diff --git a/TP-TP-2-patch-pure-dd-avoid-interface-at-origin/mesh_study_convergence/TP-TP-2-patch-pure-dd-convergence-study.py b/TP-TP-2-patch-pure-dd-avoid-interface-at-origin/mesh_study_convergence/TP-TP-2-patch-pure-dd-convergence-study.py
index 139e06aa29140f33f7baf25da23f2dd0e4b89fac..441c93be4843e5a2defe82e6a8133bceee54d258 100755
--- a/TP-TP-2-patch-pure-dd-avoid-interface-at-origin/mesh_study_convergence/TP-TP-2-patch-pure-dd-convergence-study.py
+++ b/TP-TP-2-patch-pure-dd-avoid-interface-at-origin/mesh_study_convergence/TP-TP-2-patch-pure-dd-convergence-study.py
@@ -562,4 +562,11 @@ for mesh_resolution in resolutions:
 
     simulation.initialise()
     # simulation.write_exact_solution_to_xdmf()
-    simulation.run(analyse_condition=analyse_condition)
+    errornorms = simulation.run(analyse_condition=analyse_condition)
+    for subdomain_index in errornorms.keys():
+        for phase, different_errornorm in errornorms[subdomain_index].items():
+            for errortype, errornorm in errornorms[subdomain_index][phase].items():
+                eoc_filename = "{}_error".format(output_string)
+                eocfile = open("eoc", "a")
+                eocfile.write( str(dx) + " " + str(err) + "\n" )
+                eocfile.close()
diff --git a/TP-TP-2-patch-pure-dd/TP-TP-2-patch-pure-dd.py b/TP-TP-2-patch-pure-dd/TP-TP-2-patch-pure-dd.py
deleted file mode 100755
index b11500b3e99fc821a307c1cda6a964e4e852c8c8..0000000000000000000000000000000000000000
--- a/TP-TP-2-patch-pure-dd/TP-TP-2-patch-pure-dd.py
+++ /dev/null
@@ -1,550 +0,0 @@
-#!/usr/bin/python3
-import dolfin as df
-import mshr
-import numpy as np
-import sympy as sym
-import typing as tp
-import domainPatch as dp
-import LDDsimulation as ldd
-import functools as ft
-import helpers as hlp
-#import ufl as ufl
-
-# init sympy session
-sym.init_printing()
-
-use_case = "TP-TP-2-patch-pure-dd"
-solver_tol = 6E-6
-max_iter_num = 1000
-
-############ GRID #######################
-mesh_resolution = 20
-timestep_size = 0.0005
-number_of_timesteps = 600
-# decide how many timesteps you want analysed. Analysed means, that we write out
-# subsequent errors of the L-iteration within the timestep.
-number_of_timesteps_to_analyse = 6
-starttime = 0
-
-Lw = 1 #/timestep_size
-Lnw=Lw
-
-lambda_w = 4
-lambda_nw = 4
-
-include_gravity = False
-debugflag = False
-analyse_condition = True
-
-output_string = "./output/2019-08-23-nondirichlet_number_of_timesteps{}_".format(number_of_timesteps)
-
-##### Domain and Interface ####
-# global simulation domain domain
-sub_domain0_vertices = [df.Point(-1.0,-1.0), #
-                        df.Point(1.0,-1.0),#
-                        df.Point(1.0,1.0),#
-                        df.Point(-1.0,1.0)]
-# interface between subdomain1 and subdomain2
-interface12_vertices = [df.Point(-1.0, 0.0),
-                        df.Point(1.0, 0.0) ]
-# subdomain1.
-sub_domain1_vertices = [interface12_vertices[0],
-                        interface12_vertices[1],
-                        sub_domain0_vertices[2],
-                        sub_domain0_vertices[3] ]
-
-# vertex coordinates of the outer boundaries. If it can not be specified as a
-# polygon, use an entry per boundary polygon. This information is used for defining
-# the Dirichlet boundary conditions. If a domain is completely internal, the
-# dictionary entry should be 0: None
-subdomain1_outer_boundary_verts = {
-    0: [interface12_vertices[1],
-        sub_domain0_vertices[2],
-        sub_domain0_vertices[3], #
-        interface12_vertices[0]]
-}
-# subdomain2
-sub_domain2_vertices = [sub_domain0_vertices[0],
-                        sub_domain0_vertices[1],
-                        interface12_vertices[1],
-                        interface12_vertices[0] ]
-
-subdomain2_outer_boundary_verts = {
-    0: [interface12_vertices[0], #
-        sub_domain0_vertices[0],
-        sub_domain0_vertices[1],
-        interface12_vertices[1]]
-}
-# subdomain2_outer_boundary_verts = {
-#     0: [interface12_vertices[0], df.Point(0.0,0.0)],#
-#     1: [df.Point(0.0,0.0), df.Point(1.0,0.0)], #
-#     2: [df.Point(1.0,0.0), interface12_vertices[1]]
-# }
-# subdomain2_outer_boundary_verts = {
-#     0: None
-# }
-
-# list of subdomains given by the boundary polygon vertices.
-# Subdomains are given as a list of dolfin points forming
-# a closed polygon, such that mshr.Polygon(subdomain_def_points[i]) can be used
-# to create the subdomain. subdomain_def_points[0] contains the
-# vertices of the global simulation domain and subdomain_def_points[i] contains the
-# vertices of the subdomain i.
-subdomain_def_points = [sub_domain0_vertices,#
-                      sub_domain1_vertices,#
-                      sub_domain2_vertices]
-# in the below list, index 0 corresponds to the 12 interface which has index 1
-interface_def_points = [interface12_vertices]
-
-# if a subdomain has no outer boundary write None instead, i.e.
-# i: None
-# if i is the index of the inner subdomain.
-outer_boundary_def_points = {
-    # subdomain number
-    1 : subdomain1_outer_boundary_verts,
-    2 : subdomain2_outer_boundary_verts
-}
-
-# adjacent_subdomains[i] contains the indices of the subdomains sharing the
-# interface i (i.e. given by interface_def_points[i]).
-adjacent_subdomains = [[1,2]]
-isRichards = {
-    1: False, #
-    2: False
-    }
-
-
-viscosity = {#
-# subdom_num : viscosity
-    1 : {'wetting' :1,
-         'nonwetting': 1}, #
-    2 : {'wetting' :1,
-         'nonwetting': 1}
-}
-
-porosity = {#
-# subdom_num : porosity
-    1 : 1,#
-    2 : 1
-}
-
-# Dict of the form: { subdom_num : density }
-densities = {
-    1: {'wetting': 1,  #997,
-        'nonwetting': 1}, #1225},
-    2: {'wetting': 1,  #997,
-        'nonwetting': 1}, #1225},
-}
-
-gravity_acceleration = 9.81
-
-
-L = {#
-# subdom_num : subdomain L for L-scheme
-    1 : {'wetting' :Lw,
-         'nonwetting': Lnw},#
-    2 : {'wetting' :Lw,
-         'nonwetting': Lnw}
-}
-
-
-lambda_param = {#
-# subdom_num : lambda parameter for the L-scheme
-    1 : {'wetting' :lambda_w,
-         'nonwetting': lambda_nw},#
-    2 : {'wetting' :lambda_w,
-         'nonwetting': lambda_nw}
-}
-
-## relative permeabilty functions on subdomain 1
-def rel_perm1w(s):
-    # relative permeabilty wetting on subdomain1
-    return s**2
-
-def rel_perm1nw(s):
-    # relative permeabilty nonwetting on subdomain1
-    return (1-s)**2
-
-_rel_perm1w = ft.partial(rel_perm1w)
-_rel_perm1nw = ft.partial(rel_perm1nw)
-
-subdomain1_rel_perm = {
-    'wetting': _rel_perm1w,#
-    'nonwetting': _rel_perm1nw
-}
-## relative permeabilty functions on subdomain 2
-def rel_perm2w(s):
-    # relative permeabilty wetting on subdomain2
-    return s**2
-def rel_perm2nw(s):
-    # relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2
-    return (1-s)**2
-
-_rel_perm2w = ft.partial(rel_perm2w)
-_rel_perm2nw = ft.partial(rel_perm2nw)
-
-subdomain2_rel_perm = {
-    'wetting': _rel_perm2w,#
-    'nonwetting': _rel_perm2nw
-}
-
-## dictionary of relative permeabilties on all domains.
-relative_permeability = {#
-    1: subdomain1_rel_perm,
-    2: subdomain2_rel_perm
-}
-
-
-# definition of the derivatives of the relative permeabilities
-# relative permeabilty functions on subdomain 1
-def rel_perm1w_prime(s):
-    # relative permeabilty on subdomain1
-    return 2*s
-
-def rel_perm1nw_prime(s):
-    # relative permeabilty on subdomain1
-    return -2*(1-s)
-
-# # definition of the derivatives of the relative permeabilities
-# # relative permeabilty functions on subdomain 1
-def rel_perm2w_prime(s):
-    # relative permeabilty on subdomain1
-    return 2*s
-
-def rel_perm2nw_prime(s):
-    # relative permeabilty on subdomain1
-    return -2*(1-s)
-
-_rel_perm1w_prime = ft.partial(rel_perm1w_prime)
-_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime)
-_rel_perm2w_prime = ft.partial(rel_perm2w_prime)
-_rel_perm2nw_prime = ft.partial(rel_perm2nw_prime)
-
-subdomain1_rel_perm_prime = {
-    'wetting': _rel_perm1w_prime,
-    'nonwetting': _rel_perm1nw_prime
-}
-
-
-subdomain2_rel_perm_prime = {
-    'wetting': _rel_perm2w_prime,
-    'nonwetting': _rel_perm2nw_prime
-}
-
-# dictionary of relative permeabilties on all domains.
-ka_prime = {
-    1: subdomain1_rel_perm_prime,
-    2: subdomain2_rel_perm_prime,
-}
-
-
-
-def saturation(pc, index):
-    # inverse capillary pressure-saturation-relationship
-    return df.conditional(pc > 0, 1/((1 + pc)**(1/(index + 1))), 1)
-
-
-
-def pc_sat_rel_sym(S, index):
-    # capillary pressure-saturation-relationship
-    return 1/S**(index+1) -1
-
-pc_saturation_sym = {
-    1: ft.partial(pc_sat_rel_sym, index=1),
-    2: ft.partial(pc_sat_rel_sym, index=1),
-}
-
-def saturation_sym(pc, index):
-    # inverse capillary pressure-saturation-relationship
-    return 1/((1 + pc)**(1/(index + 1)))
-
-
-# derivative of S-pc relationship with respect to pc. This is needed for the
-# construction of a analytic solution.
-def saturation_sym_prime(pc, index):
-    # inverse capillary pressure-saturation-relationship
-    return -1/((index+1)*(1 + pc)**((index+2)/(index+1)))
-
-
-# note that the conditional definition of S-pc in the nonsymbolic part will be
-# incorporated in the construction of the exact solution below.
-S_pc_sym = {
-    1: ft.partial(saturation_sym, index=1),
-    2: ft.partial(saturation_sym, index=1),
-    # 3: ft.partial(saturation_sym, index=2),
-    # 4: ft.partial(saturation_sym, index=1)
-}
-
-S_pc_sym_prime = {
-    1: ft.partial(saturation_sym_prime, index=1),
-    2: ft.partial(saturation_sym_prime, index=1),
-    # 3: ft.partial(saturation_sym_prime, index=2),
-    # 4: ft.partial(saturation_sym_prime, index=1)
-}
-
-sat_pressure_relationship = {
-    1: ft.partial(saturation, index=1),
-    2: ft.partial(saturation, index=1),
-    # 3: ft.partial(saturation, index=2),
-    # 4: ft.partial(saturation, index=1)
-}
-
-#
-# def saturation(pc, n_index, alpha):
-#     # inverse capillary pressure-saturation-relationship
-#     return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1)
-#
-# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where
-# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw
-# def saturation_sym(pc, n_index, alpha):
-#     # inverse capillary pressure-saturation-relationship
-#     #df.conditional(pc > 0,
-#     return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index))
-#
-#
-# # derivative of S-pc relationship with respect to pc. This is needed for the
-# # construction of a analytic solution.
-# def saturation_sym_prime(pc, n_index, alpha):
-#     # inverse capillary pressure-saturation-relationship
-#     return -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1)) / ( (1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index) )
-#
-# # note that the conditional definition of S-pc in the nonsymbolic part will be
-# # incorporated in the construction of the exact solution below.
-# S_pc_sym = {
-#     1: ft.partial(saturation_sym, n_index=3, alpha=0.001),
-#     2: ft.partial(saturation_sym, n_index=6, alpha=0.001),
-#     # 3: ft.partial(saturation_sym, n_index=3, alpha=0.001),
-#     # 4: ft.partial(saturation_sym, n_index=3, alpha=0.001),
-#     # 5: ft.partial(saturation_sym, n_index=3, alpha=0.001),
-#     # 6: ft.partial(saturation_sym, n_index=3, alpha=0.001)
-# }
-#
-# S_pc_sym_prime = {
-#     1: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
-#     2: ft.partial(saturation_sym_prime, n_index=6, alpha=0.001),
-#     # 3: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
-#     # 4: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
-#     # 5: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
-#     # 6: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001)
-# }
-#
-# sat_pressure_relationship = {
-#     1: ft.partial(saturation, n_index=3, alpha=0.001),
-#     2: ft.partial(saturation, n_index=6, alpha=0.001),p1w + Spc[1]
-#     # 3: ft.partial(saturation, n_index=3, alpha=0.001),
-#     # 4: ft.partial(saturation, n_index=3, alpha=0.001),
-#     # 5: ft.partial(saturation, n_index=3, alpha=0.001),
-#     # 6: ft.partial(saturation, n_index=3, alpha=0.001)
-# }
-#
-
-
-#############################################
-# Manufacture source expressions with sympy #
-#############################################
-x, y = sym.symbols('x[0], x[1]')  # needed by UFL
-t = sym.symbols('t', positive=True)
-
-symbols = { "x": x,
-            "y": y,
-            "t": t}
-
-# epsilon_x_inner = 0.7
-# epsilon_x_outer = 0.99
-# epsilon_y_inner = epsilon_x_inner
-# epsilon_y_outer = epsilon_x_outer
-#
-# def mollifier(x, epsilon):
-#     """ one d mollifier """
-#     out_expr = sym.exp(-1/(1-(x/epsilon)**2) + 1)
-#     return out_expr
-#
-# mollifier_handle = ft.partial(mollifier, epsilon=epsilon_x_inner)
-#
-# pw_sym_x = sym.Piecewise(
-#     (mollifier_handle(x), x**2 < epsilon_x_outer**2),
-#     (0, True)
-# )
-# pw_sym_y = sym.Piecewise(
-#     (mollifier_handle(y), y**2 < epsilon_y_outer**2),
-#     (0, True)
-# )
-#
-# def mollifier2d(x, y, epsilon):
-#     """ one d mollifier """
-#     out_expr = sym.exp(-1/(1-(x**2 + y**2)/epsilon**2) + 1)
-#     return out_expr
-#
-# mollifier2d_handle = ft.partial(mollifier2d, epsilon=epsilon_x_outer)
-#
-# pw_sym2d_x = sym.Piecewise(
-#     (mollifier2d_handle(x, y), x**2 + y**2 < epsilon_x_outer**2),
-#     (0, True)
-# )
-#
-# zero_on_epsilon_shrinking_of_subdomain = sym.Piecewise(
-#     (mollifier_handle(sym.sqrt(x**2 + y**2)+2*epsilon_x_inner), ((-2*epsilon_x_inner<sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<-epsilon_x_inner))),
-#     (0, ((-epsilon_x_inner<=sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<=epsilon_x_inner))),
-#     (mollifier_handle(sym.sqrt(x**2 + y**2)-2*epsilon_x_inner), ((epsilon_x_inner<sym.sqrt(x**2 + y**2)) & (sym.sqrt(x**2 + y**2)<2*epsilon_x_inner))),
-#     (1, True),
-# )
-#
-# zero_on_epsilon_shrinking_of_subdomain_x = sym.Piecewise(
-#     (mollifier_handle(x+2*epsilon_x_inner), ((-2*epsilon_x_inner<x) & (x<-epsilon_x_inner))),
-#     (0, ((-epsilon_x_inner<=x) & (x<=epsilon_x_inner))),
-#     (mollifier_handle(x-2*epsilon_x_inner), ((epsilon_x_inner<x) & (x<2*epsilon_x_inner))),
-#     (1, True),
-# )
-#
-# zero_on_epsilon_shrinking_of_subdomain_y = sym.Piecewise(
-#     (1, y<=-2*epsilon_x_inner),
-#     (mollifier_handle(y+2*epsilon_x_inner), ((-2*epsilon_x_inner<y) & (y<-epsilon_x_inner))),
-#     (0, ((-epsilon_x_inner<=y) & (y<=epsilon_x_inner))),
-#     (mollifier_handle(y-2*epsilon_x_inner), ((epsilon_x_inner<y) & (y<2*epsilon_x_inner))),
-#     (1, True),
-# )
-#
-# zero_on_shrinking = zero_on_epsilon_shrinking_of_subdomain #zero_on_epsilon_shrinking_of_subdomain_x + zero_on_epsilon_shrinking_of_subdomain_y
-# gaussian = pw_sym2d_x# pw_sym_y*pw_sym_x
-# cutoff = gaussian/(gaussian + zero_on_shrinking)
-#
-#
-# sat_sym = {
-#     1: 0.5 + 0.25*sym.sin(x-t)*sym.cos(y-t),
-#     2: 0.5 + 0.25*sym.sin(x-t)*sym.cos(y-t)
-#     }
-#
-# Spc = {
-#     1: sym.Piecewise((pc_saturation_sym[1](sat_sym[1]), sat_sym[1] > 0), (pc_saturation_sym[1](sat_sym[1]), 1>=sat_sym[1]), (0, True)),
-#     2: sym.Piecewise((pc_saturation_sym[2](sat_sym[2]), sat_sym[2] > 0), (pc_saturation_sym[2](sat_sym[2]), 2>=sat_sym[2]), (0, True))
-#     }
-#
-# p1w = (-1 - (1+t*t)*(1 + x*x + y*y))#*cutoff
-# p2w = p1w
-# p_e_sym = {
-#     1: {'wetting': p1w,
-#         'nonwetting': (p1w + Spc[1])}, #*cutoff},
-#     2: {'wetting': p2w,
-#         'nonwetting': (p2w + Spc[2])}, #*cutoff},
-# }
-
-p_e_sym = {
-    1: {'wetting': (-6 - (1+t*t)*(1 + x*x + y*y)),  #*cutoff,
-        'nonwetting': (-1 -t*(1.1+ y + x**2))},  #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2},
-    2: {'wetting': (-6.0 - (1.0 + t*t)*(1.0 + x*x)),  #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2,
-        'nonwetting': (-1 -t*(1.1 + x**2) - sym.sqrt(2+t**2)*(1.1+y)**2*y**2)},  #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2},
-    # 1: {'wetting': (-5 - (1+t*t)*(1 + x*x + y*y)),  #*cutoff,
-    #     'nonwetting': (-1 -t*(1.1+y + x**2))},  #*cutoff},
-    # 2: {'wetting': (-5 - (1+t*t)*(1 + x*x + y*y)),  #*cutoff,
-    #     'nonwetting': (-1 -t*(1.1+y + x**2))},  #*cutoff},
-}
-
-
-pc_e_sym = dict()
-for subdomain, isR in isRichards.items():
-    if isR:
-        pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']})
-    else:
-        pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting']
-                                        - p_e_sym[subdomain]['wetting']})
-
-
-
-exact_solution_example = hlp.generate_exact_solution_expressions(
-                                    symbols=symbols,
-                                    isRichards=isRichards,
-                                    symbolic_pressure=p_e_sym,
-                                    symbolic_capillary_pressure=pc_e_sym,
-                                    saturation_pressure_relationship=S_pc_sym,
-                                    saturation_pressure_relationship_prime=S_pc_sym_prime,
-                                    viscosity=viscosity,#
-                                    porosity=porosity,
-                                    relative_permeability=relative_permeability,#
-                                    relative_permeability_prime=ka_prime,
-                                    densities=densities,#
-                                    gravity_acceleration=gravity_acceleration,
-                                    include_gravity=include_gravity,
-                                    )
-source_expression = exact_solution_example['source']
-exact_solution = exact_solution_example['exact_solution']
-initial_condition = exact_solution_example['initial_condition']
-
-# Dictionary of dirichlet boundary conditions.
-dirichletBC = dict()
-# similarly to the outer boundary dictionary, if a patch has no outer boundary
-# None should be written instead of an expression.
-# This is a bit of a brainfuck:
-# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind.
-# Since a domain patch can have several disjoint outer boundary parts, the
-# expressions need to get an enumaration index which starts at 0.
-# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of
-# subdomain ind and boundary part j.
-# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting']
-# return the actual expression needed for the dirichlet condition for both
-# phases if present.
-
-# subdomain index: {outer boudary part index: {phase: expression}}
-for subdomain in isRichards.keys():
-    # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None
-    if outer_boundary_def_points[subdomain] is None:
-        dirichletBC.update({subdomain: None})
-    else:
-        dirichletBC.update({subdomain: dict()})
-        # set the dirichlet conditions to be the same code as exact solution on
-        # the subdomain.
-        for outer_boundary_ind in outer_boundary_def_points[subdomain].keys():
-            dirichletBC[subdomain].update(
-                {outer_boundary_ind: exact_solution[subdomain]}
-                )
-
-
-# def saturation(pressure, subdomain_index):
-#     # inverse capillary pressure-saturation-relationship
-#     return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1)
-#
-# sa
-
-write_to_file = {
-    'meshes_and_markers': True,
-    'L_iterations': True
-}
-
-
-# initialise LDD simulation class
-simulation = ldd.LDDsimulation(
-    tol=1E-14,
-    LDDsolver_tol=solver_tol,
-    debug=debugflag,
-    max_iter_num=max_iter_num
-    )
-
-simulation.set_parameters(use_case=use_case,
-                          output_dir=output_string,
-                          subdomain_def_points=subdomain_def_points,
-                          isRichards=isRichards,
-                          interface_def_points=interface_def_points,
-                          outer_boundary_def_points=outer_boundary_def_points,
-                          adjacent_subdomains=adjacent_subdomains,
-                          mesh_resolution=mesh_resolution,
-                          viscosity=viscosity,
-                          porosity=porosity,
-                          L=L,
-                          lambda_param=lambda_param,
-                          relative_permeability=relative_permeability,
-                          saturation=sat_pressure_relationship,
-                          starttime=starttime,
-                          number_of_timesteps=number_of_timesteps,
-                          number_of_timesteps_to_analyse=number_of_timesteps_to_analyse,
-                          timestep_size=timestep_size,
-                          sources=source_expression,
-                          initial_conditions=initial_condition,
-                          dirichletBC_expression_strings=dirichletBC,
-                          exact_solution=exact_solution,
-                          densities=densities,
-                          include_gravity=include_gravity,
-                          write2file=write_to_file,
-                          )
-
-simulation.initialise()
-# simulation.write_exact_solution_to_xdmf()
-simulation.run(analyse_condition=analyse_condition)
diff --git a/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch-realistic.py b/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch-realistic.py
index 13ac7ea440e9a2f0e5309c0481377047e1144c7b..37d337a14057913793b1505bfea4a50b14260295 100755
--- a/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch-realistic.py
+++ b/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch-realistic.py
@@ -22,18 +22,18 @@ import helpers as hlp
 sym.init_printing()
 
 use_case = "TP-TP-layered-soil-with-inner-patch-realistic-with-gravity"
-solver_tol = 5E-6
+solver_tol = 2E-6
 
 ############ GRID #######################ΓΌ
-mesh_resolution = 60
-timestep_size = 0.0001
-number_of_timesteps = 30
+mesh_resolution = 20
+timestep_size = 0.00005
+number_of_timesteps = 1000
 # decide how many timesteps you want analysed. Analysed means, that we write out
 # subsequent errors of the L-iteration within the timestep.
 number_of_timesteps_to_analyse = 10
 starttime = 0
 
-Lw = 10  #/timestep_size
+Lw = 1  #/timestep_size
 Lnw=Lw
 
 lambda_w = 4
@@ -43,7 +43,7 @@ include_gravity = True
 debugflag = True
 analyse_condition = False
 
-output_string = "./output/realistic-with_gravity-post-bugfix-nondirichlet_number_of_timesteps{}_".format(number_of_timesteps)
+output_string = "./output/2019-08-30-{}_timesteps{}_".format(use_case, number_of_timesteps)
 
 # global domain
 subdomain0_vertices = [df.Point(-1.0,-1.0), #