diff --git a/Two-phase-Two-phase/multi-patch/Archive/README b/Two-phase-Two-phase/multi-patch/Archive/README
new file mode 100644
index 0000000000000000000000000000000000000000..a999add2473b947042f384fe12de92d7a3866975
--- /dev/null
+++ b/Two-phase-Two-phase/multi-patch/Archive/README
@@ -0,0 +1,10 @@
+The usecases in this folder were used at one point in time in the development 
+of the LDD code usually for debugging but have been abandoned at one point in 
+time. 
+This means that the scripts are not up to date and up to par with the qualtiy
+in the non-Archive folders. Most likely, they will not work anymore. 
+
+In some cases these scripts are being kept for reference or because older 
+simulation datat based on the older scripts have been used. 
+If you want to revive some of these examples, copy one of the official examples
+and update that copy with information in these scripts
diff --git a/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-const-solution/TP-TP-layered_soil-const-solution.py b/Two-phase-Two-phase/multi-patch/Archive/TP-TP-layered-soil-case-const-solution/TP-TP-layered_soil-const-solution.py
similarity index 100%
rename from Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-const-solution/TP-TP-layered_soil-const-solution.py
rename to Two-phase-Two-phase/multi-patch/Archive/TP-TP-layered-soil-case-const-solution/TP-TP-layered_soil-const-solution.py
diff --git a/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-const-solution/run-simulation b/Two-phase-Two-phase/multi-patch/Archive/TP-TP-layered-soil-case-const-solution/run-simulation
similarity index 100%
rename from Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-const-solution/run-simulation
rename to Two-phase-Two-phase/multi-patch/Archive/TP-TP-layered-soil-case-const-solution/run-simulation
diff --git a/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch-constant-solution/TP-TP-layered_soil_with_inner_patch_const_solution.py b/Two-phase-Two-phase/multi-patch/Archive/TP-TP-layered-soil-case-with-inner-patch-constant-solution/TP-TP-layered_soil_with_inner_patch_const_solution.py
similarity index 100%
rename from Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch-constant-solution/TP-TP-layered_soil_with_inner_patch_const_solution.py
rename to Two-phase-Two-phase/multi-patch/Archive/TP-TP-layered-soil-case-with-inner-patch-constant-solution/TP-TP-layered_soil_with_inner_patch_const_solution.py
diff --git a/Two-phase-Two-phase/multi-patch/Archive/TP-TP-layered-soil-case-with-inner-patch-constant-solution/debug-weird-rogue-dof.py b/Two-phase-Two-phase/multi-patch/Archive/TP-TP-layered-soil-case-with-inner-patch-constant-solution/debug-weird-rogue-dof.py
new file mode 100755
index 0000000000000000000000000000000000000000..7a1e470e8ed0849e34d64064e6bc2af6d6a7bd62
--- /dev/null
+++ b/Two-phase-Two-phase/multi-patch/Archive/TP-TP-layered-soil-case-with-inner-patch-constant-solution/debug-weird-rogue-dof.py
@@ -0,0 +1,725 @@
+#!/usr/bin/python3
+"""This program sets up a domain together with a decomposition into subdomains
+modelling layered soil. This is used for our LDD article with tp-tp and tp-r
+coupling.
+
+Along with the subdomains and the mesh domain markers are set upself.
+The resulting mesh is saved into files for later use.
+"""
+
+#!/usr/bin/python3
+import dolfin as df
+import mshr
+import numpy as np
+import sympy as sym
+import typing as tp
+import functools as ft
+import domainPatch as dp
+import LDDsimulation as ldd
+import helpers as hlp
+
+# init sympy session
+sym.init_printing()
+
+use_case = "debug-rogue-dof"
+solver_tol = 1E-6
+max_iter_num = 100
+
+############ GRID #######################ΓΌ
+mesh_resolution = 5
+timestep_size = 0.001
+number_of_timesteps = 5
+# decide how many timesteps you want analysed. Analysed means, that we write out
+# subsequent errors of the L-iteration within the timestep.
+number_of_timesteps_to_analyse = 5
+starttime = 0
+
+Lw = 1 #/timestep_size
+Lnw=Lw
+
+lambda_w = 40
+lambda_nw = 40
+
+include_gravity = True
+debugflag = False
+analyse_condition = False
+
+output_string = "./output/2019-08-28-{}_timesteps{}_".format(use_case, number_of_timesteps)
+
+
+# global domain
+subdomain0_vertices = [df.Point(-1.0,-1.0), #
+                        df.Point(1.0,-1.0),#
+                        df.Point(1.0,1.0),#
+                        df.Point(-1.0,1.0)]
+
+interface12_vertices = [df.Point(-1.0, 0.8),
+                        df.Point(0.3, 0.8),
+                        df.Point(0.5, 0.9),
+                        df.Point(0.8, 0.7),
+                        df.Point(1.0, 0.65)]
+
+
+                        # interface23
+interface23_vertices = [df.Point(-1.0, 0.0),
+                        df.Point(-0.35, 0.0),
+                        # df.Point(6.5, 4.5),
+                        df.Point(0.0, 0.0)]
+
+interface24_vertices = [interface23_vertices[2],
+                        df.Point(0.6, 0.0),
+                        ]
+
+interface25_vertices = [interface24_vertices[1],
+                        df.Point(1.0, 0.0)
+                        ]
+
+
+interface32_vertices = [interface23_vertices[2],
+                        interface23_vertices[1],
+                        interface23_vertices[0]]
+
+
+interface36_vertices = [df.Point(-1.0, -0.6),
+                        df.Point(-0.6, -0.45)]
+
+
+interface46_vertices = [interface36_vertices[1],
+                        df.Point(0.3, -0.25)]
+
+interface56_vertices = [interface46_vertices[1],
+                        df.Point(0.65, -0.6),
+                        df.Point(1.0, -0.7)]
+
+
+
+
+interface34_vertices = [interface36_vertices[1],
+                        interface23_vertices[2]]
+# interface36
+
+interface45_vertices = [interface56_vertices[0],
+                        df.Point(0.7, -0.2),#df.Point(0.7, -0.2),
+                        interface25_vertices[0]
+                        ]
+
+# interface45_vertices_a = [interface56_vertices[0],
+#                         df.Point(0.7, -0.2),#df.Point(0.7, -0.2),
+#                         ]
+# interface45_vertices_b = [df.Point(0.7, -0.2),#df.Point(0.7, -0.2),
+#                         interface25_vertices[0]
+#                         ]
+
+# interface_vertices introduces a global numbering of interfaces.
+interface_def_points = [interface12_vertices,
+                        interface23_vertices,
+                        interface24_vertices,
+                        interface25_vertices,
+                        interface34_vertices,
+                        interface36_vertices,
+                        interface45_vertices,
+                        # interface45_vertices_a,
+                        # interface45_vertices_b,
+                        interface46_vertices,
+                        interface56_vertices,
+                        ]
+adjacent_subdomains = [[1,2],
+                       [2,3],
+                       [2,4],
+                       [2,5],
+                       [3,4],
+                       [3,6],
+                       [4,5],
+                       # [4,5],
+                       [4,6],
+                       [5,6]
+                       ]
+
+# subdomain1.
+subdomain1_vertices = [interface12_vertices[0],
+                        interface12_vertices[1],
+                        interface12_vertices[2],
+                        interface12_vertices[3],
+                        interface12_vertices[4], # southern boundary, 12 interface
+                        subdomain0_vertices[2], # eastern boundary, outer boundary
+                        subdomain0_vertices[3]] # northern boundary, outer on_boundary
+
+# vertex coordinates of the outer boundaries. If it can not be specified as a
+# polygon, use an entry per boundary polygon. This information is used for defining
+# the Dirichlet boundary conditions. If a domain is completely internal, the
+# dictionary entry should be 0: None
+subdomain1_outer_boundary_verts = {
+    0: [subdomain1_vertices[4], #
+        subdomain1_vertices[5], # eastern boundary, outer boundary
+        subdomain1_vertices[6],
+        subdomain1_vertices[0]]
+}
+
+#subdomain1
+subdomain2_vertices = [interface23_vertices[0],
+                        interface23_vertices[1],
+                        interface23_vertices[2],
+                        interface24_vertices[1],
+                        interface25_vertices[1], # southern boundary, 23 interface
+                        subdomain1_vertices[4], # eastern boundary, outer boundary
+                        subdomain1_vertices[3],
+                        subdomain1_vertices[2],
+                        subdomain1_vertices[1],
+                        subdomain1_vertices[0] ] # northern boundary, 12 interface
+
+subdomain2_outer_boundary_verts = {
+    0: [subdomain2_vertices[9],
+        subdomain2_vertices[0]],
+    1: [subdomain2_vertices[4],
+        subdomain2_vertices[5]]
+}
+
+
+subdomain3_vertices = [interface36_vertices[0],
+                       interface36_vertices[1],
+                       # interface34_vertices[0],
+                       interface34_vertices[1],
+                       # interface32_vertices[0],
+                       interface32_vertices[1],
+                       interface32_vertices[2]
+                       ]
+
+subdomain3_outer_boundary_verts = {
+    0: [subdomain3_vertices[4],
+        subdomain3_vertices[0]]
+}
+
+
+# subdomain3
+subdomain4_vertices = [interface46_vertices[0],
+                       interface46_vertices[1],
+                       interface45_vertices[1],
+                       # interface45_vertices_a[1],
+                       interface24_vertices[1],
+                       interface24_vertices[0],
+                       interface34_vertices[1]
+                       ]
+
+subdomain4_outer_boundary_verts = None
+
+# subdomain5_vertices = [interface56_vertices[0],
+#                        interface56_vertices[1],
+#                        interface56_vertices[2],
+#                        interface25_vertices[1],
+#                        interface25_vertices[0],
+#                        interface45_vertices_b[1],
+#                        interface45_vertices_b[0]
+# ]
+
+subdomain5_vertices = [interface56_vertices[0],
+                       interface56_vertices[1],
+                       interface56_vertices[2],
+                       interface25_vertices[1],
+                       interface25_vertices[0],
+                       interface45_vertices[2],
+                       interface45_vertices[1]
+]
+
+subdomain5_outer_boundary_verts = {
+    0: [subdomain5_vertices[2],
+        subdomain5_vertices[3]]
+}
+
+
+
+subdomain6_vertices = [subdomain0_vertices[0],
+                       subdomain0_vertices[1], # southern boundary, outer boundary
+                       interface56_vertices[2],
+                       interface56_vertices[1],
+                       interface56_vertices[0],
+                       interface36_vertices[1],
+                       interface36_vertices[0]
+                       ]
+
+subdomain6_outer_boundary_verts = {
+    0: [subdomain6_vertices[6],
+        subdomain6_vertices[0],
+        subdomain6_vertices[1],
+        subdomain6_vertices[2]]
+}
+
+
+subdomain_def_points = [subdomain0_vertices,#
+                      subdomain1_vertices,#
+                      subdomain2_vertices,#
+                      subdomain3_vertices,#
+                      subdomain4_vertices,
+                      subdomain5_vertices,
+                      subdomain6_vertices
+                      ]
+
+
+# if a subdomain has no outer boundary write None instead, i.e.
+# i: None
+# if i is the index of the inner subdomain.
+outer_boundary_def_points = {
+    # subdomain number
+    1: subdomain1_outer_boundary_verts,
+    2: subdomain2_outer_boundary_verts,
+    3: subdomain3_outer_boundary_verts,
+    4: subdomain4_outer_boundary_verts,
+    5: subdomain5_outer_boundary_verts,
+    6: subdomain6_outer_boundary_verts
+}
+
+# isRichards = {
+#     1: False,
+#     2: False,
+#     3: False,
+#     4: False,
+#     5: False,
+#     6: False
+#     }
+
+isRichards = {
+    1: False,
+    2: False,
+    3: False,
+    4: False,
+    5: False,
+    6: False
+    }
+
+visc = {'wetting': 1,
+        'nonwetting': 1}
+dens = {'wetting': 1,
+        'nonwetting': 1}
+poro = 1
+number_of_subdomains = 0
+viscosity = dict()
+densities = dict()
+porosity = dict()
+Ldict = {'wetting': Lw,
+         'nonwetting': Lnw}
+Lambda = {'wetting': lambda_w,
+         'nonwetting': lambda_nw}
+L = dict()
+lambda_param = dict()
+for subdomain, isR in isRichards.items():
+    number_of_subdomains += 1
+    viscosity.update({subdomain: dict()})
+    densities.update({subdomain: dict()})
+    L.update({subdomain: dict()})
+    lambda_param.update({subdomain: dict()})
+    porosity.update({subdomain: poro})
+    subdom_has_phase = ['wetting']
+    if not isR:
+        subdom_has_phase = ['wetting', 'nonwetting']
+    for phase in subdom_has_phase:
+        viscosity[subdomain].update({phase: visc[phase]})
+        densities[subdomain].update({phase: dens[phase]})
+        L[subdomain].update({phase: Ldict[phase]})
+        lambda_param[subdomain].update({phase: Lambda[phase]})
+
+# Dict of the form: { subdom_num : viscosity }
+# viscosity = {
+#     1: {'wetting' :1,
+#          'nonwetting': 1/50},
+#     2: {'wetting' :1,
+#          'nonwetting': 1/50},
+#     3: {'wetting' :1,
+#          'nonwetting': 1/50},
+#     4: {'wetting' :1,
+#          'nonwetting': 1/50},
+#     5: {'wetting' :1,
+#          'nonwetting': 1/50},
+#     6: {'wetting' :1,
+#          'nonwetting': 1/50},
+# }
+
+# # Dict of the form: { subdom_num : density }
+# densities = {
+#     1: {'wetting': 1,  #997
+#          'nonwetting': 1},  #1},  #1.225},
+#     2: {'wetting': 1,  #997
+#          'nonwetting': 1},  #1.225},
+#     3: {'wetting': 1,  #997
+#          'nonwetting': 1},  #1.225},
+#     4: {'wetting': 1,  #997
+#          'nonwetting': 1},  #1.225}
+#     5: {'wetting': 1,  #997
+#          'nonwetting': 1},  #1.225},
+#     6: {'wetting': 1,  #997
+#          'nonwetting': 1}  #1.225}
+# }
+
+gravity_acceleration = 9.81
+# porosities taken from
+# https://www.geotechdata.info/parameter/soil-porosity.html
+# Dict of the form: { subdom_num : porosity }
+# porosity = {
+#     1: 1,  #0.2,  # Clayey gravels, clayey sandy gravels
+#     2: 1,  #0.22, # Silty gravels, silty sandy gravels
+#     3: 1,  #0.37, # Clayey sands
+#     4: 1,  #0.2 # Silty or sandy clay
+#     5: 1,  #
+#     6: 1,  #
+# }
+
+# # subdom_num : subdomain L for L-scheme
+# L = {
+#     1: {'wetting' :Lw,
+#          'nonwetting': Lnw},
+#     2: {'wetting' :Lw,
+#          'nonwetting': Lnw},
+#     3: {'wetting' :Lw,
+#          'nonwetting': Lnw},
+#     4: {'wetting' :Lw,
+#          'nonwetting': Lnw},
+#     5: {'wetting' :Lw,
+#          'nonwetting': Lnw},
+#     6: {'wetting' :Lw,
+#          'nonwetting': Lnw}
+# }
+#
+# # subdom_num : lambda parameter for the L-scheme
+# lambda_param = {
+#     1: {'wetting': lambda_w,
+#          'nonwetting': lambda_nw},#
+#     2: {'wetting': lambda_w,
+#          'nonwetting': lambda_nw},#
+#     3: {'wetting': lambda_w,
+#          'nonwetting': lambda_nw},#
+#     4: {'wetting': lambda_w,
+#          'nonwetting': lambda_nw},#
+#     5: {'wetting': lambda_w,
+#          'nonwetting': lambda_nw},#
+#     6: {'wetting': lambda_w,
+#          'nonwetting': lambda_nw},#
+# }
+
+
+## relative permeabilty functions on subdomain 1
+def rel_perm1w(s):
+    # relative permeabilty wetting on subdomain1
+    return s**2
+
+
+def rel_perm1nw(s):
+    # relative permeabilty nonwetting on subdomain1
+    return (1-s)**2
+
+
+# ## relative permeabilty functions on subdomain 2
+# def rel_perm2w(s):
+#     # relative permeabilty wetting on subdomain2
+#     return s**3
+#
+#
+# def rel_perm2nw(s):
+#     # relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2
+#     return (1-s)**2
+
+
+_rel_perm1w = ft.partial(rel_perm1w)
+_rel_perm1nw = ft.partial(rel_perm1nw)
+# _rel_perm2w = ft.partial(rel_perm2w)
+# _rel_perm2nw = ft.partial(rel_perm2nw)
+
+subdomain1_rel_perm = {
+    'wetting': _rel_perm1w,#
+    'nonwetting': _rel_perm1nw
+}
+
+# subdomain2_rel_perm = {
+#     'wetting': _rel_perm2w,#
+#     'nonwetting': _rel_perm2nw
+# }
+
+# _rel_perm3 = ft.partial(rel_perm2)
+# subdomain3_rel_perm = subdomain2_rel_perm.copy()
+#
+# _rel_perm4 = ft.partial(rel_perm1)
+# subdomain4_rel_perm = subdomain1_rel_perm.copy()
+
+# dictionary of relative permeabilties on all domains.
+relative_permeability = {
+    1: subdomain1_rel_perm,
+    2: subdomain1_rel_perm,
+    3: subdomain1_rel_perm,
+    4: subdomain1_rel_perm,
+    5: subdomain1_rel_perm,
+    6: subdomain1_rel_perm,
+}
+
+# definition of the derivatives of the relative permeabilities
+# relative permeabilty functions on subdomain 1
+def rel_perm1w_prime(s):
+    # relative permeabilty on subdomain1
+    return 2*s
+
+def rel_perm1nw_prime(s):
+    # relative permeabilty on subdomain1
+    return -2*(1-s)
+
+# # definition of the derivatives of the relative permeabilities
+# # relative permeabilty functions on subdomain 1
+# def rel_perm2w_prime(s):
+#     # relative permeabilty on subdomain1
+#     return 3*s**2
+#
+# def rel_perm2nw_prime(s):
+#     # relative permeabilty on subdomain1
+#     return 2*(lambda_w1-s)
+
+_rel_perm1w_prime = ft.partial(rel_perm1w_prime)
+_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime)
+# _rel_perm2w_prime = ft.partial(rel_perm2w_prime)
+# _rel_perm2nw_prime = ft.partial(rel_perm2nw_prime)
+
+subdomain1_rel_perm_prime = {
+    'wetting': _rel_perm1w_prime,
+    'nonwetting': _rel_perm1nw_prime
+}
+
+
+# subdomain2_rel_perm_prime = {
+#     'wetting': _rel_perm2w_prime,
+#     'nonwetting': _rel_perm2nw_prime
+# }
+
+# dictionary of relative permeabilties on all domains.
+ka_prime = {
+    1: subdomain1_rel_perm_prime,
+    2: subdomain1_rel_perm_prime,
+    3: subdomain1_rel_perm_prime,
+    4: subdomain1_rel_perm_prime,
+    5: subdomain1_rel_perm_prime,
+    6: subdomain1_rel_perm_prime,
+}
+
+
+# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where
+# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw
+# # this function needs to be monotonically decreasing in the capillary pressure pc.
+# # since in the richards case pc=-pw, this becomes as a function of pw a mono
+# # tonically INCREASING function like in our Richards-Richards paper. However
+# # since we unify the treatment in the code for Richards and two-phase, we need
+# # the same requierment
+# # for both cases, two-phase and Richards.
+# def saturation(pc, index, alpha):
+#     # inverse capillary pressure-saturation-relationship
+#     return df.conditional(pc > 0, 1/((1 + (alpha*pc)**index)**((index - 1)/index)), 1)
+# #
+# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where
+# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw
+# def saturation_sym(pc, index, alpha):
+#     # inverse capillary pressure-saturation-relationship
+#     #df.conditional(pc > 0,
+#     return 1/((1 + (alpha*pc)**index)**((index - 1)/index))
+#
+#
+# # derivative of S-pc relationship with respect to pc. This is needed for the
+# # construction of a analytic solution.
+# def saturation_sym_prime(pc, index, alpha):
+#     # inverse capillary pressure-saturation-relationship
+#     return -(alpha*(index - 1)*(alpha*pc)**(index - 1)) / ( (1 + (alpha*pc)**index)**((2*index - 1)/index) )
+#
+# # note that the conditional definition of S-pc in the nonsymbolic part will be
+# # incorporated in the construction of the exact solution below.
+# S_pc_sym = {
+#     1: ft.partial(saturation_sym, index=3, alpha=0.001),
+#     2: ft.partial(saturation_sym, index=3, alpha=0.001),
+#     3: ft.partial(saturation_sym, index=3, alpha=0.001),
+#     4: ft.partial(saturation_sym, index=3, alpha=0.001),
+#     5: ft.partial(saturation_sym, index=3, alpha=0.001),
+#     6: ft.partial(saturation_sym, index=3, alpha=0.001)
+# }
+#
+# S_pc_sym_prime = {
+#     1: ft.partial(saturation_sym_prime, index=3, alpha=0.001),
+#     2: ft.partial(saturation_sym_prime, index=3, alpha=0.001),
+#     3: ft.partial(saturation_sym_prime, index=3, alpha=0.001),
+#     4: ft.partial(saturation_sym_prime, index=3, alpha=0.001),
+#     5: ft.partial(saturation_sym_prime, index=3, alpha=0.001),
+#     6: ft.partial(saturation_sym_prime, index=3, alpha=0.001)
+# }
+#
+# sat_pressure_relationship = {
+#     1: ft.partial(saturation, index=3, alpha=0.001),
+#     2: ft.partial(saturation, index=3, alpha=0.001),
+#     3: ft.partial(saturation, index=3, alpha=0.001),
+#     4: ft.partial(saturation, index=3, alpha=0.001),
+#     5: ft.partial(saturation, index=3, alpha=0.001),
+#     6: ft.partial(saturation, index=3, alpha=0.001)
+# }
+
+def saturation(pc, index):
+    # inverse capillary pressure-saturation-relationship
+    return df.conditional(pc > 0, 1/((1 + pc)**(1/(index + 1))), 1)
+
+
+def saturation_sym(pc, index):
+    # inverse capillary pressure-saturation-relationship
+    return 1/((1 + pc)**(1/(index + 1)))
+
+
+# derivative of S-pc relationship with respect to pc. This is needed for the
+# construction of a analytic solution.
+def saturation_sym_prime(pc, index):
+    # inverse capillary pressure-saturation-relationship
+    return -1/((index+1)*(1 + pc)**((index+2)/(index+1)))
+#
+S_pc_sym = {
+    1: ft.partial(saturation_sym, index=1),
+    2: ft.partial(saturation_sym, index=1),
+    3: ft.partial(saturation_sym, index=1),
+    4: ft.partial(saturation_sym, index=1),
+    5: ft.partial(saturation_sym, index=1),
+    6: ft.partial(saturation_sym, index=1)
+}
+
+S_pc_sym_prime = {
+    1: ft.partial(saturation_sym_prime, index=1),
+    2: ft.partial(saturation_sym_prime, index=1),
+    3: ft.partial(saturation_sym_prime, index=1),
+    4: ft.partial(saturation_sym_prime, index=1),
+    5: ft.partial(saturation_sym_prime, index=1),
+    6: ft.partial(saturation_sym_prime, index=1)
+}
+
+sat_pressure_relationship = {
+    1: ft.partial(saturation, index=1),
+    2: ft.partial(saturation, index=1),
+    3: ft.partial(saturation, index=1),
+    4: ft.partial(saturation, index=1),
+    5: ft.partial(saturation, index=1),
+    6: ft.partial(saturation, index=1)
+}
+
+
+#############################################
+# Manufacture source expressions with sympy #
+#############################################
+x, y = sym.symbols('x[0], x[1]')  # needed by UFL
+t = sym.symbols('t', positive=True)
+
+p_dict = {'wetting': -3 + 0*t,
+          'nonwetting': -1 + 0*t}
+
+p_e_sym = dict()
+pc_e_sym = dict()
+for subdomain, isR in isRichards.items():
+    p_e_sym.update({subdomain: dict()})
+    subdom_has_phase = ['wetting']
+    if not isR:
+        subdom_has_phase = ['wetting', 'nonwetting']
+    for phase in subdom_has_phase:
+        p_e_sym[subdomain].update({phase: p_dict[phase]})
+
+    if isR:
+        pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']})
+    else:
+        pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'] - p_e_sym[subdomain]['wetting']})
+
+
+# pc_e_sym = dict()
+# for subdomain, isR in isRichards.items():
+#     if isR:
+#         pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']})
+#     else:
+#         pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting']
+#                                         - p_e_sym[subdomain]['wetting']})
+
+
+symbols = {"x": x,
+           "y": y,
+           "t": t}
+# turn above symbolic code into exact solution for dolphin and
+# construct the rhs that matches the above exact solution.
+exact_solution_example = hlp.generate_exact_solution_expressions(
+                        symbols=symbols,
+                        isRichards=isRichards,
+                        symbolic_pressure=p_e_sym,
+                        symbolic_capillary_pressure=pc_e_sym,
+                        saturation_pressure_relationship=S_pc_sym,
+                        saturation_pressure_relationship_prime=S_pc_sym_prime,
+                        viscosity=viscosity,
+                        porosity=porosity,
+                        relative_permeability=relative_permeability,
+                        relative_permeability_prime=ka_prime,
+                        densities=densities,
+                        gravity_acceleration=gravity_acceleration,
+                        include_gravity=include_gravity,
+                        )
+source_expression = exact_solution_example['source']
+exact_solution = exact_solution_example['exact_solution']
+initial_condition = exact_solution_example['initial_condition']
+
+# Dictionary of dirichlet boundary conditions.
+dirichletBC = dict()
+# similarly to the outer boundary dictionary, if a patch has no outer boundary
+# None should be written instead of an expression.
+# This is a bit of a brainfuck:
+# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind.
+# Since a domain patch can have several disjoint outer boundary parts, the
+# expressions need to get an enumaration index which starts at 0.
+# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of
+# subdomain ind and boundary part j.
+# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting']
+# return the actual expression needed for the dirichlet condition for both
+# phases if present.
+
+# subdomain index: {outer boudary part index: {phase: expression}}
+for subdomain in isRichards.keys():
+    # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None
+    if outer_boundary_def_points[subdomain] is None:
+        dirichletBC.update({subdomain: None})
+    else:
+        dirichletBC.update({subdomain: dict()})
+        # set the dirichlet conditions to be the same code as exact solution on
+        # the subdomain.
+        for outer_boundary_ind in outer_boundary_def_points[subdomain].keys():
+            dirichletBC[subdomain].update(
+                {outer_boundary_ind: exact_solution[subdomain]}
+                )
+
+write_to_file = {
+    'meshes_and_markers': True,
+    'L_iterations': True
+}
+
+# initialise LDD simulation class
+simulation = ldd.LDDsimulation(
+    tol=1E-14,
+    debug=debugflag,
+    LDDsolver_tol=solver_tol,
+    max_iter_num=max_iter_num
+    )
+simulation.set_parameters(use_case=use_case,
+                          output_dir=output_string,
+                          subdomain_def_points=subdomain_def_points,
+                          isRichards=isRichards,
+                          interface_def_points=interface_def_points,
+                          outer_boundary_def_points=outer_boundary_def_points,
+                          adjacent_subdomains=adjacent_subdomains,
+                          mesh_resolution=mesh_resolution,
+                          viscosity=viscosity,
+                          porosity=porosity,
+                          L=L,
+                          lambda_param=lambda_param,
+                          relative_permeability=relative_permeability,
+                          saturation=sat_pressure_relationship,
+                          starttime=starttime,
+                          number_of_timesteps=number_of_timesteps,
+                          number_of_timesteps_to_analyse=number_of_timesteps_to_analyse,
+                          timestep_size=timestep_size,
+                          sources=source_expression,
+                          initial_conditions=initial_condition,
+                          dirichletBC_expression_strings=dirichletBC,
+                          exact_solution=exact_solution,
+                          densities=densities,
+                          include_gravity=include_gravity,
+                          write2file=write_to_file,
+                          )
+
+simulation.initialise()
+# print(simulation.__dict__)
+simulation.run(analyse_condition=analyse_condition)
+# simulation.LDDsolver(time=0, debug=True, analyse_timestep=True)
+# df.info(parameters, True)
diff --git a/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch-constant-solution/run-simulation b/Two-phase-Two-phase/multi-patch/Archive/TP-TP-layered-soil-case-with-inner-patch-constant-solution/run-simulation
similarity index 100%
rename from Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch-constant-solution/run-simulation
rename to Two-phase-Two-phase/multi-patch/Archive/TP-TP-layered-soil-case-with-inner-patch-constant-solution/run-simulation
diff --git a/Two-phase-Two-phase/multi-patch/TP-multi-patch-plus-gravity-with-same-wetting-phase-as-RR/TP-multi-patch-with-gravity-same-wetting-phase-as-RR.py b/Two-phase-Two-phase/multi-patch/Archive/TP-multi-patch-plus-gravity-with-same-wetting-phase-as-RR/TP-multi-patch-with-gravity-same-wetting-phase-as-RR.py
similarity index 100%
rename from Two-phase-Two-phase/multi-patch/TP-multi-patch-plus-gravity-with-same-wetting-phase-as-RR/TP-multi-patch-with-gravity-same-wetting-phase-as-RR.py
rename to Two-phase-Two-phase/multi-patch/Archive/TP-multi-patch-plus-gravity-with-same-wetting-phase-as-RR/TP-multi-patch-with-gravity-same-wetting-phase-as-RR.py
diff --git a/Two-phase-Two-phase/multi-patch/TP-multi-patch-plus-gravity-with-same-wetting-phase-as-RR/old_geometry.py b/Two-phase-Two-phase/multi-patch/Archive/TP-multi-patch-plus-gravity-with-same-wetting-phase-as-RR/old_geometry.py
similarity index 100%
rename from Two-phase-Two-phase/multi-patch/TP-multi-patch-plus-gravity-with-same-wetting-phase-as-RR/old_geometry.py
rename to Two-phase-Two-phase/multi-patch/Archive/TP-multi-patch-plus-gravity-with-same-wetting-phase-as-RR/old_geometry.py
diff --git a/Two-phase-Two-phase/multi-patch/TP-multi-patch-plus-gravity-with-same-wetting-phase-as-RR/run-simulation b/Two-phase-Two-phase/multi-patch/Archive/TP-multi-patch-plus-gravity-with-same-wetting-phase-as-RR/run-simulation
similarity index 100%
rename from Two-phase-Two-phase/multi-patch/TP-multi-patch-plus-gravity-with-same-wetting-phase-as-RR/run-simulation
rename to Two-phase-Two-phase/multi-patch/Archive/TP-multi-patch-plus-gravity-with-same-wetting-phase-as-RR/run-simulation