diff --git a/Two-phase-Two-phase/multi-patch/Archive/README b/Two-phase-Two-phase/multi-patch/Archive/README new file mode 100644 index 0000000000000000000000000000000000000000..a999add2473b947042f384fe12de92d7a3866975 --- /dev/null +++ b/Two-phase-Two-phase/multi-patch/Archive/README @@ -0,0 +1,10 @@ +The usecases in this folder were used at one point in time in the development +of the LDD code usually for debugging but have been abandoned at one point in +time. +This means that the scripts are not up to date and up to par with the qualtiy +in the non-Archive folders. Most likely, they will not work anymore. + +In some cases these scripts are being kept for reference or because older +simulation datat based on the older scripts have been used. +If you want to revive some of these examples, copy one of the official examples +and update that copy with information in these scripts diff --git a/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-const-solution/TP-TP-layered_soil-const-solution.py b/Two-phase-Two-phase/multi-patch/Archive/TP-TP-layered-soil-case-const-solution/TP-TP-layered_soil-const-solution.py similarity index 100% rename from Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-const-solution/TP-TP-layered_soil-const-solution.py rename to Two-phase-Two-phase/multi-patch/Archive/TP-TP-layered-soil-case-const-solution/TP-TP-layered_soil-const-solution.py diff --git a/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-const-solution/run-simulation b/Two-phase-Two-phase/multi-patch/Archive/TP-TP-layered-soil-case-const-solution/run-simulation similarity index 100% rename from Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-const-solution/run-simulation rename to Two-phase-Two-phase/multi-patch/Archive/TP-TP-layered-soil-case-const-solution/run-simulation diff --git a/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch-constant-solution/TP-TP-layered_soil_with_inner_patch_const_solution.py b/Two-phase-Two-phase/multi-patch/Archive/TP-TP-layered-soil-case-with-inner-patch-constant-solution/TP-TP-layered_soil_with_inner_patch_const_solution.py similarity index 100% rename from Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch-constant-solution/TP-TP-layered_soil_with_inner_patch_const_solution.py rename to Two-phase-Two-phase/multi-patch/Archive/TP-TP-layered-soil-case-with-inner-patch-constant-solution/TP-TP-layered_soil_with_inner_patch_const_solution.py diff --git a/Two-phase-Two-phase/multi-patch/Archive/TP-TP-layered-soil-case-with-inner-patch-constant-solution/debug-weird-rogue-dof.py b/Two-phase-Two-phase/multi-patch/Archive/TP-TP-layered-soil-case-with-inner-patch-constant-solution/debug-weird-rogue-dof.py new file mode 100755 index 0000000000000000000000000000000000000000..7a1e470e8ed0849e34d64064e6bc2af6d6a7bd62 --- /dev/null +++ b/Two-phase-Two-phase/multi-patch/Archive/TP-TP-layered-soil-case-with-inner-patch-constant-solution/debug-weird-rogue-dof.py @@ -0,0 +1,725 @@ +#!/usr/bin/python3 +"""This program sets up a domain together with a decomposition into subdomains +modelling layered soil. This is used for our LDD article with tp-tp and tp-r +coupling. + +Along with the subdomains and the mesh domain markers are set upself. +The resulting mesh is saved into files for later use. +""" + +#!/usr/bin/python3 +import dolfin as df +import mshr +import numpy as np +import sympy as sym +import typing as tp +import functools as ft +import domainPatch as dp +import LDDsimulation as ldd +import helpers as hlp + +# init sympy session +sym.init_printing() + +use_case = "debug-rogue-dof" +solver_tol = 1E-6 +max_iter_num = 100 + +############ GRID #######################ΓΌ +mesh_resolution = 5 +timestep_size = 0.001 +number_of_timesteps = 5 +# decide how many timesteps you want analysed. Analysed means, that we write out +# subsequent errors of the L-iteration within the timestep. +number_of_timesteps_to_analyse = 5 +starttime = 0 + +Lw = 1 #/timestep_size +Lnw=Lw + +lambda_w = 40 +lambda_nw = 40 + +include_gravity = True +debugflag = False +analyse_condition = False + +output_string = "./output/2019-08-28-{}_timesteps{}_".format(use_case, number_of_timesteps) + + +# global domain +subdomain0_vertices = [df.Point(-1.0,-1.0), # + df.Point(1.0,-1.0),# + df.Point(1.0,1.0),# + df.Point(-1.0,1.0)] + +interface12_vertices = [df.Point(-1.0, 0.8), + df.Point(0.3, 0.8), + df.Point(0.5, 0.9), + df.Point(0.8, 0.7), + df.Point(1.0, 0.65)] + + + # interface23 +interface23_vertices = [df.Point(-1.0, 0.0), + df.Point(-0.35, 0.0), + # df.Point(6.5, 4.5), + df.Point(0.0, 0.0)] + +interface24_vertices = [interface23_vertices[2], + df.Point(0.6, 0.0), + ] + +interface25_vertices = [interface24_vertices[1], + df.Point(1.0, 0.0) + ] + + +interface32_vertices = [interface23_vertices[2], + interface23_vertices[1], + interface23_vertices[0]] + + +interface36_vertices = [df.Point(-1.0, -0.6), + df.Point(-0.6, -0.45)] + + +interface46_vertices = [interface36_vertices[1], + df.Point(0.3, -0.25)] + +interface56_vertices = [interface46_vertices[1], + df.Point(0.65, -0.6), + df.Point(1.0, -0.7)] + + + + +interface34_vertices = [interface36_vertices[1], + interface23_vertices[2]] +# interface36 + +interface45_vertices = [interface56_vertices[0], + df.Point(0.7, -0.2),#df.Point(0.7, -0.2), + interface25_vertices[0] + ] + +# interface45_vertices_a = [interface56_vertices[0], +# df.Point(0.7, -0.2),#df.Point(0.7, -0.2), +# ] +# interface45_vertices_b = [df.Point(0.7, -0.2),#df.Point(0.7, -0.2), +# interface25_vertices[0] +# ] + +# interface_vertices introduces a global numbering of interfaces. +interface_def_points = [interface12_vertices, + interface23_vertices, + interface24_vertices, + interface25_vertices, + interface34_vertices, + interface36_vertices, + interface45_vertices, + # interface45_vertices_a, + # interface45_vertices_b, + interface46_vertices, + interface56_vertices, + ] +adjacent_subdomains = [[1,2], + [2,3], + [2,4], + [2,5], + [3,4], + [3,6], + [4,5], + # [4,5], + [4,6], + [5,6] + ] + +# subdomain1. +subdomain1_vertices = [interface12_vertices[0], + interface12_vertices[1], + interface12_vertices[2], + interface12_vertices[3], + interface12_vertices[4], # southern boundary, 12 interface + subdomain0_vertices[2], # eastern boundary, outer boundary + subdomain0_vertices[3]] # northern boundary, outer on_boundary + +# vertex coordinates of the outer boundaries. If it can not be specified as a +# polygon, use an entry per boundary polygon. This information is used for defining +# the Dirichlet boundary conditions. If a domain is completely internal, the +# dictionary entry should be 0: None +subdomain1_outer_boundary_verts = { + 0: [subdomain1_vertices[4], # + subdomain1_vertices[5], # eastern boundary, outer boundary + subdomain1_vertices[6], + subdomain1_vertices[0]] +} + +#subdomain1 +subdomain2_vertices = [interface23_vertices[0], + interface23_vertices[1], + interface23_vertices[2], + interface24_vertices[1], + interface25_vertices[1], # southern boundary, 23 interface + subdomain1_vertices[4], # eastern boundary, outer boundary + subdomain1_vertices[3], + subdomain1_vertices[2], + subdomain1_vertices[1], + subdomain1_vertices[0] ] # northern boundary, 12 interface + +subdomain2_outer_boundary_verts = { + 0: [subdomain2_vertices[9], + subdomain2_vertices[0]], + 1: [subdomain2_vertices[4], + subdomain2_vertices[5]] +} + + +subdomain3_vertices = [interface36_vertices[0], + interface36_vertices[1], + # interface34_vertices[0], + interface34_vertices[1], + # interface32_vertices[0], + interface32_vertices[1], + interface32_vertices[2] + ] + +subdomain3_outer_boundary_verts = { + 0: [subdomain3_vertices[4], + subdomain3_vertices[0]] +} + + +# subdomain3 +subdomain4_vertices = [interface46_vertices[0], + interface46_vertices[1], + interface45_vertices[1], + # interface45_vertices_a[1], + interface24_vertices[1], + interface24_vertices[0], + interface34_vertices[1] + ] + +subdomain4_outer_boundary_verts = None + +# subdomain5_vertices = [interface56_vertices[0], +# interface56_vertices[1], +# interface56_vertices[2], +# interface25_vertices[1], +# interface25_vertices[0], +# interface45_vertices_b[1], +# interface45_vertices_b[0] +# ] + +subdomain5_vertices = [interface56_vertices[0], + interface56_vertices[1], + interface56_vertices[2], + interface25_vertices[1], + interface25_vertices[0], + interface45_vertices[2], + interface45_vertices[1] +] + +subdomain5_outer_boundary_verts = { + 0: [subdomain5_vertices[2], + subdomain5_vertices[3]] +} + + + +subdomain6_vertices = [subdomain0_vertices[0], + subdomain0_vertices[1], # southern boundary, outer boundary + interface56_vertices[2], + interface56_vertices[1], + interface56_vertices[0], + interface36_vertices[1], + interface36_vertices[0] + ] + +subdomain6_outer_boundary_verts = { + 0: [subdomain6_vertices[6], + subdomain6_vertices[0], + subdomain6_vertices[1], + subdomain6_vertices[2]] +} + + +subdomain_def_points = [subdomain0_vertices,# + subdomain1_vertices,# + subdomain2_vertices,# + subdomain3_vertices,# + subdomain4_vertices, + subdomain5_vertices, + subdomain6_vertices + ] + + +# if a subdomain has no outer boundary write None instead, i.e. +# i: None +# if i is the index of the inner subdomain. +outer_boundary_def_points = { + # subdomain number + 1: subdomain1_outer_boundary_verts, + 2: subdomain2_outer_boundary_verts, + 3: subdomain3_outer_boundary_verts, + 4: subdomain4_outer_boundary_verts, + 5: subdomain5_outer_boundary_verts, + 6: subdomain6_outer_boundary_verts +} + +# isRichards = { +# 1: False, +# 2: False, +# 3: False, +# 4: False, +# 5: False, +# 6: False +# } + +isRichards = { + 1: False, + 2: False, + 3: False, + 4: False, + 5: False, + 6: False + } + +visc = {'wetting': 1, + 'nonwetting': 1} +dens = {'wetting': 1, + 'nonwetting': 1} +poro = 1 +number_of_subdomains = 0 +viscosity = dict() +densities = dict() +porosity = dict() +Ldict = {'wetting': Lw, + 'nonwetting': Lnw} +Lambda = {'wetting': lambda_w, + 'nonwetting': lambda_nw} +L = dict() +lambda_param = dict() +for subdomain, isR in isRichards.items(): + number_of_subdomains += 1 + viscosity.update({subdomain: dict()}) + densities.update({subdomain: dict()}) + L.update({subdomain: dict()}) + lambda_param.update({subdomain: dict()}) + porosity.update({subdomain: poro}) + subdom_has_phase = ['wetting'] + if not isR: + subdom_has_phase = ['wetting', 'nonwetting'] + for phase in subdom_has_phase: + viscosity[subdomain].update({phase: visc[phase]}) + densities[subdomain].update({phase: dens[phase]}) + L[subdomain].update({phase: Ldict[phase]}) + lambda_param[subdomain].update({phase: Lambda[phase]}) + +# Dict of the form: { subdom_num : viscosity } +# viscosity = { +# 1: {'wetting' :1, +# 'nonwetting': 1/50}, +# 2: {'wetting' :1, +# 'nonwetting': 1/50}, +# 3: {'wetting' :1, +# 'nonwetting': 1/50}, +# 4: {'wetting' :1, +# 'nonwetting': 1/50}, +# 5: {'wetting' :1, +# 'nonwetting': 1/50}, +# 6: {'wetting' :1, +# 'nonwetting': 1/50}, +# } + +# # Dict of the form: { subdom_num : density } +# densities = { +# 1: {'wetting': 1, #997 +# 'nonwetting': 1}, #1}, #1.225}, +# 2: {'wetting': 1, #997 +# 'nonwetting': 1}, #1.225}, +# 3: {'wetting': 1, #997 +# 'nonwetting': 1}, #1.225}, +# 4: {'wetting': 1, #997 +# 'nonwetting': 1}, #1.225} +# 5: {'wetting': 1, #997 +# 'nonwetting': 1}, #1.225}, +# 6: {'wetting': 1, #997 +# 'nonwetting': 1} #1.225} +# } + +gravity_acceleration = 9.81 +# porosities taken from +# https://www.geotechdata.info/parameter/soil-porosity.html +# Dict of the form: { subdom_num : porosity } +# porosity = { +# 1: 1, #0.2, # Clayey gravels, clayey sandy gravels +# 2: 1, #0.22, # Silty gravels, silty sandy gravels +# 3: 1, #0.37, # Clayey sands +# 4: 1, #0.2 # Silty or sandy clay +# 5: 1, # +# 6: 1, # +# } + +# # subdom_num : subdomain L for L-scheme +# L = { +# 1: {'wetting' :Lw, +# 'nonwetting': Lnw}, +# 2: {'wetting' :Lw, +# 'nonwetting': Lnw}, +# 3: {'wetting' :Lw, +# 'nonwetting': Lnw}, +# 4: {'wetting' :Lw, +# 'nonwetting': Lnw}, +# 5: {'wetting' :Lw, +# 'nonwetting': Lnw}, +# 6: {'wetting' :Lw, +# 'nonwetting': Lnw} +# } +# +# # subdom_num : lambda parameter for the L-scheme +# lambda_param = { +# 1: {'wetting': lambda_w, +# 'nonwetting': lambda_nw},# +# 2: {'wetting': lambda_w, +# 'nonwetting': lambda_nw},# +# 3: {'wetting': lambda_w, +# 'nonwetting': lambda_nw},# +# 4: {'wetting': lambda_w, +# 'nonwetting': lambda_nw},# +# 5: {'wetting': lambda_w, +# 'nonwetting': lambda_nw},# +# 6: {'wetting': lambda_w, +# 'nonwetting': lambda_nw},# +# } + + +## relative permeabilty functions on subdomain 1 +def rel_perm1w(s): + # relative permeabilty wetting on subdomain1 + return s**2 + + +def rel_perm1nw(s): + # relative permeabilty nonwetting on subdomain1 + return (1-s)**2 + + +# ## relative permeabilty functions on subdomain 2 +# def rel_perm2w(s): +# # relative permeabilty wetting on subdomain2 +# return s**3 +# +# +# def rel_perm2nw(s): +# # relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2 +# return (1-s)**2 + + +_rel_perm1w = ft.partial(rel_perm1w) +_rel_perm1nw = ft.partial(rel_perm1nw) +# _rel_perm2w = ft.partial(rel_perm2w) +# _rel_perm2nw = ft.partial(rel_perm2nw) + +subdomain1_rel_perm = { + 'wetting': _rel_perm1w,# + 'nonwetting': _rel_perm1nw +} + +# subdomain2_rel_perm = { +# 'wetting': _rel_perm2w,# +# 'nonwetting': _rel_perm2nw +# } + +# _rel_perm3 = ft.partial(rel_perm2) +# subdomain3_rel_perm = subdomain2_rel_perm.copy() +# +# _rel_perm4 = ft.partial(rel_perm1) +# subdomain4_rel_perm = subdomain1_rel_perm.copy() + +# dictionary of relative permeabilties on all domains. +relative_permeability = { + 1: subdomain1_rel_perm, + 2: subdomain1_rel_perm, + 3: subdomain1_rel_perm, + 4: subdomain1_rel_perm, + 5: subdomain1_rel_perm, + 6: subdomain1_rel_perm, +} + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 1 +def rel_perm1w_prime(s): + # relative permeabilty on subdomain1 + return 2*s + +def rel_perm1nw_prime(s): + # relative permeabilty on subdomain1 + return -2*(1-s) + +# # definition of the derivatives of the relative permeabilities +# # relative permeabilty functions on subdomain 1 +# def rel_perm2w_prime(s): +# # relative permeabilty on subdomain1 +# return 3*s**2 +# +# def rel_perm2nw_prime(s): +# # relative permeabilty on subdomain1 +# return 2*(lambda_w1-s) + +_rel_perm1w_prime = ft.partial(rel_perm1w_prime) +_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime) +# _rel_perm2w_prime = ft.partial(rel_perm2w_prime) +# _rel_perm2nw_prime = ft.partial(rel_perm2nw_prime) + +subdomain1_rel_perm_prime = { + 'wetting': _rel_perm1w_prime, + 'nonwetting': _rel_perm1nw_prime +} + + +# subdomain2_rel_perm_prime = { +# 'wetting': _rel_perm2w_prime, +# 'nonwetting': _rel_perm2nw_prime +# } + +# dictionary of relative permeabilties on all domains. +ka_prime = { + 1: subdomain1_rel_perm_prime, + 2: subdomain1_rel_perm_prime, + 3: subdomain1_rel_perm_prime, + 4: subdomain1_rel_perm_prime, + 5: subdomain1_rel_perm_prime, + 6: subdomain1_rel_perm_prime, +} + + +# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where +# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw +# # this function needs to be monotonically decreasing in the capillary pressure pc. +# # since in the richards case pc=-pw, this becomes as a function of pw a mono +# # tonically INCREASING function like in our Richards-Richards paper. However +# # since we unify the treatment in the code for Richards and two-phase, we need +# # the same requierment +# # for both cases, two-phase and Richards. +# def saturation(pc, index, alpha): +# # inverse capillary pressure-saturation-relationship +# return df.conditional(pc > 0, 1/((1 + (alpha*pc)**index)**((index - 1)/index)), 1) +# # +# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where +# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw +# def saturation_sym(pc, index, alpha): +# # inverse capillary pressure-saturation-relationship +# #df.conditional(pc > 0, +# return 1/((1 + (alpha*pc)**index)**((index - 1)/index)) +# +# +# # derivative of S-pc relationship with respect to pc. This is needed for the +# # construction of a analytic solution. +# def saturation_sym_prime(pc, index, alpha): +# # inverse capillary pressure-saturation-relationship +# return -(alpha*(index - 1)*(alpha*pc)**(index - 1)) / ( (1 + (alpha*pc)**index)**((2*index - 1)/index) ) +# +# # note that the conditional definition of S-pc in the nonsymbolic part will be +# # incorporated in the construction of the exact solution below. +# S_pc_sym = { +# 1: ft.partial(saturation_sym, index=3, alpha=0.001), +# 2: ft.partial(saturation_sym, index=3, alpha=0.001), +# 3: ft.partial(saturation_sym, index=3, alpha=0.001), +# 4: ft.partial(saturation_sym, index=3, alpha=0.001), +# 5: ft.partial(saturation_sym, index=3, alpha=0.001), +# 6: ft.partial(saturation_sym, index=3, alpha=0.001) +# } +# +# S_pc_sym_prime = { +# 1: ft.partial(saturation_sym_prime, index=3, alpha=0.001), +# 2: ft.partial(saturation_sym_prime, index=3, alpha=0.001), +# 3: ft.partial(saturation_sym_prime, index=3, alpha=0.001), +# 4: ft.partial(saturation_sym_prime, index=3, alpha=0.001), +# 5: ft.partial(saturation_sym_prime, index=3, alpha=0.001), +# 6: ft.partial(saturation_sym_prime, index=3, alpha=0.001) +# } +# +# sat_pressure_relationship = { +# 1: ft.partial(saturation, index=3, alpha=0.001), +# 2: ft.partial(saturation, index=3, alpha=0.001), +# 3: ft.partial(saturation, index=3, alpha=0.001), +# 4: ft.partial(saturation, index=3, alpha=0.001), +# 5: ft.partial(saturation, index=3, alpha=0.001), +# 6: ft.partial(saturation, index=3, alpha=0.001) +# } + +def saturation(pc, index): + # inverse capillary pressure-saturation-relationship + return df.conditional(pc > 0, 1/((1 + pc)**(1/(index + 1))), 1) + + +def saturation_sym(pc, index): + # inverse capillary pressure-saturation-relationship + return 1/((1 + pc)**(1/(index + 1))) + + +# derivative of S-pc relationship with respect to pc. This is needed for the +# construction of a analytic solution. +def saturation_sym_prime(pc, index): + # inverse capillary pressure-saturation-relationship + return -1/((index+1)*(1 + pc)**((index+2)/(index+1))) +# +S_pc_sym = { + 1: ft.partial(saturation_sym, index=1), + 2: ft.partial(saturation_sym, index=1), + 3: ft.partial(saturation_sym, index=1), + 4: ft.partial(saturation_sym, index=1), + 5: ft.partial(saturation_sym, index=1), + 6: ft.partial(saturation_sym, index=1) +} + +S_pc_sym_prime = { + 1: ft.partial(saturation_sym_prime, index=1), + 2: ft.partial(saturation_sym_prime, index=1), + 3: ft.partial(saturation_sym_prime, index=1), + 4: ft.partial(saturation_sym_prime, index=1), + 5: ft.partial(saturation_sym_prime, index=1), + 6: ft.partial(saturation_sym_prime, index=1) +} + +sat_pressure_relationship = { + 1: ft.partial(saturation, index=1), + 2: ft.partial(saturation, index=1), + 3: ft.partial(saturation, index=1), + 4: ft.partial(saturation, index=1), + 5: ft.partial(saturation, index=1), + 6: ft.partial(saturation, index=1) +} + + +############################################# +# Manufacture source expressions with sympy # +############################################# +x, y = sym.symbols('x[0], x[1]') # needed by UFL +t = sym.symbols('t', positive=True) + +p_dict = {'wetting': -3 + 0*t, + 'nonwetting': -1 + 0*t} + +p_e_sym = dict() +pc_e_sym = dict() +for subdomain, isR in isRichards.items(): + p_e_sym.update({subdomain: dict()}) + subdom_has_phase = ['wetting'] + if not isR: + subdom_has_phase = ['wetting', 'nonwetting'] + for phase in subdom_has_phase: + p_e_sym[subdomain].update({phase: p_dict[phase]}) + + if isR: + pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']}) + else: + pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'] - p_e_sym[subdomain]['wetting']}) + + +# pc_e_sym = dict() +# for subdomain, isR in isRichards.items(): +# if isR: +# pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']}) +# else: +# pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'] +# - p_e_sym[subdomain]['wetting']}) + + +symbols = {"x": x, + "y": y, + "t": t} +# turn above symbolic code into exact solution for dolphin and +# construct the rhs that matches the above exact solution. +exact_solution_example = hlp.generate_exact_solution_expressions( + symbols=symbols, + isRichards=isRichards, + symbolic_pressure=p_e_sym, + symbolic_capillary_pressure=pc_e_sym, + saturation_pressure_relationship=S_pc_sym, + saturation_pressure_relationship_prime=S_pc_sym_prime, + viscosity=viscosity, + porosity=porosity, + relative_permeability=relative_permeability, + relative_permeability_prime=ka_prime, + densities=densities, + gravity_acceleration=gravity_acceleration, + include_gravity=include_gravity, + ) +source_expression = exact_solution_example['source'] +exact_solution = exact_solution_example['exact_solution'] +initial_condition = exact_solution_example['initial_condition'] + +# Dictionary of dirichlet boundary conditions. +dirichletBC = dict() +# similarly to the outer boundary dictionary, if a patch has no outer boundary +# None should be written instead of an expression. +# This is a bit of a brainfuck: +# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind. +# Since a domain patch can have several disjoint outer boundary parts, the +# expressions need to get an enumaration index which starts at 0. +# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of +# subdomain ind and boundary part j. +# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting'] +# return the actual expression needed for the dirichlet condition for both +# phases if present. + +# subdomain index: {outer boudary part index: {phase: expression}} +for subdomain in isRichards.keys(): + # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None + if outer_boundary_def_points[subdomain] is None: + dirichletBC.update({subdomain: None}) + else: + dirichletBC.update({subdomain: dict()}) + # set the dirichlet conditions to be the same code as exact solution on + # the subdomain. + for outer_boundary_ind in outer_boundary_def_points[subdomain].keys(): + dirichletBC[subdomain].update( + {outer_boundary_ind: exact_solution[subdomain]} + ) + +write_to_file = { + 'meshes_and_markers': True, + 'L_iterations': True +} + +# initialise LDD simulation class +simulation = ldd.LDDsimulation( + tol=1E-14, + debug=debugflag, + LDDsolver_tol=solver_tol, + max_iter_num=max_iter_num + ) +simulation.set_parameters(use_case=use_case, + output_dir=output_string, + subdomain_def_points=subdomain_def_points, + isRichards=isRichards, + interface_def_points=interface_def_points, + outer_boundary_def_points=outer_boundary_def_points, + adjacent_subdomains=adjacent_subdomains, + mesh_resolution=mesh_resolution, + viscosity=viscosity, + porosity=porosity, + L=L, + lambda_param=lambda_param, + relative_permeability=relative_permeability, + saturation=sat_pressure_relationship, + starttime=starttime, + number_of_timesteps=number_of_timesteps, + number_of_timesteps_to_analyse=number_of_timesteps_to_analyse, + timestep_size=timestep_size, + sources=source_expression, + initial_conditions=initial_condition, + dirichletBC_expression_strings=dirichletBC, + exact_solution=exact_solution, + densities=densities, + include_gravity=include_gravity, + write2file=write_to_file, + ) + +simulation.initialise() +# print(simulation.__dict__) +simulation.run(analyse_condition=analyse_condition) +# simulation.LDDsolver(time=0, debug=True, analyse_timestep=True) +# df.info(parameters, True) diff --git a/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch-constant-solution/run-simulation b/Two-phase-Two-phase/multi-patch/Archive/TP-TP-layered-soil-case-with-inner-patch-constant-solution/run-simulation similarity index 100% rename from Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch-constant-solution/run-simulation rename to Two-phase-Two-phase/multi-patch/Archive/TP-TP-layered-soil-case-with-inner-patch-constant-solution/run-simulation diff --git a/Two-phase-Two-phase/multi-patch/TP-multi-patch-plus-gravity-with-same-wetting-phase-as-RR/TP-multi-patch-with-gravity-same-wetting-phase-as-RR.py b/Two-phase-Two-phase/multi-patch/Archive/TP-multi-patch-plus-gravity-with-same-wetting-phase-as-RR/TP-multi-patch-with-gravity-same-wetting-phase-as-RR.py similarity index 100% rename from Two-phase-Two-phase/multi-patch/TP-multi-patch-plus-gravity-with-same-wetting-phase-as-RR/TP-multi-patch-with-gravity-same-wetting-phase-as-RR.py rename to Two-phase-Two-phase/multi-patch/Archive/TP-multi-patch-plus-gravity-with-same-wetting-phase-as-RR/TP-multi-patch-with-gravity-same-wetting-phase-as-RR.py diff --git a/Two-phase-Two-phase/multi-patch/TP-multi-patch-plus-gravity-with-same-wetting-phase-as-RR/old_geometry.py b/Two-phase-Two-phase/multi-patch/Archive/TP-multi-patch-plus-gravity-with-same-wetting-phase-as-RR/old_geometry.py similarity index 100% rename from Two-phase-Two-phase/multi-patch/TP-multi-patch-plus-gravity-with-same-wetting-phase-as-RR/old_geometry.py rename to Two-phase-Two-phase/multi-patch/Archive/TP-multi-patch-plus-gravity-with-same-wetting-phase-as-RR/old_geometry.py diff --git a/Two-phase-Two-phase/multi-patch/TP-multi-patch-plus-gravity-with-same-wetting-phase-as-RR/run-simulation b/Two-phase-Two-phase/multi-patch/Archive/TP-multi-patch-plus-gravity-with-same-wetting-phase-as-RR/run-simulation similarity index 100% rename from Two-phase-Two-phase/multi-patch/TP-multi-patch-plus-gravity-with-same-wetting-phase-as-RR/run-simulation rename to Two-phase-Two-phase/multi-patch/Archive/TP-multi-patch-plus-gravity-with-same-wetting-phase-as-RR/run-simulation