diff --git a/TP-TP-2-patch-test-case/TP-TP-2-patch-alterantive.py b/TP-TP-2-patch-test-case/TP-TP-2-patch-alterantive.py new file mode 100755 index 0000000000000000000000000000000000000000..5d31e8ecca0577d27e53b3878107f1fabeaf2ce9 --- /dev/null +++ b/TP-TP-2-patch-test-case/TP-TP-2-patch-alterantive.py @@ -0,0 +1,486 @@ +#!/usr/bin/python3 +import dolfin as df +import mshr +import numpy as np +import sympy as sym +import typing as tp +import domainPatch as dp +import LDDsimulation as ldd +import functools as ft +#import ufl as ufl + +# init sympy session +sym.init_printing() + +##### Domain and Interface #### +# global simulation domain domain +sub_domain0_vertices = [df.Point(-1.0,-1.0), # + df.Point(1.0,-1.0),# + df.Point(1.0,1.0),# + df.Point(-1.0,1.0)] +# interface between subdomain1 and subdomain2 +interface12_vertices = [df.Point(-1.0, 0.0), + df.Point(1.0, 0.0) ] +# subdomain1. +sub_domain1_vertices = [interface12_vertices[0], + interface12_vertices[1], + sub_domain0_vertices[2], + sub_domain0_vertices[3] ] + +# vertex coordinates of the outer boundaries. If it can not be specified as a +# polygon, use an entry per boundary polygon. This information is used for defining +# the Dirichlet boundary conditions. If a domain is completely internal, the +# dictionary entry should be 0: None +subdomain1_outer_boundary_verts = { + 0: [interface12_vertices[1], + sub_domain0_vertices[2], + sub_domain0_vertices[3], # + interface12_vertices[0]] +} +# subdomain2 +sub_domain2_vertices = [sub_domain0_vertices[0], + sub_domain0_vertices[1], + interface12_vertices[1], + interface12_vertices[0] ] + +subdomain2_outer_boundary_verts = { + 0: [interface12_vertices[0], # + sub_domain0_vertices[0], + sub_domain0_vertices[1], + interface12_vertices[1]] +} +# subdomain2_outer_boundary_verts = { +# 0: [interface12_vertices[0], df.Point(0.0,0.0)],# +# 1: [df.Point(0.0,0.0), df.Point(1.0,0.0)], # +# 2: [df.Point(1.0,0.0), interface12_vertices[1]] +# } +# subdomain2_outer_boundary_verts = { +# 0: None +# } + +# list of subdomains given by the boundary polygon vertices. +# Subdomains are given as a list of dolfin points forming +# a closed polygon, such that mshr.Polygon(subdomain_def_points[i]) can be used +# to create the subdomain. subdomain_def_points[0] contains the +# vertices of the global simulation domain and subdomain_def_points[i] contains the +# vertices of the subdomain i. +subdomain_def_points = [sub_domain0_vertices,# + sub_domain1_vertices,# + sub_domain2_vertices] +# in the below list, index 0 corresponds to the 12 interface which has index 1 +interface_def_points = [interface12_vertices] + +# if a subdomain has no outer boundary write None instead, i.e. +# i: None +# if i is the index of the inner subdomain. +outer_boundary_def_points = { + # subdomain number + 1 : subdomain1_outer_boundary_verts, + 2 : subdomain2_outer_boundary_verts +} + +# adjacent_subdomains[i] contains the indices of the subdomains sharing the +# interface i (i.e. given by interface_def_points[i]). +adjacent_subdomains = [[1,2]] +isRichards = { + 1: False, # + 2: False + } + + +solver_tol = 1E-6 + +############ GRID #######################ü +mesh_resolution = 30 +timestep_size = 0.001 +number_of_timesteps = 1500 +# decide how many timesteps you want analysed. Analysed means, that we write out +# subsequent errors of the L-iteration within the timestep. +number_of_timesteps_to_analyse = 11 +starttime = 0 + +Lw = 100/timestep_size +Lnw=Lw + +viscosity = {# +# subdom_num : viscosity + 1 : {'wetting' :1, + 'nonwetting': 1}, # + 2 : {'wetting' :1, + 'nonwetting': 1} +} + +porosity = {# +# subdom_num : porosity + 1 : 1,# + 2 : 1 +} + +# Dict of the form: { subdom_num : density } +densities = { + 1: {'wetting': 1, #997, + 'nonwetting': 1}, #1225}, + 2: {'wetting': 1, #997, + 'nonwetting': 1}, #1225}, +} + +gravity_acceleration = 9.81 + +L = {# +# subdom_num : subdomain L for L-scheme + 1 : {'wetting' :Lw, + 'nonwetting': Lnw},# + 2 : {'wetting' :Lw, + 'nonwetting': Lnw} +} + +l_param_w = 25 +l_param_nw = 25 +lambda_param = {# +# subdom_num : lambda parameter for the L-scheme + 1 : {'wetting' :l_param_w, + 'nonwetting': l_param_nw},# + 2 : {'wetting' :l_param_w, + 'nonwetting': l_param_nw} +} + +## relative permeabilty functions on subdomain 1 +def rel_perm1w(s): + # relative permeabilty wetting on subdomain1 + return s**2 + +def rel_perm1nw(s): + # relative permeabilty nonwetting on subdomain1 + return (1-s)**2 + +_rel_perm1w = ft.partial(rel_perm1w) +_rel_perm1nw = ft.partial(rel_perm1nw) + +subdomain1_rel_perm = { + 'wetting': _rel_perm1w,# + 'nonwetting': _rel_perm1nw +} +## relative permeabilty functions on subdomain 2 +def rel_perm2w(s): + # relative permeabilty wetting on subdomain2 + return s**3 +def rel_perm2nw(s): + # relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2 + return (1-s)**3 + +_rel_perm2w = ft.partial(rel_perm2w) +_rel_perm2nw = ft.partial(rel_perm2nw) + +subdomain2_rel_perm = { + 'wetting': _rel_perm2w,# + 'nonwetting': _rel_perm2nw +} + +## dictionary of relative permeabilties on all domains. +relative_permeability = {# + 1: subdomain1_rel_perm, + 2: subdomain2_rel_perm +} + + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 1 +def rel_perm1w_prime(s): + # relative permeabilty on subdomain1 + return 2*s + +def rel_perm1nw_prime(s): + # relative permeabilty on subdomain1 + return 2*(1-s) + +# # definition of the derivatives of the relative permeabilities +# # relative permeabilty functions on subdomain 1 +def rel_perm2w_prime(s): + # relative permeabilty on subdomain1 + return 3*s**2 + +def rel_perm2nw_prime(s): + # relative permeabilty on subdomain1 + return 3*(1-s)**2 + +_rel_perm1w_prime = ft.partial(rel_perm1w_prime) +_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime) +_rel_perm2w_prime = ft.partial(rel_perm2w_prime) +_rel_perm2nw_prime = ft.partial(rel_perm2nw_prime) + +subdomain1_rel_perm_prime = { + 'wetting': _rel_perm1w_prime, + 'nonwetting': _rel_perm1nw_prime +} + + +subdomain2_rel_perm_prime = { + 'wetting': _rel_perm2w_prime, + 'nonwetting': _rel_perm2nw_prime +} + +# dictionary of relative permeabilties on all domains. +ka_prime = { + 1: subdomain1_rel_perm_prime, + 2: subdomain2_rel_perm_prime, +} + + + +def saturation(pc, index): + # inverse capillary pressure-saturation-relationship + return df.conditional(pc > 0, 1/((1 + pc)**(1/(index + 1))), 1) + + +def saturation_sym(pc, index): + # inverse capillary pressure-saturation-relationship + return 1/((1 + pc)**(1/(index + 1))) + + +# derivative of S-pc relationship with respect to pc. This is needed for the +# construction of a analytic solution. +def saturation_sym_prime(pc, index): + # inverse capillary pressure-saturation-relationship + return -1/((index+1)*(1 + pc)**((index+2)/(index+1))) + + +# note that the conditional definition of S-pc in the nonsymbolic part will be +# incorporated in the construction of the exact solution below. +S_pc_sym = { + 1: ft.partial(saturation_sym, index=1), + 2: ft.partial(saturation_sym, index=2), + # 3: ft.partial(saturation_sym, index=2), + # 4: ft.partial(saturation_sym, index=1) +} + +S_pc_sym_prime = { + 1: ft.partial(saturation_sym_prime, index=1), + 2: ft.partial(saturation_sym_prime, index=2), + # 3: ft.partial(saturation_sym_prime, index=2), + # 4: ft.partial(saturation_sym_prime, index=1) +} + +sat_pressure_relationship = { + 1: ft.partial(saturation, index=1), + 2: ft.partial(saturation, index=2), + # 3: ft.partial(saturation, index=2), + # 4: ft.partial(saturation, index=1) +} + +# +# def saturation(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1) +# +# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where +# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw +# def saturation_sym(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# #df.conditional(pc > 0, +# return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)) +# +# +# # derivative of S-pc relationship with respect to pc. This is needed for the +# # construction of a analytic solution. +# def saturation_sym_prime(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# return -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1)) / ( (1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index) ) +# +# # note that the conditional definition of S-pc in the nonsymbolic part will be +# # incorporated in the construction of the exact solution below. +# S_pc_sym = { +# 1: ft.partial(saturation_sym, n_index=3, alpha=0.001), +# 2: ft.partial(saturation_sym, n_index=6, alpha=0.001), +# # 3: ft.partial(saturation_sym, n_index=3, alpha=0.001), +# # 4: ft.partial(saturation_sym, n_index=3, alpha=0.001), +# # 5: ft.partial(saturation_sym, n_index=3, alpha=0.001), +# # 6: ft.partial(saturation_sym, n_index=3, alpha=0.001) +# } +# +# S_pc_sym_prime = { +# 1: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), +# 2: ft.partial(saturation_sym_prime, n_index=6, alpha=0.001), +# # 3: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), +# # 4: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), +# # 5: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), +# # 6: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001) +# } +# +# sat_pressure_relationship = { +# 1: ft.partial(saturation, n_index=3, alpha=0.001), +# 2: ft.partial(saturation, n_index=6, alpha=0.001), +# # 3: ft.partial(saturation, n_index=3, alpha=0.001), +# # 4: ft.partial(saturation, n_index=3, alpha=0.001), +# # 5: ft.partial(saturation, n_index=3, alpha=0.001), +# # 6: ft.partial(saturation, n_index=3, alpha=0.001) +# } +# + + +############################################# +# Manufacture source expressions with sympy # +############################################# +x, y = sym.symbols('x[0], x[1]') # needed by UFL +t = sym.symbols('t', positive=True) + +p_e_sym = { + 1: {'wetting': -5 - (1+t*t)*(1 + x*x + y*y), + 'nonwetting': -2 -t*(1-y + x**2)**2}, + 2: {'wetting': -5.0 - (1.0 + t*t)*(1.0 + x*x), + 'nonwetting': -2 -t*(1 + x**2)**2 - sym.sqrt(2+t**2)*(1+y)**2*x**2*y**2}, +} + +pc_e_sym = { + 1: p_e_sym[1]['nonwetting'] - p_e_sym[1]['wetting'], + 2: p_e_sym[2]['nonwetting'] - p_e_sym[2]['wetting'], +} + + +# pc_e_sym = { +# 1: -1*p_e_sym[1]['wetting'], +# 2: -1*p_e_sym[2]['wetting'], +# } + +# turn above symbolic code into exact solution for dolphin and +# construct the rhs that matches the above exact solution. +dtS = dict() +div_flux = dict() +source_expression = dict() +exact_solution = dict() +initial_condition = dict() +for subdomain, isR in isRichards.items(): + dtS.update({subdomain: dict()}) + div_flux.update({subdomain: dict()}) + source_expression.update({subdomain: dict()}) + exact_solution.update({subdomain: dict()}) + initial_condition.update({subdomain: dict()}) + if isR: + subdomain_has_phases = ["wetting"] + else: + subdomain_has_phases = ["wetting", "nonwetting"] + + # conditional for S_pc_prime + pc = pc_e_sym[subdomain] + dtpc = sym.diff(pc, t, 1) + dxpc = sym.diff(pc, x, 1) + dypc = sym.diff(pc, y, 1) + S = sym.Piecewise((S_pc_sym[subdomain](pc), pc > 0), (1, True)) + dS = sym.Piecewise((S_pc_sym_prime[subdomain](pc), pc > 0), (0, True)) + for phase in subdomain_has_phases: + # Turn above symbolic expression for exact solution into c code + exact_solution[subdomain].update( + {phase: sym.printing.ccode(p_e_sym[subdomain][phase])} + ) + # save the c code for initial conditions + initial_condition[subdomain].update( + {phase: sym.printing.ccode(p_e_sym[subdomain][phase].subs(t, 0))} + ) + if phase == "nonwetting": + dtS[subdomain].update( + {phase: -porosity[subdomain]*dS*dtpc} + ) + else: + dtS[subdomain].update( + {phase: porosity[subdomain]*dS*dtpc} + ) + pa = p_e_sym[subdomain][phase] + dxpa = sym.diff(pa, x, 1) + dxdxpa = sym.diff(pa, x, 2) + dypa = sym.diff(pa, y, 1) + dydypa = sym.diff(pa, y, 2) + mu = viscosity[subdomain][phase] + ka = relative_permeability[subdomain][phase] + dka = ka_prime[subdomain][phase] + rho = densities[subdomain][phase] + g = gravity_acceleration + + if phase == "nonwetting": + # x part of div(flux) for nonwetting + dxdxflux = -1/mu*dka(1-S)*dS*dxpc*dxpa + 1/mu*dxdxpa*ka(1-S) + # y part of div(flux) for nonwetting + dydyflux = -1/mu*dka(1-S)*dS*dypc*(dypa - rho*g) \ + + 1/mu*dydypa*ka(1-S) + else: + # x part of div(flux) for wetting + dxdxflux = 1/mu*dka(S)*dS*dxpc*dxpa + 1/mu*dxdxpa*ka(S) + # y part of div(flux) for wetting + dydyflux = 1/mu*dka(S)*dS*dypc*(dypa - rho*g) + 1/mu*dydypa*ka(S) + div_flux[subdomain].update({phase: dxdxflux + dydyflux}) + contructed_rhs = dtS[subdomain][phase] - div_flux[subdomain][phase] + source_expression[subdomain].update( + {phase: sym.printing.ccode(contructed_rhs)} + ) + # print(f"source_expression[{subdomain}][{phase}] =", source_expression[subdomain][phase]) + +# Dictionary of dirichlet boundary conditions. +dirichletBC = dict() +# similarly to the outer boundary dictionary, if a patch has no outer boundary +# None should be written instead of an expression. +# This is a bit of a brainfuck: +# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind. +# Since a domain patch can have several disjoint outer boundary parts, the +# expressions need to get an enumaration index which starts at 0. +# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of +# subdomain ind and boundary part j. +# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting'] +# return the actual expression needed for the dirichlet condition for both +# phases if present. + +# subdomain index: {outer boudary part index: {phase: expression}} +for subdomain in isRichards.keys(): + # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None + if outer_boundary_def_points[subdomain] is None: + dirichletBC.update({subdomain: None}) + else: + dirichletBC.update({subdomain: dict()}) + # set the dirichlet conditions to be the same code as exact solution on + # the subdomain. + for outer_boundary_ind in outer_boundary_def_points[subdomain].keys(): + dirichletBC[subdomain].update( + {outer_boundary_ind: exact_solution[subdomain]} + ) + + +# def saturation(pressure, subdomain_index): +# # inverse capillary pressure-saturation-relationship +# return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1) +# +# sa + +write_to_file = { + 'meshes_and_markers': True, + 'L_iterations': True +} + + +# initialise LDD simulation class +simulation = ldd.LDDsimulation(tol = 1E-14, LDDsolver_tol = solver_tol, debug = True) +simulation.set_parameters(output_dir = "./output/alternative_example/",# + subdomain_def_points = subdomain_def_points,# + isRichards = isRichards,# + interface_def_points = interface_def_points,# + outer_boundary_def_points = outer_boundary_def_points,# + adjacent_subdomains = adjacent_subdomains,# + mesh_resolution = mesh_resolution,# + viscosity = viscosity,# + porosity = porosity,# + L = L,# + lambda_param = lambda_param,# + relative_permeability = relative_permeability,# + saturation = sat_pressure_relationship,# + starttime = starttime,# + number_of_timesteps = number_of_timesteps, + number_of_timesteps_to_analyse = number_of_timesteps_to_analyse, + timestep_size = timestep_size,# + sources = source_expression,# + initial_conditions = initial_condition,# + dirichletBC_expression_strings = dirichletBC,# + exact_solution = exact_solution,# + densities=densities, + include_gravity=True, + write2file = write_to_file,# + ) + +simulation.initialise() +# simulation.write_exact_solution_to_xdmf() +simulation.run() diff --git a/TP-TP-2-patch-test-case/TP-TP-2-patch-test.py b/TP-TP-2-patch-test-case/TP-TP-2-patch-test.py new file mode 100755 index 0000000000000000000000000000000000000000..239aab1a3dde746075be41fa8c60602339385dac --- /dev/null +++ b/TP-TP-2-patch-test-case/TP-TP-2-patch-test.py @@ -0,0 +1,445 @@ +#!/usr/bin/python3 +import dolfin as df +import mshr +import numpy as np +import sympy as sym +import typing as tp +import domainPatch as dp +import LDDsimulation as ldd +import functools as ft +import helpers as hlp +#import ufl as ufl + +# init sympy session +sym.init_printing() + +solver_tol = 1E-7 + +############ GRID #######################ü +mesh_resolution = 40 +timestep_size = 0.0001 +number_of_timesteps = 1000 +# decide how many timesteps you want analysed. Analysed means, that we write out +# subsequent errors of the L-iteration within the timestep. +number_of_timesteps_to_analyse = 11 +starttime = 0 + +Lw = 0.25*1/timestep_size +Lnw=Lw + +l_param_w = 40 +l_param_nw = l_param_w + +include_gravity = True + +output_string = "./output/number_of_timesteps_{}_".format(number_of_timesteps) + +##### Domain and Interface #### +# global simulation domain domain +sub_domain0_vertices = [df.Point(-1.0,-1.0), # + df.Point(1.0,-1.0),# + df.Point(1.0,1.0),# + df.Point(-1.0,1.0)] +# interface between subdomain1 and subdomain2 +interface12_vertices = [df.Point(-1.0, 0.0), + df.Point(1.0, 0.0) ] +# subdomain1. +sub_domain1_vertices = [interface12_vertices[0], + interface12_vertices[1], + sub_domain0_vertices[2], + sub_domain0_vertices[3] ] + +# vertex coordinates of the outer boundaries. If it can not be specified as a +# polygon, use an entry per boundary polygon. This information is used for defining +# the Dirichlet boundary conditions. If a domain is completely internal, the +# dictionary entry should be 0: None +subdomain1_outer_boundary_verts = { + 0: [interface12_vertices[1], + sub_domain0_vertices[2], + sub_domain0_vertices[3], # + interface12_vertices[0]] +} +# subdomain2 +sub_domain2_vertices = [sub_domain0_vertices[0], + sub_domain0_vertices[1], + interface12_vertices[1], + interface12_vertices[0] ] + +subdomain2_outer_boundary_verts = { + 0: [interface12_vertices[0], # + sub_domain0_vertices[0], + sub_domain0_vertices[1], + interface12_vertices[1]] +} +# subdomain2_outer_boundary_verts = { +# 0: [interface12_vertices[0], df.Point(0.0,0.0)],# +# 1: [df.Point(0.0,0.0), df.Point(1.0,0.0)], # +# 2: [df.Point(1.0,0.0), interface12_vertices[1]] +# } +# subdomain2_outer_boundary_verts = { +# 0: None +# } + +# list of subdomains given by the boundary polygon vertices. +# Subdomains are given as a list of dolfin points forming +# a closed polygon, such that mshr.Polygon(subdomain_def_points[i]) can be used +# to create the subdomain. subdomain_def_points[0] contains the +# vertices of the global simulation domain and subdomain_def_points[i] contains the +# vertices of the subdomain i. +subdomain_def_points = [sub_domain0_vertices,# + sub_domain1_vertices,# + sub_domain2_vertices] +# in the below list, index 0 corresponds to the 12 interface which has index 1 +interface_def_points = [interface12_vertices] + +# if a subdomain has no outer boundary write None instead, i.e. +# i: None +# if i is the index of the inner subdomain. +outer_boundary_def_points = { + # subdomain number + 1 : subdomain1_outer_boundary_verts, + 2 : subdomain2_outer_boundary_verts +} + +# adjacent_subdomains[i] contains the indices of the subdomains sharing the +# interface i (i.e. given by interface_def_points[i]). +adjacent_subdomains = [[1,2]] +isRichards = { + 1: False, # + 2: False + } + + +viscosity = {# +# subdom_num : viscosity + 1 : {'wetting' :1, + 'nonwetting': 1}, # + 2 : {'wetting' :1, + 'nonwetting': 1} +} + +porosity = {# +# subdom_num : porosity + 1 : 1,# + 2 : 1 +} + +# Dict of the form: { subdom_num : density } +densities = { + 1: {'wetting': 1, #997, + 'nonwetting': 1}, #1225}, + 2: {'wetting': 1, #997, + 'nonwetting': 1}, #1225}, +} + +gravity_acceleration = 9.81 + +L = {# +# subdom_num : subdomain L for L-scheme + 1 : {'wetting' :Lw, + 'nonwetting': Lnw},# + 2 : {'wetting' :Lw, + 'nonwetting': Lnw} +} + + +lambda_param = {# +# subdom_num : lambda parameter for the L-scheme + 1 : {'wetting' :l_param_w, + 'nonwetting': l_param_nw},# + 2 : {'wetting' :l_param_w, + 'nonwetting': l_param_nw} +} + +## relative permeabilty functions on subdomain 1 +def rel_perm1w(s): + # relative permeabilty wetting on subdomain1 + return s**2 + +def rel_perm1nw(s): + # relative permeabilty nonwetting on subdomain1 + return (1-s)**2 + +_rel_perm1w = ft.partial(rel_perm1w) +_rel_perm1nw = ft.partial(rel_perm1nw) + +subdomain1_rel_perm = { + 'wetting': _rel_perm1w,# + 'nonwetting': _rel_perm1nw +} +## relative permeabilty functions on subdomain 2 +def rel_perm2w(s): + # relative permeabilty wetting on subdomain2 + return s**3 +def rel_perm2nw(s): + # relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2 + return (1-s)**3 + +_rel_perm2w = ft.partial(rel_perm2w) +_rel_perm2nw = ft.partial(rel_perm2nw) + +subdomain2_rel_perm = { + 'wetting': _rel_perm2w,# + 'nonwetting': _rel_perm2nw +} + +## dictionary of relative permeabilties on all domains. +relative_permeability = {# + 1: subdomain1_rel_perm, + 2: subdomain2_rel_perm +} + + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 1 +def rel_perm1w_prime(s): + # relative permeabilty on subdomain1 + return 2*s + +def rel_perm1nw_prime(s): + # relative permeabilty on subdomain1 + return 2*(1-s) + +# # definition of the derivatives of the relative permeabilities +# # relative permeabilty functions on subdomain 1 +def rel_perm2w_prime(s): + # relative permeabilty on subdomain1 + return 3*s**2 + +def rel_perm2nw_prime(s): + # relative permeabilty on subdomain1 + return -3*(1-s)**2 + +_rel_perm1w_prime = ft.partial(rel_perm1w_prime) +_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime) +_rel_perm2w_prime = ft.partial(rel_perm2w_prime) +_rel_perm2nw_prime = ft.partial(rel_perm2nw_prime) + +subdomain1_rel_perm_prime = { + 'wetting': _rel_perm1w_prime, + 'nonwetting': _rel_perm1nw_prime +} + + +subdomain2_rel_perm_prime = { + 'wetting': _rel_perm2w_prime, + 'nonwetting': _rel_perm2nw_prime +} + +# dictionary of relative permeabilties on all domains. +ka_prime = { + 1: subdomain1_rel_perm_prime, + 2: subdomain2_rel_perm_prime, +} + + + +def saturation(pc, index): + # inverse capillary pressure-saturation-relationship + return df.conditional(pc > 0, 1/((1 + pc)**(1/(index + 1))), 1) + + +def saturation_sym(pc, index): + # inverse capillary pressure-saturation-relationship + return 1/((1 + pc)**(1/(index + 1))) + + +# derivative of S-pc relationship with respect to pc. This is needed for the +# construction of a analytic solution. +def saturation_sym_prime(pc, index): + # inverse capillary pressure-saturation-relationship + return -1/((index+1)*(1 + pc)**((index+2)/(index+1))) + + +# note that the conditional definition of S-pc in the nonsymbolic part will be +# incorporated in the construction of the exact solution below. +S_pc_sym = { + 1: ft.partial(saturation_sym, index=1), + 2: ft.partial(saturation_sym, index=2), + # 3: ft.partial(saturation_sym, index=2), + # 4: ft.partial(saturation_sym, index=1) +} + +S_pc_sym_prime = { + 1: ft.partial(saturation_sym_prime, index=1), + 2: ft.partial(saturation_sym_prime, index=2), + # 3: ft.partial(saturation_sym_prime, index=2), + # 4: ft.partial(saturation_sym_prime, index=1) +} + +sat_pressure_relationship = { + 1: ft.partial(saturation, index=1), + 2: ft.partial(saturation, index=2), + # 3: ft.partial(saturation, index=2), + # 4: ft.partial(saturation, index=1) +} + +# +# def saturation(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1) +# +# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where +# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw +# def saturation_sym(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# #df.conditional(pc > 0, +# return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)) +# +# +# # derivative of S-pc relationship with respect to pc. This is needed for the +# # construction of a analytic solution. +# def saturation_sym_prime(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# return -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1)) / ( (1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index) ) +# +# # note that the conditional definition of S-pc in the nonsymbolic part will be +# # incorporated in the construction of the exact solution below. +# S_pc_sym = { +# 1: ft.partial(saturation_sym, n_index=3, alpha=0.001), +# 2: ft.partial(saturation_sym, n_index=6, alpha=0.001), +# # 3: ft.partial(saturation_sym, n_index=3, alpha=0.001), +# # 4: ft.partial(saturation_sym, n_index=3, alpha=0.001), +# # 5: ft.partial(saturation_sym, n_index=3, alpha=0.001), +# # 6: ft.partial(saturation_sym, n_index=3, alpha=0.001) +# } +# +# S_pc_sym_prime = { +# 1: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), +# 2: ft.partial(saturation_sym_prime, n_index=6, alpha=0.001), +# # 3: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), +# # 4: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), +# # 5: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), +# # 6: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001) +# } +# +# sat_pressure_relationship = { +# 1: ft.partial(saturation, n_index=3, alpha=0.001), +# 2: ft.partial(saturation, n_index=6, alpha=0.001), +# # 3: ft.partial(saturation, n_index=3, alpha=0.001), +# # 4: ft.partial(saturation, n_index=3, alpha=0.001), +# # 5: ft.partial(saturation, n_index=3, alpha=0.001), +# # 6: ft.partial(saturation, n_index=3, alpha=0.001) +# } +# + + +############################################# +# Manufacture source expressions with sympy # +############################################# +x, y = sym.symbols('x[0], x[1]') # needed by UFL +t = sym.symbols('t', positive=True) + +p_e_sym = { + 1: {'wetting': (-3 - (1+t*t)*(1 + x*x + y*y)), #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2, + 'nonwetting': (-1 -t*(1-y - x**2)**2)}, #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2}, + 2: {'wetting': (-3.0 - (1.0 + t*t)*(1.0 + x*x)), #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2, + 'nonwetting': (-1 -t*(1- x**2)**2 - sym.sqrt(2+t**2)*(1+y)*y**2)}, #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2}, +} + + +pc_e_sym = dict() +for subdomain, isR in isRichards.items(): + if isR: + pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting'].copy()}) + else: + pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'].copy() + - p_e_sym[subdomain]['wetting'].copy()}) + + +symbols = {"x": x, + "y": y, + "t": t} +# turn above symbolic code into exact solution for dolphin and +# construct the rhs that matches the above exact solution. +exact_solution_example = hlp.generate_exact_solution_expressions( + symbols=symbols, + isRichards=isRichards, + symbolic_pressure=p_e_sym, + symbolic_capillary_pressure=pc_e_sym, + saturation_pressure_relationship=S_pc_sym, + saturation_pressure_relationship_prime=S_pc_sym_prime, + viscosity=viscosity, + porosity=porosity, + relative_permeability=relative_permeability, + relative_permeability_prime=ka_prime, + densities=densities, + gravity_acceleration=gravity_acceleration, + include_gravity=include_gravity, + ) +source_expression = exact_solution_example['source'] +exact_solution = exact_solution_example['exact_solution'] +initial_condition = exact_solution_example['initial_condition'] + +# Dictionary of dirichlet boundary conditions. +dirichletBC = dict() +# similarly to the outer boundary dictionary, if a patch has no outer boundary +# None should be written instead of an expression. +# This is a bit of a brainfuck: +# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind. +# Since a domain patch can have several disjoint outer boundary parts, the +# expressions need to get an enumaration index which starts at 0. +# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of +# subdomain ind and boundary part j. +# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting'] +# return the actual expression needed for the dirichlet condition for both +# phases if present. + +# subdomain index: {outer boudary part index: {phase: expression}} +for subdomain in isRichards.keys(): + # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None + if outer_boundary_def_points[subdomain] is None: + dirichletBC.update({subdomain: None}) + else: + dirichletBC.update({subdomain: dict()}) + # set the dirichlet conditions to be the same code as exact solution on + # the subdomain. + for outer_boundary_ind in outer_boundary_def_points[subdomain].keys(): + dirichletBC[subdomain].update( + {outer_boundary_ind: exact_solution[subdomain]} + ) + + +# def saturation(pressure, subdomain_index): +# # inverse capillary pressure-saturation-relationship +# return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1) +# +# sa + +write_to_file = { + 'meshes_and_markers': True, + 'L_iterations': True +} + + +# initialise LDD simulation class +simulation = ldd.LDDsimulation(tol = 1E-14, LDDsolver_tol = solver_tol, debug = True) +simulation.set_parameters(output_dir = output_string,# + subdomain_def_points = subdomain_def_points,# + isRichards = isRichards,# + interface_def_points = interface_def_points,# + outer_boundary_def_points = outer_boundary_def_points,# + adjacent_subdomains = adjacent_subdomains,# + mesh_resolution = mesh_resolution,# + viscosity = viscosity,# + porosity = porosity,# + L = L,# + lambda_param = lambda_param,# + relative_permeability = relative_permeability,# + saturation = sat_pressure_relationship,# + starttime = starttime,# + number_of_timesteps = number_of_timesteps, + number_of_timesteps_to_analyse = number_of_timesteps_to_analyse, + timestep_size = timestep_size,# + sources = source_expression,# + initial_conditions = initial_condition,# + dirichletBC_expression_strings = dirichletBC,# + exact_solution = exact_solution,# + densities=densities, + include_gravity=include_gravity, + write2file = write_to_file,# + ) + +simulation.initialise() +# simulation.write_exact_solution_to_xdmf() +simulation.run()