of_subdomain_loop
  • parallelistation_test
  • nonzero_gli_term_for_nonwetting_in_TPR
  • testing_updating_pwi_as_pwiminus1_into_calculation_of_pnwi
  • v2.2
  • v2.1
  • v2.0
  • v1.0
10 results

TP-one-patch.py

Blame
  • TP-one-patch.py 12.27 KiB
    #!/usr/bin/python3
    """TP one patch soil simulation, Copyright 2020, David Seus
    
    This program runs an L simulation on one domain without domain decomposition.
    
    # LICENCE #####################################################################
    Copyright 2020, David Seus
    david.seus[at]ians.uni-stuttgart.de
    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.
    
    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.
    
    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
    ###############################################################################
    """
    import dolfin as df
    import sympy as sym
    import functions as fts
    import LDDsimulation as ldd
    import helpers as hlp
    import datetime
    import os
    import multiprocessing as mp
    import domainSubstructuring as dss
    # init sympy session
    sym.init_printing()
    
    # PREREQUISITS  ###############################################################
    # check if output directory "./output" exists. This will be used in
    # the generation of the output string.
    if not os.path.exists('./output'):
        os.mkdir('./output')
        print("Directory ", './output',  " created ")
    else:
        print("Directory ", './output',  " already exists. Will use as output \
        directory")
    
    date = datetime.datetime.now()
    datestr = date.strftime("%Y-%m-%d")
    
    # Name of the usecase that will be printed during simulation.
    use_case = "TP-one-patch-realistic-same-intrinsic"
    # The name of this very file. Needed for creating log output.
    thisfile = "TP-one-patch.py"
    
    # GENERAL SOLVER CONFIG  ######################################################
    # maximal iteration per timestep
    max_iter_num = 1000
    FEM_Lagrange_degree = 1
    
    # GRID AND MESH STUDY SPECIFICATIONS  #########################################
    mesh_study = False
    resolutions = {
                    # 1: 1e-6,
                    # 2: 1e-6,
                    # 4: 1e-6,
                    # 8: 1e-6,
                    # 16: 5e-6,
                    32: 1e-6,
                    # 64: 2e-6,
                    # 128: 1e-6,
                    # 256: 1e-6,
                    }
    
    # starttimes gives a list of starttimes to run the simulation from.
    # The list is looped over and a simulation is run with t_0 as initial time
    #  for each element t_0 in starttimes.
    starttimes = {0: 0.0}
    # starttimes = {0: 0.0, 1:0.3, 2:0.6, 3:0.9}
    timestep_size = 0.001
    number_of_timesteps = 2000
    
    # LDD scheme parameters  ######################################################
    Lw = 0.01 #/timestep_size
    Lnw= 0.01
    
    include_gravity = False
    debugflag = False
    analyse_condition = False
    
    # I/O CONFIG  #################################################################
    # when number_of_timesteps is high, it might take a long time to write all
    # timesteps to disk. Therefore, you can choose to only write data of every
    # plot_timestep_every timestep to disk.
    plot_timestep_every = 4
    # Decide how many timesteps you want analysed. Analysed means, that
    # subsequent errors of the L-iteration within the timestep are written out.
    number_of_timesteps_to_analyse = 10
    
    # fine grained control over data to be written to disk in the mesh study case
    # as well as for a regular simuation for a fixed grid.
    if mesh_study:
        write_to_file = {
            # output the relative errornorm (integration in space) w.r.t. an exact
            # solution for each timestep into a csv file.
            'space_errornorms': True,
            # save the mesh and marker functions to disk
            'meshes_and_markers': True,
            # save xdmf/h5 data for each LDD iteration for timesteps determined by
            # number_of_timesteps_to_analyse. I/O intensive!
            'L_iterations_per_timestep': False,
            # save solution to xdmf/h5.
            'solutions': True,
            # save absolute differences w.r.t an exact solution to xdmf/h5 file
            # to monitor where on the domains errors happen
            'absolute_differences': True,
            # analyise condition numbers for timesteps determined by
            # number_of_timesteps_to_analyse and save them over time to csv.
            'condition_numbers': analyse_condition,
            # output subsequent iteration errors measured in L^2  to csv for
            # timesteps determined by number_of_timesteps_to_analyse.
            # Usefull to monitor convergence of the acutal LDD solver.
            'subsequent_errors': True
        }
    else:
        write_to_file = {
            'space_errornorms': True,
            'meshes_and_markers': True,
            'L_iterations_per_timestep': True,
            'solutions': True,
            'absolute_differences': True,
            'condition_numbers': analyse_condition,
            'subsequent_errors': True
        }
    
    # OUTPUT FILE STRING  #########################################################
    output_string = "./output/{}-{}_timesteps{}_P{}".format(
        datestr, use_case, number_of_timesteps, FEM_Lagrange_degree
        )
    
    # DOMAIN AND INTERFACE  #######################################################
    substructuring = dss.globalDomain()
    interface_def_points = substructuring.interface_def_points
    adjacent_subdomains = substructuring.adjacent_subdomains
    subdomain_def_points = substructuring.subdomain_def_points
    outer_boundary_def_points = substructuring.outer_boundary_def_points
    
    # MODEL CONFIGURATION #########################################################
    isRichards = {
        0: False #
        }
    
    
    viscosity = {#
    # subdom_num : viscosity
        0: {'wetting' :1.0,
             'nonwetting': 1/50} #
    }
    
    porosity = {#
    # subdom_num : porosity
        0: 0.2
    }
    
    # Dict of the form: { subdom_num : density }
    densities = {
        0: {'wetting': 997.0,
            'nonwetting': 1.225}
    }
    
    gravity_acceleration = 9.81
    
    L = {#
    # subdom_num : subdomain L for L-scheme
        0 : {'wetting' :Lw,
             'nonwetting': Lnw}
    }
    
    lambda_param = None
    
    intrinsic_permeability = {
        0: 0.01
    }
    
    # RELATIVE PEMRMEABILITIES
    rel_perm_definition = {
        0: {"wetting": "Spow2",
            "nonwetting": "oneMinusSpow2"}
    }
    
    rel_perm_dict = fts.generate_relative_permeability_dicts(rel_perm_definition)
    relative_permeability = rel_perm_dict["ka"]
    ka_prime = rel_perm_dict["ka_prime"]
    
    # S-pc relation
    Spc_on_subdomains = {
        0: {"testSpc": {"index": 1}}
    }
    
    Spc = fts.generate_Spc_dicts(Spc_on_subdomains)
    S_pc_sym = Spc["symbolic"]
    S_pc_sym_prime = Spc["prime_symbolic"]
    sat_pressure_relationship = Spc["dolfin"]
    
    ###############################################################################
    # Manufacture source expressions with sympy #
    ###############################################################################
    x, y = sym.symbols('x[0], x[1]')  # needed by UFL
    t = sym.symbols('t', positive=True)
    
    p_e_sym = {
        0: {'wetting': (-6.0 - (1.0 + t*t)*(1.0 + x*x + y*y)),
            'nonwetting': (-1 -t*(1.0 + x**2) - sym.sin(2+t**2)**2*y**2) }
    }
    
    pc_e_sym = hlp.generate_exact_symbolic_pc(
                    isRichards=isRichards,
                    symbolic_pressure=p_e_sym
                )
    
    symbols = {"x": x,
               "y": y,
               "t": t}
    # turn above symbolic code into exact solution for dolphin and
    # construct the rhs that matches the above exact solution.
    exact_solution_example = hlp.generate_exact_solution_expressions(
                            symbols=symbols,
                            isRichards=isRichards,
                            symbolic_pressure=p_e_sym,
                            symbolic_capillary_pressure=pc_e_sym,
                            saturation_pressure_relationship=S_pc_sym,
                            saturation_pressure_relationship_prime=S_pc_sym_prime,
                            viscosity=viscosity,
                            porosity=porosity,
                            intrinsic_permeability=intrinsic_permeability,
                            relative_permeability=relative_permeability,
                            relative_permeability_prime=ka_prime,
                            densities=densities,
                            gravity_acceleration=gravity_acceleration,
                            include_gravity=include_gravity,
                            )
    source_expression = exact_solution_example['source']
    exact_solution = exact_solution_example['exact_solution']
    initial_condition = exact_solution_example['initial_condition']
    
    # BOUNDARY CONDITIONS #########################################################
    # Dictionary of dirichlet boundary conditions. If an exact solution case is
    # used, use the hlp.generate_exact_DirichletBC() method to generate the
    # Dirichlet Boundary conditions from the exact solution.
    dirichletBC = hlp.generate_exact_DirichletBC(
            isRichards=isRichards,
            outer_boundary_def_points=outer_boundary_def_points,
            exact_solution=exact_solution
        )
    # If no exact solution is provided you need to provide a dictionary of boundary
    # conditions. See the definiton of hlp.generate_exact_DirichletBC() to see
    # the structure.
    
    # LOG FILE OUTPUT #############################################################
    # read this file and print it to std out. This way the simulation can produce a
    # log file with ./TP-R-layered_soil.py | tee simulation.log
    f = open(thisfile, 'r')
    print(f.read())
    f.close()
    
    # MAIN ########################################################################
    if __name__ == '__main__':
        # dictionary of simualation parameters to pass to the run function.
        # mesh_resolution and starttime are excluded, as they get passed explicitly
        # to achieve parallelisation in these parameters in these parameters for
        # mesh studies etc.
        simulation_parameter = {
            "tol": 1E-14,
            "debugflag": debugflag,
            "max_iter_num": max_iter_num,
            "FEM_Lagrange_degree": FEM_Lagrange_degree,
            "mesh_study": mesh_study,
            "use_case": use_case,
            "output_string": output_string,
            "subdomain_def_points": subdomain_def_points,
            "isRichards": isRichards,
            "interface_def_points": interface_def_points,
            "outer_boundary_def_points": outer_boundary_def_points,
            "adjacent_subdomains": adjacent_subdomains,
            # "mesh_resolution": mesh_resolution,
            "viscosity": viscosity,
            "porosity": porosity,
            "L": L,
            "lambda_param": lambda_param,
            "relative_permeability": relative_permeability,
            "intrinsic_permeability": intrinsic_permeability,
            "sat_pressure_relationship": sat_pressure_relationship,
            # "starttime": starttime,
            "number_of_timesteps": number_of_timesteps,
            "number_of_timesteps_to_analyse": number_of_timesteps_to_analyse,
            "plot_timestep_every": plot_timestep_every,
            "timestep_size": timestep_size,
            "source_expression": source_expression,
            "initial_condition": initial_condition,
            "dirichletBC": dirichletBC,
            "exact_solution": exact_solution,
            "densities": densities,
            "include_gravity": include_gravity,
            "gravity_acceleration": gravity_acceleration,
            "write_to_file": write_to_file,
            "analyse_condition": analyse_condition
        }
        for number_shift, starttime in starttimes.items():
            simulation_parameter.update(
                {"starttime_timestep_number_shift": number_shift}
            )
            for mesh_resolution, solver_tol in resolutions.items():
                simulation_parameter.update({"solver_tol": solver_tol})
                hlp.info(simulation_parameter["use_case"])
                processQueue = mp.Queue()
                LDDsim = mp.Process(
                            target=hlp.run_simulation,
                            args=(
                                simulation_parameter,
                                processQueue,
                                starttime,
                                mesh_resolution
                                )
                            )
                LDDsim.start()
                # LDDsim.join()
                # hlp.run_simulation(
                #     mesh_resolution=mesh_resolution,
                #     starttime=starttime,
                #     parameter=simulation_parameter
                #     )
    
            # LDDsim.join()
            if mesh_study:
                simulation_output_dir = processQueue.get()
                hlp.merge_spacetime_errornorms(isRichards=isRichards,
                                               resolutions=resolutions,
                                               output_dir=simulation_output_dir)