Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
dune-mmdg
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Hörl, Maximilian
dune-mmdg
Commits
183bd2ec
Commit
183bd2ec
authored
5 years ago
by
Hörl, Maximilian
Browse files
Options
Downloads
Plain Diff
Merge branch 'feature/sparse'
parents
105ccc22
e1a3041b
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
dune.module
+1
-1
1 addition, 1 deletion
dune.module
dune/mmdg/dg.hh
+40
-37
40 additions, 37 deletions
dune/mmdg/dg.hh
with
41 additions
and
38 deletions
dune.module
+
1
−
1
View file @
183bd2ec
...
@@ -7,4 +7,4 @@ Module: dune-mmdg
...
@@ -7,4 +7,4 @@ Module: dune-mmdg
Version
:
0.1
Version
:
0.1
Maintainer
:
maximilian
.
hoerl
@
mathematik
.
uni
-
stuttgart
.
de
Maintainer
:
maximilian
.
hoerl
@
mathematik
.
uni
-
stuttgart
.
de
#depending on
#depending on
Depends
:
dune
-
common
dune
-
geometry
dune
-
mmesh
Depends
:
dune
-
common
dune
-
geometry
dune
-
mmesh
dune
-
istl
This diff is collapsed.
Click to expand it.
dune/mmdg/dg.hh
+
40
−
37
View file @
183bd2ec
...
@@ -10,6 +10,10 @@
...
@@ -10,6 +10,10 @@
#include
<dune/geometry/quadraturerules.hh>
#include
<dune/geometry/quadraturerules.hh>
#include
<dune/istl/bcrsmatrix.hh>
#include
<dune/istl/solver.hh>
#include
<dune/istl/umfpack.hh>
#include
<dune/mmdg/nonconformingp1vtkfunction.hh>
#include
<dune/mmdg/nonconformingp1vtkfunction.hh>
template
<
class
GridView
,
class
Mapper
,
class
Problem
>
template
<
class
GridView
,
class
Mapper
,
class
Problem
>
...
@@ -18,8 +22,8 @@ class DG
...
@@ -18,8 +22,8 @@ class DG
public:
public:
using
Scalar
=
typename
GridView
::
ctype
;
using
Scalar
=
typename
GridView
::
ctype
;
static
constexpr
int
dim
=
GridView
::
dimension
;
static
constexpr
int
dim
=
GridView
::
dimension
;
using
Matrix
=
Dune
::
DynamicMatrix
<
Scalar
>
;
//NOTE: what is an appropriate sparse matrix type? -> BCRS
using
Matrix
=
Dune
::
BCRSMatrix
<
Dune
::
FieldMatrix
<
Scalar
,
1
,
1
>>
;
using
Vector
=
Dune
::
Dynamic
Vector
<
Scalar
>
;
using
Vector
=
Dune
::
BlockVector
<
Dune
::
Field
Vector
<
Scalar
,
1
>
>
;
using
VTKFunction
=
Dune
::
VTKFunction
<
GridView
>
;
using
VTKFunction
=
Dune
::
VTKFunction
<
GridView
>
;
using
P1Function
=
Dune
::
NonconformingP1VTKFunction
<
GridView
,
using
P1Function
=
Dune
::
NonconformingP1VTKFunction
<
GridView
,
Dune
::
DynamicVector
<
double
>>
;
Dune
::
DynamicVector
<
double
>>
;
...
@@ -30,9 +34,10 @@ public:
...
@@ -30,9 +34,10 @@ public:
gridView_
(
gridView
),
mapper_
(
mapper
),
problem_
(
problem
),
gridView_
(
gridView
),
mapper_
(
mapper
),
problem_
(
problem
),
dof
((
1
+
dim
)
*
gridView
.
size
(
0
))
dof
((
1
+
dim
)
*
gridView
.
size
(
0
))
{
{
A
=
Matrix
(
dof
,
dof
,
0.0
);
//initialize stiffness matrix
//initialize stiffness matrix A, load vector b and solution vector d
b
=
Vector
(
dof
,
0.0
);
//initialize load vector
A
=
std
::
make_shared
<
Matrix
>
(
dof
,
dof
,
10
,
1
,
Matrix
::
implicit
);
//TODO
d
=
Vector
(
dof
,
0.0
);
//initialize solution vector
b
=
Vector
(
dof
);
d
=
Vector
(
dof
);
}
}
const
void
operator
()
(
const
Scalar
K
,
const
Scalar
mu
)
const
void
operator
()
(
const
Scalar
K
,
const
Scalar
mu
)
...
@@ -40,8 +45,9 @@ public:
...
@@ -40,8 +45,9 @@ public:
//assemble stiffness matrix A and load vector b
//assemble stiffness matrix A and load vector b
assembleSLE
(
K
,
mu
);
assembleSLE
(
K
,
mu
);
//NOTE: what would be an appropiate solver here?
Dune
::
InverseOperatorResult
result
;
A
.
solve
(
d
,
b
);
Dune
::
UMFPack
<
Matrix
>
solver
(
*
A
);
solver
.
apply
(
d
,
b
,
result
);
//write solution to a vtk file
//write solution to a vtk file
writeVTKoutput
();
writeVTKoutput
();
...
@@ -108,7 +114,7 @@ private:
...
@@ -108,7 +114,7 @@ private:
{
{
//exact evaluation of
//exact evaluation of
// int_elem K*grad(phi_elem,i)*grad(phi_elem,i) dV
// int_elem K*grad(phi_elem,i)*grad(phi_elem,i) dV
A
[
elemIdxSLE
+
i
+
1
][
elemIdxSLE
+
i
+
1
]
+=
K
*
elemVol
;
A
->
entry
(
elemIdxSLE
+
i
+
1
,
elemIdxSLE
+
i
+
1
)
+=
K
*
elemVol
;
}
}
//iterate over all intersection with the boundary of elem
//iterate over all intersection with the boundary of elem
...
@@ -164,7 +170,7 @@ private:
...
@@ -164,7 +170,7 @@ private:
//exact evaluation of
//exact evaluation of
// int_intersct mu*jump(phi_elem,0)*jump(phi_elem,0) ds
// int_intersct mu*jump(phi_elem,0)*jump(phi_elem,0) ds
A
[
elemIdxSLE
][
elemIdxSLE
]
+=
mu
*
intersctVol
;
A
->
entry
(
elemIdxSLE
,
elemIdxSLE
)
+=
mu
*
intersctVol
;
if
(
intersct
.
neighbor
())
//intersct has neighboring element
if
(
intersct
.
neighbor
())
//intersct has neighboring element
{
{
...
@@ -179,7 +185,7 @@ private:
...
@@ -179,7 +185,7 @@ private:
//and
//and
// int_intersct avg(K*grad(phi_elem,i))*jump(phi_elem,0) ds
// int_intersct avg(K*grad(phi_elem,i))*jump(phi_elem,0) ds
// = 0.5 * K * normal[i] * vol(intersct)
// = 0.5 * K * normal[i] * vol(intersct)
A
[
elemIdxSLE
+
i
+
1
][
elemIdxSLE
]
+=
A
->
entry
(
elemIdxSLE
+
i
+
1
,
elemIdxSLE
)
+=
mu
*
linearIntegrals
[
i
]
-
0.5
*
K
*
normal
[
i
]
*
intersctVol
;
mu
*
linearIntegrals
[
i
]
-
0.5
*
K
*
normal
[
i
]
*
intersctVol
;
for
(
int
j
=
0
;
j
<=
i
;
j
++
)
for
(
int
j
=
0
;
j
<=
i
;
j
++
)
...
@@ -190,7 +196,7 @@ private:
...
@@ -190,7 +196,7 @@ private:
//and
//and
// int_intersct avg(K*grad(phi_elem,i))*jump(phi_elem,j) ds
// int_intersct avg(K*grad(phi_elem,i))*jump(phi_elem,j) ds
// = 0.5 * K * normal[i] * int_intersct x_j ds
// = 0.5 * K * normal[i] * int_intersct x_j ds
A
[
elemIdxSLE
+
i
+
1
][
elemIdxSLE
+
j
+
1
]
A
->
entry
(
elemIdxSLE
+
i
+
1
,
elemIdxSLE
+
j
+
1
)
+=
mu
*
quadraticIntregrals
[
i
][
j
]
+=
mu
*
quadraticIntregrals
[
i
][
j
]
-
0.5
*
K
*
(
normal
[
i
]
*
linearIntegrals
[
j
]
-
0.5
*
K
*
(
normal
[
i
]
*
linearIntegrals
[
j
]
+
normal
[
j
]
*
linearIntegrals
[
i
]);
+
normal
[
j
]
*
linearIntegrals
[
i
]);
...
@@ -204,10 +210,11 @@ private:
...
@@ -204,10 +210,11 @@ private:
//exact evaluation of
//exact evaluation of
// int_intersct mu*jump(phi_elem,0)*jump(phi_neighbor,0) ds
// int_intersct mu*jump(phi_elem,0)*jump(phi_neighbor,0) ds
A
[
elemIdxSLE
][
neighborIdxSLE
]
+=
-
mu
*
intersctVol
;
A
->
entry
(
elemIdxSLE
,
neighborIdxSLE
)
+=
-
mu
*
intersctVol
;
//stiffness matrix A is symmetric
//stiffness matrix A is symmetric
A
[
neighborIdxSLE
][
elemIdxSLE
]
+=
A
[
elemIdxSLE
][
neighborIdxSLE
];
A
->
entry
(
neighborIdxSLE
,
elemIdxSLE
)
+=
A
->
entry
(
elemIdxSLE
,
neighborIdxSLE
);
for
(
int
i
=
0
;
i
<
dim
;
i
++
)
for
(
int
i
=
0
;
i
<
dim
;
i
++
)
{
{
...
@@ -219,7 +226,7 @@ private:
...
@@ -219,7 +226,7 @@ private:
// int_intersct avg(K*grad(phi_neighbor,i))
// int_intersct avg(K*grad(phi_neighbor,i))
// *jump(phi_elem,0) ds
// *jump(phi_elem,0) ds
// = 0.5 * K * normal[i] * vol(intersct)
// = 0.5 * K * normal[i] * vol(intersct)
A
[
elemIdxSLE
+
i
+
1
][
neighborIdxSLE
]
+=
A
->
entry
(
elemIdxSLE
+
i
+
1
,
neighborIdxSLE
)
+=
-
mu
*
linearIntegrals
[
i
]
+
0.5
*
K
*
normal
[
i
]
*
intersctVol
;
-
mu
*
linearIntegrals
[
i
]
+
0.5
*
K
*
normal
[
i
]
*
intersctVol
;
//we use the relations
//we use the relations
...
@@ -230,14 +237,14 @@ private:
...
@@ -230,14 +237,14 @@ private:
// int_intersct avg(K*grad(phi_neighbor,i))
// int_intersct avg(K*grad(phi_neighbor,i))
// *jump(phi_elem,0) ds
// *jump(phi_elem,0) ds
// = 0.5 * K * normal[i] * vol(intersct)
// = 0.5 * K * normal[i] * vol(intersct)
A
[
elemIdxSLE
][
neighborIdxSLE
+
i
+
1
]
+=
A
->
entry
(
elemIdxSLE
,
neighborIdxSLE
+
i
+
1
)
+=
-
mu
*
linearIntegrals
[
i
]
-
0.5
*
K
*
normal
[
i
]
*
intersctVol
;
-
mu
*
linearIntegrals
[
i
]
-
0.5
*
K
*
normal
[
i
]
*
intersctVol
;
//stiffness matrix A is symmetric
//stiffness matrix A is symmetric
A
[
neighborIdxSLE
][
elemIdxSLE
+
i
+
1
]
+=
A
->
entry
(
neighborIdxSLE
,
elemIdxSLE
+
i
+
1
)
+=
A
[
elemIdxSLE
+
i
+
1
][
neighborIdxSLE
]
;
A
->
entry
(
elemIdxSLE
+
i
+
1
,
neighborIdxSLE
)
;
A
[
neighborIdxSLE
+
i
+
1
][
elemIdxSLE
]
+=
A
->
entry
(
neighborIdxSLE
+
i
+
1
,
elemIdxSLE
)
+=
A
[
elemIdxSLE
][
neighborIdxSLE
+
i
+
1
]
;
A
->
entry
(
elemIdxSLE
,
neighborIdxSLE
+
i
+
1
)
;
for
(
int
j
=
0
;
j
<=
i
;
j
++
)
for
(
int
j
=
0
;
j
<=
i
;
j
++
)
{
{
...
@@ -253,14 +260,14 @@ private:
...
@@ -253,14 +260,14 @@ private:
// int_intersct avg(K*grad(phi_elem,i))
// int_intersct avg(K*grad(phi_elem,i))
// *jump(phi_neighbor,j) ds
// *jump(phi_neighbor,j) ds
// = -0.5 * K * normal[i] * int_intersct x_j ds
// = -0.5 * K * normal[i] * int_intersct x_j ds
A
[
elemIdxSLE
+
i
+
1
][
neighborIdxSLE
+
j
+
1
]
+=
A
->
entry
(
elemIdxSLE
+
i
+
1
,
neighborIdxSLE
+
j
+
1
)
+=
-
mu
*
quadraticIntregrals
[
i
][
j
]
-
mu
*
quadraticIntregrals
[
i
][
j
]
-
0.5
*
K
*
(
normal
[
j
]
*
linearIntegrals
[
i
]
-
0.5
*
K
*
(
normal
[
j
]
*
linearIntegrals
[
i
]
-
normal
[
i
]
*
linearIntegrals
[
j
]);
-
normal
[
i
]
*
linearIntegrals
[
j
]);
//stiffness matrix A is symmetric
//stiffness matrix A is symmetric
A
[
neighborIdxSLE
+
j
+
1
][
elemIdxSLE
+
i
+
1
]
+=
A
->
entry
(
neighborIdxSLE
+
j
+
1
,
elemIdxSLE
+
i
+
1
)
+=
A
[
elemIdxSLE
+
i
+
1
][
neighborIdxSLE
+
j
+
1
]
;
A
->
entry
(
elemIdxSLE
+
i
+
1
,
neighborIdxSLE
+
j
+
1
)
;
if
(
i
!=
j
)
if
(
i
!=
j
)
{
{
...
@@ -275,14 +282,14 @@ private:
...
@@ -275,14 +282,14 @@ private:
// int_intersct avg(K*grad(phi_elem,j))
// int_intersct avg(K*grad(phi_elem,j))
// *jump(phi_neighbor,i) ds
// *jump(phi_neighbor,i) ds
// = -0.5 * K * normal[j] * int_intersct x_i ds
// = -0.5 * K * normal[j] * int_intersct x_i ds
A
[
elemIdxSLE
+
j
+
1
][
neighborIdxSLE
+
i
+
1
]
+=
A
->
entry
(
elemIdxSLE
+
j
+
1
,
neighborIdxSLE
+
i
+
1
)
+=
-
mu
*
quadraticIntregrals
[
i
][
j
]
-
mu
*
quadraticIntregrals
[
i
][
j
]
-
0.5
*
K
*
(
normal
[
i
]
*
linearIntegrals
[
j
]
-
0.5
*
K
*
(
normal
[
i
]
*
linearIntegrals
[
j
]
-
normal
[
j
]
*
linearIntegrals
[
i
]);
-
normal
[
j
]
*
linearIntegrals
[
i
]);
//stiffness matrix A is symmetric
//stiffness matrix A is symmetric
A
[
neighborIdxSLE
+
i
+
1
][
elemIdxSLE
+
j
+
1
]
+=
A
->
entry
(
neighborIdxSLE
+
i
+
1
,
elemIdxSLE
+
j
+
1
)
+=
A
[
elemIdxSLE
+
j
+
1
][
neighborIdxSLE
+
i
+
1
]
;
A
->
entry
(
elemIdxSLE
+
j
+
1
,
neighborIdxSLE
+
i
+
1
)
;
}
}
}
}
}
}
...
@@ -297,7 +304,7 @@ private:
...
@@ -297,7 +304,7 @@ private:
// int_intersct avg(K*grad(phi_elem,i))
// int_intersct avg(K*grad(phi_elem,i))
// *jump(phi_elem,0) ds
// *jump(phi_elem,0) ds
// = K * normal[i] * vol(intersct)
// = K * normal[i] * vol(intersct)
A
[
elemIdxSLE
+
i
+
1
][
elemIdxSLE
]
+=
A
->
entry
(
elemIdxSLE
+
i
+
1
,
elemIdxSLE
)
+=
mu
*
linearIntegrals
[
i
]
-
0.5
*
K
*
normal
[
i
]
*
intersctVol
;
mu
*
linearIntegrals
[
i
]
-
0.5
*
K
*
normal
[
i
]
*
intersctVol
;
for
(
int
j
=
0
;
j
<=
i
;
j
++
)
for
(
int
j
=
0
;
j
<=
i
;
j
++
)
...
@@ -309,7 +316,7 @@ private:
...
@@ -309,7 +316,7 @@ private:
// int_intersct avg(K*grad(phi_elem,i))
// int_intersct avg(K*grad(phi_elem,i))
// *jump(phi_elem,j) ds
// *jump(phi_elem,j) ds
// = 0.5 * K * normal[i] * int_intersct x_j ds
// = 0.5 * K * normal[i] * int_intersct x_j ds
A
[
elemIdxSLE
+
i
+
1
][
elemIdxSLE
+
j
+
1
]
+=
A
->
entry
(
elemIdxSLE
+
i
+
1
,
elemIdxSLE
+
j
+
1
)
+=
mu
*
quadraticIntregrals
[
i
][
j
]
mu
*
quadraticIntregrals
[
i
][
j
]
-
0.5
*
K
*
(
normal
[
i
]
*
linearIntegrals
[
j
]
-
0.5
*
K
*
(
normal
[
i
]
*
linearIntegrals
[
j
]
+
normal
[
j
]
*
linearIntegrals
[
i
]);
+
normal
[
j
]
*
linearIntegrals
[
i
]);
...
@@ -321,22 +328,18 @@ private:
...
@@ -321,22 +328,18 @@ private:
//stiffness matrix A is symmetric
//stiffness matrix A is symmetric
for
(
int
i
=
0
;
i
<
dim
;
i
++
)
for
(
int
i
=
0
;
i
<
dim
;
i
++
)
{
{
A
[
elemIdxSLE
][
elemIdxSLE
+
i
+
1
]
=
A
[
elemIdxSLE
+
i
+
1
][
elemIdxSLE
];
A
->
entry
(
elemIdxSLE
,
elemIdxSLE
+
i
+
1
)
=
A
->
entry
(
elemIdxSLE
+
i
+
1
,
elemIdxSLE
);
for
(
int
j
=
0
;
j
<
i
;
j
++
)
for
(
int
j
=
0
;
j
<
i
;
j
++
)
{
{
A
[
elemIdxSLE
+
j
+
1
][
elemIdxSLE
+
i
+
1
]
=
A
->
entry
(
elemIdxSLE
+
j
+
1
,
elemIdxSLE
+
i
+
1
)
=
A
[
elemIdxSLE
+
i
+
1
][
elemIdxSLE
+
j
+
1
]
;
A
->
entry
(
elemIdxSLE
+
i
+
1
,
elemIdxSLE
+
j
+
1
)
;
}
}
}
}
}
}
//NOTE: check if A is symmetric
A
->
compress
();
for
(
int
i
=
0
;
i
<
dof
;
i
++
)
for
(
int
j
=
0
;
j
<
i
;
j
++
)
/*assert*/
if
(
std
::
abs
(
A
[
i
][
j
]
-
A
[
j
][
i
])
>
std
::
numeric_limits
<
Scalar
>::
epsilon
())
std
::
cout
<<
i
<<
", "
<<
j
<<
std
::
endl
;
}
}
//writes the solution to a vtk file
//writes the solution to a vtk file
...
@@ -392,7 +395,7 @@ private:
...
@@ -392,7 +395,7 @@ private:
}
}
Matrix
A
;
//stiffness matrix
std
::
shared_ptr
<
Matrix
>
A
;
//stiffness matrix
Vector
b
;
//load vector
Vector
b
;
//load vector
Vector
d
;
//solution vector
Vector
d
;
//solution vector
};
};
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment