diff --git a/LDDsimulation/LDDsimulation.py b/LDDsimulation/LDDsimulation.py index 6208b6c48545e2fc3aca0e120c52925bfda3662f..d46d817cbd170b1009bbd33535fbce355e4f2cae 100644 --- a/LDDsimulation/LDDsimulation.py +++ b/LDDsimulation/LDDsimulation.py @@ -54,9 +54,9 @@ class LDDsimulation(object): #Parameters # df.parameters["allow_extrapolation"] = True # df.parameters["refinement_algorithm"] = "plaza_with_parent_facets" - df.parameters["form_compiler"]["quadrature_degree"] = 12 + df.parameters["form_compiler"]["quadrature_degree"] = 14 # interpolation degree, for source terms, intitial and boundary conditions. - self.interpolation_degree = 4 + self.interpolation_degree = 6 # # To be able to run DG in parallel # df.parameters["ghost_mode"] = "shared_facet" # df.parameters["ghost_mode"] = "none" @@ -720,7 +720,7 @@ class LDDsimulation(object): for phase in subdomain.has_phases: pa_exact = subdomain.pressure_exact[phase] pa_exact.t = self.t - error_calculated = df.errornorm(pa_exact, subdomain.pressure[phase], 'L2', degree_rise=2) + error_calculated = df.errornorm(pa_exact, subdomain.pressure[phase], 'L2', degree_rise=4) pressure_exact.update( {phase: df.interpolate(pa_exact, subdomain.function_space["pressure"][phase])} ) @@ -728,22 +728,22 @@ class LDDsimulation(object): pressure_difference = pressure_exact[phase].vector()[:] - subdomain.pressure[phase].vector()[:] abs_diff_tmp = np.fabs(pressure_difference) absolute_difference.vector()[:] = abs_diff_tmp - dx = subdomain.dx - error_calculated_L1 = df.assemble(absolute_difference*dx) - error_calculated_L2 = np.sqrt(df.assemble(absolute_difference**2*dx)) - error_calculated_L2_2 = df.norm(absolute_difference, norm_type='L2', mesh=subdomain.mesh) - print(f"Errornorm dolfin: {error_calculated}") - print(f"Errornorm manually calculated L1: {error_calculated_L1}") - print(f"Errornorm manually calculated L2: {error_calculated_L2}") - print(f"Errornorm manually calculated L2 with df.norm: {error_calculated_L2_2}") + # dx = subdomain.dx + # error_calculated_L1 = df.assemble(absolute_difference*dx) + # error_calculated_L2 = np.sqrt(df.assemble(absolute_difference**2*dx)) + # error_calculated_L2_2 = df.norm(absolute_difference, norm_type='L2', mesh=subdomain.mesh) + # print(f"Errornorm dolfin: {error_calculated}") + # print(f"Errornorm manually calculated L1: {error_calculated_L1}") + # print(f"Errornorm manually calculated L2: {error_calculated_L2}") + # print(f"Errornorm manually calculated L2 with df.norm: {error_calculated_L2_2}") self.output[subdom_ind]['errornorm'][phase]['L1'] += self.timestep_size*error_calculated self.output[subdom_ind]['errornorm'][phase]['L2'] += self.timestep_size*error_calculated**2 - print(f"Linf error on subdomain {subdom_ind} and phase {phase} before checking: {self.output[subdom_ind]['errornorm'][phase]['Linf']}") + # print(f"Linf error on subdomain {subdom_ind} and phase {phase} before checking: {self.output[subdom_ind]['errornorm'][phase]['Linf']}") if error_calculated > self.output[subdom_ind]['errornorm'][phase]['Linf']: self.output[subdom_ind]['errornorm'][phase].update( {'Linf': error_calculated} ) - print(f"Linf error on subdomain {subdom_ind} and phase {phase} after checking: {self.output[subdom_ind]['errornorm'][phase]['Linf']}") + # print(f"Linf error on subdomain {subdom_ind} and phase {phase} after checking: {self.output[subdom_ind]['errornorm'][phase]['Linf']}") # if we are at a timestep at which to write shit out, # calculate the relative errornorm diff --git a/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study.py b/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study.py new file mode 100755 index 0000000000000000000000000000000000000000..8cd8021c552aa677b2abda941238e299ae0bf026 --- /dev/null +++ b/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study.py @@ -0,0 +1,511 @@ +#!/usr/bin/python3 +import dolfin as df +import mshr +import numpy as np +import sympy as sym +import typing as tp +import domainPatch as dp +import LDDsimulation as ldd +import functools as ft +import helpers as hlp +import datetime +import os +import pandas as pd + +date = datetime.datetime.now() +datestr = date.strftime("%Y-%m-%d") +#import ufl as ufl + +# init sympy session +sym.init_printing() + +use_case = "TP-R-2-patch-realistic" +# solver_tol = 6E-7 +max_iter_num = 1000 +FEM_Lagrange_degree = 1 +mesh_study = True +resolutions = { 1: 5e-7, + 2: 5e-7, + 4: 5e-7, + 8: 5e-7, + 16: 5e-7, + 32: 5e-7, + 64: 5e-7, + 128: 5e-7, + 256: 5e-7} + +############ GRID ####################### +# mesh_resolution = 20 +timestep_size = 0.001 +number_of_timesteps = 600 +plot_timestep_every = 2 +# decide how many timesteps you want analysed. Analysed means, that we write out +# subsequent errors of the L-iteration within the timestep. +number_of_timesteps_to_analyse = 4 +starttime = [0.0, 0.5] + +Lw = 0.025 #/timestep_size +Lnw=Lw + +lambda_w = 40 +lambda_nw = 40 + +include_gravity = False +debugflag = False +analyse_condition = False + +output_string = "./output/{}-{}_timesteps{}_P{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree) + +# toggle what should be written to files +if mesh_study: + write_to_file = { + 'space_errornorms': True, + 'meshes_and_markers': True, + 'L_iterations_per_timestep': False, + 'solutions': False, + 'absolute_differences': False, + 'condition_numbers': analyse_condition, + 'subsequent_errors': False + } +else: + write_to_file = { + 'space_errornorms': True, + 'meshes_and_markers': True, + 'L_iterations_per_timestep': False, + 'solutions': True, + 'absolute_differences': True, + 'condition_numbers': analyse_condition, + 'subsequent_errors': True + } + + + +##### Domain and Interface #### +# global simulation domain domain +sub_domain0_vertices = [df.Point(-1.0, -1.0), + df.Point(1.0, -1.0), + df.Point(1.0, 1.0), + df.Point(-1.0, 1.0)] +# interface between subdomain1 and subdomain2 +interface12_vertices = [df.Point(-1.0, 0.0), + df.Point(1.0, 0.0) ] +# subdomain1. +sub_domain1_vertices = [interface12_vertices[0], + interface12_vertices[1], + sub_domain0_vertices[2], + sub_domain0_vertices[3]] + +# vertex coordinates of the outer boundaries. If it can not be specified as a +# polygon, use an entry per boundary polygon. This information is used for defining +# the Dirichlet boundary conditions. If a domain is completely internal, the +# dictionary entry should be 0: None +subdomain1_outer_boundary_verts = { + 0: [interface12_vertices[1], # + sub_domain0_vertices[2], + sub_domain0_vertices[3], # + interface12_vertices[0]] +} +# subdomain2 +sub_domain2_vertices = [sub_domain0_vertices[0], + sub_domain0_vertices[1], + interface12_vertices[1], + interface12_vertices[0] ] + +subdomain2_outer_boundary_verts = { + 0: [interface12_vertices[0], # + sub_domain0_vertices[0], + sub_domain0_vertices[1], + interface12_vertices[1]] +} + +# list of subdomains given by the boundary polygon vertices. +# Subdomains are given as a list of dolfin points forming +# a closed polygon, such that mshr.Polygon(subdomain_def_points[i]) can be used +# to create the subdomain. subdomain_def_points[0] contains the +# vertices of the global simulation domain and subdomain_def_points[i] contains the +# vertices of the subdomain i. +subdomain_def_points = [sub_domain0_vertices,# + sub_domain1_vertices,# + sub_domain2_vertices] +# in the below list, index 0 corresponds to the 12 interface which has index 1 +interface_def_points = [interface12_vertices] + +# if a subdomain has no outer boundary write None instead, i.e. +# i: None +# if i is the index of the inner subdomain. +outer_boundary_def_points = { + # subdomain number + 1 : subdomain1_outer_boundary_verts, + 2 : subdomain2_outer_boundary_verts +} + +# adjacent_subdomains[i] contains the indices of the subdomains sharing the +# interface i (i.e. given by interface_def_points[i]). +adjacent_subdomains = [[1,2]] +isRichards = { + 1: True, # + 2: False + } + + +viscosity = {# +# subdom_num : viscosity + 1 : {'wetting' :1}, + #'nonwetting': 1}, # + 2 : {'wetting' :1, + 'nonwetting': 1/50} +} + +porosity = {# +# subdom_num : porosity + 1 : 0.22,# + 2 : 0.0022 +} + +# Dict of the form: { subdom_num : density } +densities = { + 1: {'wetting': 997}, + 2: {'wetting': 997, + 'nonwetting': 1.225}, +} + +gravity_acceleration = 9.81 + +L = {# +# subdom_num : subdomain L for L-scheme + 1 : {'wetting' :Lw}, + # 'nonwetting': 0.25},# + 2 : {'wetting' :Lw, + 'nonwetting': Lnw} +} + + +lambda_param = {# +# subdom_num : lambda parameter for the L-scheme + 1 : {'wetting' :l_param_w}, + # 'nonwetting': l_param},# + 2 : {'wetting' :l_param_w, + 'nonwetting': l_param_nw} +} + +## relative permeabilty functions on subdomain 1 +def rel_perm1w(s): + # relative permeabilty wetting on subdomain1 + return s**2 + +# def rel_perm1nw(s): +# # relative permeabilty nonwetting on subdomain1 +# return (1-s)**2 + +_rel_perm1w = ft.partial(rel_perm1w) +# _rel_perm1nw = ft.partial(rel_perm1nw) +subdomain1_rel_perm = { + 'wetting': _rel_perm1w,# + # 'nonwetting': _rel_perm1nw +} +## relative permeabilty functions on subdomain 2 +def rel_perm2w(s): + # relative permeabilty wetting on subdomain2 + return s**3 +def rel_perm2nw(s): + # relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2 + return (1-s)**3 + +_rel_perm2w = ft.partial(rel_perm2w) +_rel_perm2nw = ft.partial(rel_perm2nw) + +subdomain2_rel_perm = { + 'wetting': _rel_perm2w,# + 'nonwetting': _rel_perm2nw +} + +## dictionary of relative permeabilties on all domains. +relative_permeability = {# + 1: subdomain1_rel_perm, + 2: subdomain2_rel_perm +} + + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 1 +def rel_perm1w_prime(s): + # relative permeabilty on subdomain1 + return 2*s + +# def rel_perm1nw_prime(s): +# # relative permeabilty on subdomain1 +# return 2*(1-s) + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 1 +def rel_perm2w_prime(s): + # relative permeabilty on subdomain1 + return 3*s**2 + +def rel_perm2nw_prime(s): + # relative permeabilty on subdomain1 + return -3*(1-s)**2 + +_rel_perm1w_prime = ft.partial(rel_perm1w_prime) +# _rel_perm1nw_prime = ft.partial(rel_perm1nw_prime) +_rel_perm2w_prime = ft.partial(rel_perm2w_prime) +_rel_perm2nw_prime = ft.partial(rel_perm2nw_prime) + +subdomain1_rel_perm_prime = { + 'wetting': _rel_perm1w_prime + # 'nonwetting': _rel_perm1nw_prime +} + + +subdomain2_rel_perm_prime = { + 'wetting': _rel_perm2w_prime, + 'nonwetting': _rel_perm2nw_prime +} + +# dictionary of relative permeabilties on all domains. +ka_prime = { + 1: subdomain1_rel_perm_prime, + 2: subdomain2_rel_perm_prime, +} + + +# def saturation1(pc, subdomain_index): +# # inverse capillary pressure-saturation-relationship +# return df.conditional(pc > 0, 1/((1 + pc)**(1/(subdomain_index + 1))), 1) +# +# def saturation2(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1) +# +# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where +# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw +# def saturation1_sym(pc, subdomain_index): +# # inverse capillary pressure-saturation-relationship +# return 1/((1 + pc)**(1/(subdomain_index + 1))) +# +# +# def saturation2_sym(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# #df.conditional(pc > 0, +# return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)) +# +# +# # derivative of S-pc relationship with respect to pc. This is needed for the +# # construction of a analytic solution. +# def saturation1_sym_prime(pc, subdomain_index): +# # inverse capillary pressure-saturation-relationship +# return -(1/(subdomain_index + 1))*(1 + pc)**((-subdomain_index - 2)/(subdomain_index + 1)) +# +# +# def saturation2_sym_prime(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# return -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1)) / ( (1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index) ) +# +# # note that the conditional definition of S-pc in the nonsymbolic part will be +# # incorporated in the construction of the exact solution below. +# S_pc_sym = { +# 1: ft.partial(saturation1_sym, subdomain_index = 1), +# 2: ft.partial(saturation2_sym, n_index=3, alpha=0.001), +# } +# +# S_pc_sym_prime = { +# 1: ft.partial(saturation1_sym_prime, subdomain_index = 1), +# 2: ft.partial(saturation2_sym_prime, n_index=3, alpha=0.001), +# } +# +# sat_pressure_relationship = { +# 1: ft.partial(saturation1, subdomain_index = 1),#, +# 2: ft.partial(saturation2, n_index=3, alpha=0.001), +# } + +def saturation(pc, index): + # inverse capillary pressure-saturation-relationship + return df.conditional(pc > 0, 1/((1 + pc)**(1/(index + 1))), 1) + + +def saturation_sym(pc, index): + # inverse capillary pressure-saturation-relationship + return 1/((1 + pc)**(1/(index + 1))) + + +# derivative of S-pc relationship with respect to pc. This is needed for the +# construction of a analytic solution. +def saturation_sym_prime(pc, index): + # inverse capillary pressure-saturation-relationship + return -1/((index+1)*(1 + pc)**((index+2)/(index+1))) + + +# note that the conditional definition of S-pc in the nonsymbolic part will be +# incorporated in the construction of the exact solution below. +S_pc_sym = { + 1: ft.partial(saturation_sym, index=1), + 2: ft.partial(saturation_sym, index=2), + # 3: ft.partial(saturation_sym, index=2), + # 4: ft.partial(saturation_sym, index=1) +} + +S_pc_sym_prime = { + 1: ft.partial(saturation_sym_prime, index=1), + 2: ft.partial(saturation_sym_prime, index=2), + # 3: ft.partial(saturation_sym_prime, index=2), + # 4: ft.partial(saturation_sym_prime, index=1) +} + +sat_pressure_relationship = { + 1: ft.partial(saturation, index=1), + 2: ft.partial(saturation, index=2), + # 3: ft.partial(saturation, index=2), + # 4: ft.partial(saturation, index=1) +} + + +############################################# +# Manufacture source expressions with sympy # +############################################# +x, y = sym.symbols('x[0], x[1]') # needed by UFL +t = sym.symbols('t', positive=True) + +p_e_sym = { + 1: {'wetting': (-5.0 - (1.0 + t*t)*(1.0 + x*x + y*y))}, #*(1-x)**2*(1+x)**2*(1-y)**2}, + 2: {'wetting': (-5.0 - (1.0 + t*t)*(1.0 + x*x)), #*(1-x)**2*(1+x)**2*(1+y)**2, + 'nonwetting': (-1-t*(1.1+y + x**2))*y**3}, #*(1-x)**2*(1+x)**2*(1+y)**2}, +} #-y*y*(sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t)) - t*t*x*(0.5-y)*y*(1-x) + + +pc_e_sym = dict() +for subdomain, isR in isRichards.items(): + if isR: + pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting'].copy()}) + else: + pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'].copy() + - p_e_sym[subdomain]['wetting'].copy()}) + + +symbols = {"x": x, + "y": y, + "t": t} +# turn above symbolic code into exact solution for dolphin and +# construct the rhs that matches the above exact solution. +exact_solution_example = hlp.generate_exact_solution_expressions( + symbols=symbols, + isRichards=isRichards, + symbolic_pressure=p_e_sym, + symbolic_capillary_pressure=pc_e_sym, + saturation_pressure_relationship=S_pc_sym, + saturation_pressure_relationship_prime=S_pc_sym_prime, + viscosity=viscosity, + porosity=porosity, + relative_permeability=relative_permeability, + relative_permeability_prime=ka_prime, + densities=densities, + gravity_acceleration=gravity_acceleration, + include_gravity=include_gravity, + ) +source_expression = exact_solution_example['source'] +exact_solution = exact_solution_example['exact_solution'] +initial_condition = exact_solution_example['initial_condition'] + +# Dictionary of dirichlet boundary conditions. +dirichletBC = dict() +# similarly to the outer boundary dictionary, if a patch has no outer boundary +# None should be written instead of an expression. +# This is a bit of a brainfuck: +# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind. +# Since a domain patch can have several disjoint outer boundary parts, the +# expressions need to get an enumaration index which starts at 0. +# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of +# subdomain ind and boundary part j. +# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting'] +# return the actual expression needed for the dirichlet condition for both +# phases if present. + +# subdomain index: {outer boudary part index: {phase: expression}} +for subdomain in isRichards.keys(): + # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None + if outer_boundary_def_points[subdomain] is None: + dirichletBC.update({subdomain: None}) + else: + dirichletBC.update({subdomain: dict()}) + # set the dirichlet conditions to be the same code as exact solution on + # the subdomain. + for outer_boundary_ind in outer_boundary_def_points[subdomain].keys(): + dirichletBC[subdomain].update( + {outer_boundary_ind: exact_solution[subdomain]} + ) + + +# def saturation(pressure, subdomain_index): +# # inverse capillary pressure-saturation-relationship +# return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1) +# +# sa + +for starttime in starttimes: + for mesh_resolution, solver_tol in resolutions.items(): + # initialise LDD simulation class + simulation = ldd.LDDsimulation( + tol=1E-14, + LDDsolver_tol=solver_tol, + debug=debugflag, + max_iter_num=max_iter_num, + FEM_Lagrange_degree=FEM_Lagrange_degree, + mesh_study=mesh_study + ) + + simulation.set_parameters(use_case=use_case, + output_dir=output_string, + subdomain_def_points=subdomain_def_points, + isRichards=isRichards, + interface_def_points=interface_def_points, + outer_boundary_def_points=outer_boundary_def_points, + adjacent_subdomains=adjacent_subdomains, + mesh_resolution=mesh_resolution, + viscosity=viscosity, + porosity=porosity, + L=L, + lambda_param=lambda_param, + relative_permeability=relative_permeability, + saturation=sat_pressure_relationship, + starttime=starttime, + number_of_timesteps=number_of_timesteps, + number_of_timesteps_to_analyse=number_of_timesteps_to_analyse, + plot_timestep_every=plot_timestep_every, + timestep_size=timestep_size, + sources=source_expression, + initial_conditions=initial_condition, + dirichletBC_expression_strings=dirichletBC, + exact_solution=exact_solution, + densities=densities, + include_gravity=include_gravity, + write2file=write_to_file, + ) + + simulation.initialise() + output_dir = simulation.output_dir + # simulation.write_exact_solution_to_xdmf() + output = simulation.run(analyse_condition=analyse_condition) + for subdomain_index, subdomain_output in output.items(): + mesh_h = subdomain_output['mesh_size'] + for phase, different_errornorms in subdomain_output['errornorm'].items(): + filename = output_dir + "subdomain{}-space-time-errornorm-{}-phase.csv".format(subdomain_index, phase) + # for errortype, errornorm in different_errornorms.items(): + + # eocfile = open("eoc_filename", "a") + # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" ) + # eocfile.close() + # if subdomain.isRichards:mesh_h + data_dict = { + 'mesh_parameter': mesh_resolution, + 'mesh_h': mesh_h, + } + for error_type, errornorms in different_errornorms.items(): + data_dict.update( + {error_type: errornorms} + ) + errors = pd.DataFrame(data_dict, index=[mesh_resolution]) + # check if file exists + if os.path.isfile(filename) == True: + with open(filename, 'a') as f: + errors.to_csv(f, header=False, sep='\t', encoding='utf-8', index=False) + else: + errors.to_csv(filename, sep='\t', encoding='utf-8', index=False) diff --git a/TP-TP-2-patch-pure-dd-avoid-interface-at-origin/mesh_study_convergence/TP-TP-2-patch-pure-dd-convergence-study.py b/TP-TP-2-patch-pure-dd-avoid-interface-at-origin/mesh_study_convergence/TP-TP-2-patch-pure-dd-convergence-study.py index 17b8f55aaf8709b89a4d8181efe3087f0af02eaf..e27866da976cf8986115d374623baa77f536ad33 100755 --- a/TP-TP-2-patch-pure-dd-avoid-interface-at-origin/mesh_study_convergence/TP-TP-2-patch-pure-dd-convergence-study.py +++ b/TP-TP-2-patch-pure-dd-avoid-interface-at-origin/mesh_study_convergence/TP-TP-2-patch-pure-dd-convergence-study.py @@ -31,19 +31,20 @@ resolutions = { 1: 1e-7, 16: 5e-7, 32: 5e-7, 64: 5e-7, - 128: 5e-7} + 128: 5e-7, + 256: 5e-7} ############ GRID ####################### # mesh_resolution = 20 -timestep_size = 0.000025 -number_of_timesteps = 4000 -plot_timestep_every = 40 +timestep_size = 0.001 +number_of_timesteps = 600 +plot_timestep_every = 2 # decide how many timesteps you want analysed. Analysed means, that we write out # subsequent errors of the L-iteration within the timestep. -number_of_timesteps_to_analyse = 0 +number_of_timesteps_to_analyse = 4 starttime = 0.0 -Lw = 0.25 #/timestep_size +Lw = 0.025 #/timestep_size Lnw=Lw lambda_w = 40 diff --git a/TP-one-patch/debug_tests/R-one-patch-const-in-time.py b/TP-one-patch/debug_tests/R-one-patch-const-in-time.py index 6a4865ba0d7ffeb16b900e2b101d1f1868263db2..fb619ab2b354234d0768bbfbbf9fdaefdcc68bdf 100755 --- a/TP-one-patch/debug_tests/R-one-patch-const-in-time.py +++ b/TP-one-patch/debug_tests/R-one-patch-const-in-time.py @@ -451,12 +451,6 @@ for subdomain in isRichards.keys(): ) -# def saturation(pressure, subdomain_index): -# # inverse capillary pressure-saturation-relationship -# return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1) -# -# sa - for starttime in starttimes: for mesh_resolution, solver_tol in resolutions.items(): # initialise LDD simulation class diff --git a/TP-one-patch/mesh_study/TP-one-patch-mesh-study.py b/TP-one-patch/mesh_study/TP-one-patch-mesh-study.py index fe6451ecb4134527694c56a5e994339d2c8d3405..bed62b609b08a817ee764588d230195c31e6a9d2 100755 --- a/TP-one-patch/mesh_study/TP-one-patch-mesh-study.py +++ b/TP-one-patch/mesh_study/TP-one-patch-mesh-study.py @@ -26,25 +26,26 @@ FEM_Lagrange_degree = 1 mesh_study = True # resolutions = {128: 1e-7} #[1,2,3,4,5,10,20,40,75,100] resolutions = { 1: 1e-7, - 2: 2e-5, - 4: 1e-6, - 8: 1e-6, - 16: 6e-7, - 32: 6e-7, - 64: 6e-7, - 128: 6e-7} + 2: 1e-7, + 4: 1e-7, + 8: 1e-7, + 16: 1e-7, + 32: 1e-7, + 64: 1e-7, + 128: 1e-7, + 256: 1e-7} ############ GRID ####################### # mesh_resolution = 20 -timestep_size = 0.000025 -number_of_timesteps = 4000 -plot_timestep_every = 40 +timestep_size = 0.01 +number_of_timesteps = 80 +plot_timestep_every = 1 # decide how many timesteps you want analysed. Analysed means, that we write out # subsequent errors of the L-iteration within the timestep. -number_of_timesteps_to_analyse = 0 +number_of_timesteps_to_analyse = 4 starttime = 0.0 -Lw = 0.25 #/timestep_size +Lw = 0.025 #/timestep_size Lnw=Lw lambda_w = 40