Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found
Select Git revision

Target

Select target project
  • pub/ians-anm/pde-vkoga-paper-experiments
1 result
Select Git revision
Show changes
Commits on Source (2)
# PDE-VKOGA-paper-experiments
## Getting started
To make it easy for you to get started with GitLab, here's a list of recommended next steps.
Already a pro? Just edit this README.md and make it your own. Want to make it easy? [Use the template at the bottom](#editing-this-readme)!
## Add your files
- [ ] [Create](https://docs.gitlab.com/ee/user/project/repository/web_editor.html#create-a-file) or [upload](https://docs.gitlab.com/ee/user/project/repository/web_editor.html#upload-a-file) files
- [ ] [Add files using the command line](https://docs.gitlab.com/ee/gitlab-basics/add-file.html#add-a-file-using-the-command-line) or push an existing Git repository with the following command:
```
cd existing_repo
git remote add origin https://gitlab.mathematik.uni-stuttgart.de/pub/ians-anm/pde-vkoga-paper-experiments.git
git branch -M main
git push -uf origin main
```
## Integrate with your tools
- [ ] [Set up project integrations](https://gitlab.mathematik.uni-stuttgart.de/pub/ians-anm/pde-vkoga-paper-experiments/-/settings/integrations)
## Collaborate with your team
- [ ] [Invite team members and collaborators](https://docs.gitlab.com/ee/user/project/members/)
- [ ] [Create a new merge request](https://docs.gitlab.com/ee/user/project/merge_requests/creating_merge_requests.html)
- [ ] [Automatically close issues from merge requests](https://docs.gitlab.com/ee/user/project/issues/managing_issues.html#closing-issues-automatically)
- [ ] [Enable merge request approvals](https://docs.gitlab.com/ee/user/project/merge_requests/approvals/)
- [ ] [Set auto-merge](https://docs.gitlab.com/ee/user/project/merge_requests/merge_when_pipeline_succeeds.html)
## Test and Deploy
Use the built-in continuous integration in GitLab.
- [ ] [Get started with GitLab CI/CD](https://docs.gitlab.com/ee/ci/quick_start/index.html)
- [ ] [Analyze your code for known vulnerabilities with Static Application Security Testing (SAST)](https://docs.gitlab.com/ee/user/application_security/sast/)
- [ ] [Deploy to Kubernetes, Amazon EC2, or Amazon ECS using Auto Deploy](https://docs.gitlab.com/ee/topics/autodevops/requirements.html)
- [ ] [Use pull-based deployments for improved Kubernetes management](https://docs.gitlab.com/ee/user/clusters/agent/)
- [ ] [Set up protected environments](https://docs.gitlab.com/ee/ci/environments/protected_environments.html)
***
# Editing this README
When you're ready to make this README your own, just edit this file and use the handy template below (or feel free to structure it however you want - this is just a starting point!). Thanks to [makeareadme.com](https://www.makeareadme.com/) for this template.
## Suggestions for a good README
Every project is different, so consider which of these sections apply to yours. The sections used in the template are suggestions for most open source projects. Also keep in mind that while a README can be too long and detailed, too long is better than too short. If you think your README is too long, consider utilizing another form of documentation rather than cutting out information.
## Name
Choose a self-explaining name for your project.
## Description
Let people know what your project can do specifically. Provide context and add a link to any reference visitors might be unfamiliar with. A list of Features or a Background subsection can also be added here. If there are alternatives to your project, this is a good place to list differentiating factors.
## Badges
On some READMEs, you may see small images that convey metadata, such as whether or not all the tests are passing for the project. You can use Shields to add some to your README. Many services also have instructions for adding a badge.
## Visuals
Depending on what you are making, it can be a good idea to include screenshots or even a video (you'll frequently see GIFs rather than actual videos). Tools like ttygif can help, but check out Asciinema for a more sophisticated method.
## Installation
Within a particular ecosystem, there may be a common way of installing things, such as using Yarn, NuGet, or Homebrew. However, consider the possibility that whoever is reading your README is a novice and would like more guidance. Listing specific steps helps remove ambiguity and gets people to using your project as quickly as possible. If it only runs in a specific context like a particular programming language version or operating system or has dependencies that have to be installed manually, also add a Requirements subsection.
## Usage
Use examples liberally, and show the expected output if you can. It's helpful to have inline the smallest example of usage that you can demonstrate, while providing links to more sophisticated examples if they are too long to reasonably include in the README.
## Support
Tell people where they can go to for help. It can be any combination of an issue tracker, a chat room, an email address, etc.
## Roadmap
If you have ideas for releases in the future, it is a good idea to list them in the README.
## Contributing
State if you are open to contributions and what your requirements are for accepting them.
For people who want to make changes to your project, it's helpful to have some documentation on how to get started. Perhaps there is a script that they should run or some environment variables that they need to set. Make these steps explicit. These instructions could also be useful to your future self.
You can also document commands to lint the code or run tests. These steps help to ensure high code quality and reduce the likelihood that the changes inadvertently break something. Having instructions for running tests is especially helpful if it requires external setup, such as starting a Selenium server for testing in a browser.
## Authors and acknowledgment
Show your appreciation to those who have contributed to the project.
## License
For open source projects, say how it is licensed.
## Project status
If you have run out of energy or time for your project, put a note at the top of the README saying that development has slowed down or stopped completely. Someone may choose to fork your project or volunteer to step in as a maintainer or owner, allowing your project to keep going. You can also make an explicit request for maintainers.
This directory provides the code for the experiments
to the paper
"Adaptive meshfree approximation for linear
elliptic partial differential equations with
PDE-greedy kernel methods" by
Tizian Wenzel, Daniel Winkle, Gabriele Santin, and Bernard Haasdonk
More specific:
For reproducing the FEM convergence table on the sector example
of Section 6.1, please
a) Install RBmatlab from the website www.morepas.org/software
The code can be run if RBmatlab from version 16.09 is installed
b) run the script fem_sector_example.m from this directory
Caution:
This operation is very expensive (takes several hours) as hundred of
thousands of point with global coordinates need to be searched and found
in FEM meshes. This is required to be consistent in the error computation
to other approximation techniques using these uniform test grids.
function fem_sector_example(step)
%function fem_sector_example(step)
%
% Demonstration of FEM error convergence for sector example.
%
% This operation is very expensive (takes several hours) as hundred of
% thousands of point with global coordinates need to be searched and found
% in FEM meshes. This is required to be consistent in the error computation
% to other approximation techniques using these uniform test grids.
%
% The code can be run if RBmatlab from version 16.09 is installed
% as obtained from www.morepas.org/software
% B. Haasdonk 8.5.2024
if nargin < 1
step = 4;
end;
disp('FEM error convergence study for sector geometry')
disp('Note that the global to local coordinate search is extremely')
disp('expensive due to the many test points, and will overall take')
disp('several hours.')
switch step
% case 1 % create scale of refined gridfiles
% fns = {'sectorg_alpha5over3','sectorg_alpha2over3'};
% for fni = 1:length(fns)
% fn = fns{fni}
% [p,e,t] = initmesh(fn);
% meshfile = [fn,'_r0.mat'];
% save(meshfile,'p','e','t');
% for i = 1:4
% [p,e,t] = refinemesh(fn,p,e,t);
% meshfile = [fn,'_r',num2str(i),'.mat'];
% save(meshfile,'p','e','t');
% end;
% end;
% disp('mesh sequence generated and stored');
% % continue with error computation:
% fem_sector_example(4);
case 2 % load and plot mesh
load('sectorg_alpha5over3_r1','p','t');
grid = triagrid(p,t,[]);
plot(grid);
axis equal;
figure;
load('sectorg_alpha2over3_r1','p','t');
grid = triagrid(p,t,[]);
plot(grid);
axis equal;
case 3 % fem on mesh
params = [];
% params.solution_number = 1; % example with smooth solution
params.solution_number = 2; % example with singular sol, inhom bv
% params.alpha = 5/3;
% params.grid_initfile = 'sectorg_alpha5over3_r1.mat';
% params.grid_initfile = 'sectorg_alpha5over3_r2.mat';
% params.grid_initfile = 'sectorg_alpha5over3_r3.mat';
% params.grid_initfile = 'sectorg_alpha5over3_r4.mat';
params.alpha = 2/3;
params.grid_initfile = 'sectorg_alpha2over3_r1.mat';
% params.grid_initfile = 'sectorg_alpha2over3_r2.mat';
% params.grid_initfile = 'sectorg_alpha2over3_r3.mat';
% params.grid_initfile = 'sectorg_alpha2over3_r4.mat';
model = pacman_model(params);
% generate grid and fem matrices:
model_data = gen_model_data(model);
figure, plot(model_data.grid);
axis equal; axis tight; title('FEM grid')
sim_data = detailed_simulation(model, model_data);
% plot results
figure, plot_sim_data(model,model_data,sim_data,[]);
title('FEM solution of -Laplace u = f')
axis equal;
axis tight;
% disp(['ndofs = ',num2str(sim_data.uh.df_info.ndofs)]);
case 4 % fem on mesh and convergence study
params = [];
params.solution_number = 1; % example with smooth solution
% params.solution_number = 2; % example with singular sol, inhom bv
disp(' ');
disp('ndofs | L2-error | H1-error | infty-error | L2-error-grid | infty-error-grid | t_CPU')
disp('---------------------------------------------------------------------------------------------------------------------')
for i = 1:4
% params.alpha = 5/3;
% params.grid_initfile = ['sectorg_alpha5over3_r',num2str(i),'.mat'];
% params.grid_initfile = 'sectorg_alpha5over3_r2.mat';
% params.grid_initfile = 'sectorg_alpha5over3_r3.mat';
% params.grid_initfile = 'sectorg_alpha5over3_r4.mat';
params.alpha = 2/3;
params.grid_initfile = ['sectorg_alpha2over3_r',num2str(i),'.mat'];
% params.grid_initfile = 'sectorg_alpha2over3_r2.mat';
% params.grid_initfile = 'sectorg_alpha2over3_r3.mat';
% params.grid_initfile = 'sectorg_alpha2over3_r4.mat';
model = pacman_model(params);
% generate grid and fem matrices:
tic
model_data = gen_model_data(model);
sim_data = detailed_simulation(model, model_data);
t = toc;
% error computation:
% project exact solution onto higher degree polynomial fem func
par.pdeg = 4;
par.qdeg = 8;
par.dimrange = 1;
p4_df_info = feminfo(par,model_data.grid);
uexact_h = femdiscfunc([],p4_df_info);
uexact_h = fem_interpol_global(model.solution,uexact_h);
uh = femdiscfunc([],p4_df_info);
u_local_eval = @(grid,elids,lcoord,params) ...
my_uh_local_eval(grid,elids,lcoord,params,sim_data.uh);
uh = fem_interpol_local(u_local_eval,uh);
err = uh - uexact_h;
if i == 1
plot(err);
title('error for i=1')
axis equal;
axis tight;
end;
% keyboard;
l2err = fem_l2_norm(err);
h1err = fem_h1_norm(err);
linftyerr = max(abs(err.dofs));
[l2err_uniformgrid, linftyerr_uniformgrid] = errors_uniformgrid(model,uh);
% l2err_uniformgrid = zeros(size(l2err));
% linftyerr_uniformgrid = zeros(size(l2err));
ndofs = sim_data.uh.df_info.ndofs;
disp([num2str(ndofs,'%10.4d'),' | ',...
num2str(l2err,'%10.5e'),' | ',...
num2str(h1err,'%10.5e'),' | ',...
num2str(linftyerr,'%10.5e'),' | ',...
num2str(l2err_uniformgrid,'%10.5e'),' | ',...
num2str(linftyerr_uniformgrid,'%10.5e'),' | ',...
num2str(t,'%10.5e')]);
end;
otherwise
error('step number unknown');
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% auxiliary functions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [l2err_uniformgrid, linftyerr_uniformgrid] = errors_uniformgrid(model, uh);
% determine test points
h = 0.002;
% h = 0.002;
% h = 0.002;
x = -1:h:1;
[XX,YY] = meshgrid(x,x);
i = find((XX.^2+YY.^2)<=1);
XX = XX(i);
YY = YY(i);
Phi = atan(YY./XX);
i = find(Phi<0 & XX>=0);
Phi(i) = Phi(i) + 2*pi;
i = find(XX<0);
Phi(i) = Phi(i) + pi;
i = find(Phi<model.alpha*pi);
XX = XX(i);
YY = YY(i);
Phi = Phi(i);
%scatter3(XX,YY,Phi)
test_sol = model.solution([XX,YY]);
test_uh = zeros(size(test_sol));
% evaluate fem approximation in global points
% bad... : loop over points, should be vectorized...
f = waitbar(0,'Iterating over points');
for i = 1:length(Phi);
if mod(i,1000)==0;
waitbar(i/length(Phi),f,'Iterating over points');
end;
eind = find_triangle(uh.grid,[XX(i),YY(i)]);
if eind>0
lcoord = global2local(uh.grid,eind,[XX(i),YY(i)]);
test_uh(i) = fem_evaluate(uh,eind,lcoord);
% sanity check: transform local coordinate back to global:
p = local2global(uh.grid,eind,lcoord,[]);
d = p-[XX(i),YY(i)];
% if norm(d)>10*eps
% disp('norm of reconstructed point too large!, please inspect');%
% keyboard
% end;
else
test_uh(i) = NaN;
end;
end;
close(f);
linftyerr_uniformgrid = max(abs(test_sol-test_uh));
i = find(~isnan(test_uh));
l2err_uniformgrid = sqrt(h*h*sum((test_sol(i)-test_uh(i)).^2));
%figure;scatter3(XX,YY,double(isnan(test_uh)))
% if isnan(l2err_uniformgrid)
% disp('NaN in error!')
% keyboard;
% end;
function eind = find_triangle(grid,glob)
% returns the index of a triangle in grid containing the global point glob
% if no triangle is found, then -1 is returned.
inside = ones(grid.nelements,1);
for j = 1:3 % check if point is "above" edge connecting point j to j+1
jp1 = mod(j,3)+1;
jp2 = mod(jp1,3)+1;
Xj = grid.X(grid.VI(:,j));
Yj = grid.Y(grid.VI(:,j));
Xjp1 = grid.X(grid.VI(:,jp1));
Yjp1 = grid.Y(grid.VI(:,jp1));
Vjjp1 = [Xjp1-Xj, Yjp1-Yj];
Vjglob = [glob(1)*ones(size(Xj)) - Xj, glob(2)*ones(size(Yj)) - Yj];
crossz = sign(Vjjp1(:,1).*Vjglob(:,2) - Vjjp1(:,2).*Vjglob(:,1));
if j==1
Xjp2 = grid.X(grid.VI(:,jp2));
Yjp2 = grid.Y(grid.VI(:,jp2));
Vjjp2 = [Xjp2-Xj, Yjp2-Yj];
crossz2 = sign(Vjjp1(:,1).*Vjjp2(:,2) - Vjjp1(:,2).*Vjjp2(:,1)); % orientation of trias
end;
i = find(crossz.*crossz2<0);
inside(i) = 0;
end;
eind = find(inside);
if isempty(eind)
eind = -1;
end
if length(eind)>1
% disp('length eind > 1, please check! ');
eind = eind(1);
end;
%if length(eind)==1
% disp('length eind == 1, nice :-) ');
%end;
% settings for pacman model
function model = pacman_model(params);
if ~isfield(params,'alpha')
alpha = 5/3;
else
alpha = params.alpha;
end;
% disp(['chosen alpha = ',num2str(alpha)]);
%alpha = 5/3; % hard coded in sectorg.m if changed here, change there!
model = poisson_model(params);
model.alpha = alpha;
model = rmfield(model,{'boundary_type','normals',...
'xnumintervals','ynumintervals','xrange','yrange'});
model.has_reaction = 0;
model.has_advection = 0;
model.has_diffusivity = 1;
model.has_source = 1;
model.has_dirichlet_values = 1;
model.has_neumann_values = 0;
model.has_robin_values = 0;
model.compute_output_functional = 0;
switch params.solution_number
case 1 % smooth solution
model.solution = @(glob,params) ...
sum(glob.^2,2);
model.source = @(glob,params) ...
- 4 * ones(size(glob,1),1);
case 2 % solution with singularity and inhomogeneous bnd val.
model.solution = @(glob,params) ...
pacman_exact_solution(glob',alpha);
model.source = @(glob,params) ...
neg_Laplace_pacman_exact_solution(glob',alpha);
% case 3 % solution wiht singularity and homogeneous bnd val.
% % someting seems to be buggy here, no convergence observed...
% model.solution = @(glob,params) ...
% pacman_exact_solution2(glob',alpha);
% model.source = @(glob,params) ...
% neg_Laplace_pacman_exact_solution2(glob',alpha);
% error('please use solution_number=1 or 2.')
end;
model.diffusivity_tensor = @(glob,params) ...
[ones(size(glob,1),1),...
zeros(size(glob,1),1),...
zeros(size(glob,1),1),...
ones(size(glob,1),1)];
model.reaction = @(glob,params) zeros(size(glob,1),1);
model.dirichlet_values = @(glob,params) ...
params.solution(glob,params);
model.grid_initfile = params.grid_initfile;
model.gridtype = 'triagrid';
model.pdeg = 1;
model.qdeg = 2;
model.dimrange = 1;
model = elliptic_discrete_model(model);
%model.detailed_simulation = @pacman_detailed_simulation;
function f = pacman_exact_solution(x,alpha);
% function u(x) = |x|^(1/alpha)sin(phi(x)/alpha)
% with phi(x) = atan(x2/x1).
% which has -Laplace u = 0 on pacman shape
% but non-homogeneous boundary values.
f1 = sum(x.^2,1).^(0.5/alpha);
phi = atan(x(2,:)./x(1,:));
i = find(phi<0 & x(1,:)>=0);
phi(i) = phi(i) + 2*pi;
i = find(x(1,:)<0);
phi(i) = phi(i) + pi;
f2 = sin(phi/alpha);
i = find(isnan(f2));
f2(i) = 0;
f = f1.*f2;
function f = neg_Laplace_pacman_exact_solution(x,alpha);
f = zeros(size(x,2),1);
function res = my_uh_local_eval(grid,elids,lcoord,params,df)
% dummy function used for evaluating a discrete function at finer
% lagrange-grid nodes
res = fem_evaluate(df,elids,lcoord,[],[]);
function [x,y]=sectorg_alpha2over3(bs,s)
nbs=3;
alpha = 2/3 * pi;
if nargin==0,
x=nbs; % number of boundary segments
return
end
d=[
0 0 1% start parameter value
1 alpha 0% end parameter value
1 1 1% left hand region
0 0 0% right hand region
];
bs1=bs(:)';
if find(bs1<1 | bs1>nbs),
error('semicircleg:InvalidBs', 'Non existent boundary segment number.')
end
if nargin==1,
x=d(:,bs1);
return
end
x=zeros(size(s));
y=zeros(size(s));
[m,n]=size(bs);
if m==1 && n==1,
bs=bs*ones(size(s)); % expand bs
elseif m~=size(s,1) || n~=size(s,2),
error('semicircleg:SizeBs', 'bs must be scalar or of same size as s.');
end
if ~isempty(s),
% boundary segment 1
ii=find(bs==1);
x(ii) = s(ii);
y(ii) = zeros(size(ii));
% boundary segment 2
ii=find(bs==2);
x(ii) = cos(s(ii));
y(ii) = sin(s(ii));
% boundary segment 3
ii=find(bs==3);
x(ii) = s(ii)*cos(alpha);
y(ii) = s(ii)*sin(alpha);
end
File added
File added
File added
File added
File added