diff --git a/Two-phase-Richards/multi-patch/layered_soil/TP-R-layered_soil-all-params-one.py b/Two-phase-Richards/multi-patch/layered_soil/TP-R-layered_soil-all-params-one.py
index 2a4bd3fb5120e13c2130f1302c511606cf0635b1..cb44482a0b31d6f7a4414d4badc6de0689e6c603 100755
--- a/Two-phase-Richards/multi-patch/layered_soil/TP-R-layered_soil-all-params-one.py
+++ b/Two-phase-Richards/multi-patch/layered_soil/TP-R-layered_soil-all-params-one.py
@@ -24,6 +24,8 @@ datestr = date.strftime("%Y-%m-%d")
 sym.init_printing()
 # solver_tol = 6E-7
 use_case = "TP-R-layered-soil-all-params-set-one-new-lambda"
+thisfile = "TP-R-layered_soil-all-params-one.py"
+
 max_iter_num = 500
 FEM_Lagrange_degree = 1
 mesh_study = False
@@ -603,11 +605,10 @@ for subdomain in isRichards.keys():
 
 # read this file and print it to std out. This way the simulation can produce a
 # log file with ./TP-R-layered_soil.py | tee simulation.log
-f = open('TP-R-layered_soil.py', 'r')
+f = open(thisfile, 'r')
 print(f.read())
 f.close()
 
-
 for starttime in starttimes:
     for mesh_resolution, solver_tol in resolutions.items():
         # initialise LDD simulation class
diff --git a/Two-phase-Richards/multi-patch/layered_soil/TP-R-layered_soil.py b/Two-phase-Richards/multi-patch/layered_soil/TP-R-layered_soil.py
index 78eb3980abd5789359e37cad4dc5f9608fe4e294..c05a2447c7c35a0e7255be2d3c7e13a2266c8408 100755
--- a/Two-phase-Richards/multi-patch/layered_soil/TP-R-layered_soil.py
+++ b/Two-phase-Richards/multi-patch/layered_soil/TP-R-layered_soil.py
@@ -23,32 +23,34 @@ datestr = date.strftime("%Y-%m-%d")
 # init sympy session
 sym.init_printing()
 # solver_tol = 6E-7
-use_case = "TP-R-layered-soil-realistic-new-lambda"
-max_iter_num = 600
+use_case = "TP-R-layered-soil-realistic"
+# name of this very file. Needed for log output.
+thisfile = "TP-R-layered_soil.py"
+max_iter_num = 300
 FEM_Lagrange_degree = 1
 mesh_study = False
 resolutions = {
-                # 1: 1e-7,  # h=2
-                # 2: 2e-5,  # h=1.1180
-                # 4: 1e-6,  # h=0.5590
-                # 8: 1e-6,  # h=0.2814
-                # 16: 1e-6, # h=0.1412
-                32: 1e-6,
-                # 64: 5e-7,
-                # 128: 5e-7
+                # 1: 2e-6,  # h=2
+                # 2: 2e-6,  # h=1.1180
+                # 4: 2e-6,  # h=0.5590
+                # 8: 2e-6,  # h=0.2814
+                # 16: 2e-6, # h=0.1412
+                32: 2e-6,
+                # 64: 2e-6,
+                # 128: 2e-6
                 }
 
 # GRID #######################
 # mesh_resolution = 20
-timestep_size = 0.005
-number_of_timesteps = 200
-plot_timestep_every = 2
+timestep_size = 0.001
+number_of_timesteps = 1000
+plot_timestep_every = 4
 # decide how many timesteps you want analysed. Analysed means, that we write
 # out subsequent errors of the L-iteration within the timestep.
-number_of_timesteps_to_analyse = 5
+number_of_timesteps_to_analyse = 4
 starttimes = [0.0]
 
-Lw1 = 0.25  # /timestep_size
+Lw1 = 0.025  # /timestep_size
 Lnw1 = Lw1
 Lw2 = 0.025  # /timestep_size
 Lnw2 = Lw2
@@ -57,8 +59,8 @@ Lnw3 = Lw3
 Lw4 = 0.025  # /timestep_size
 Lnw4 = Lw4
 
-lambda12_w = 4
-lambda12_nw = 4
+lambda12_w = 40
+lambda12_nw = 40
 lambda23_w = 40
 lambda23_nw = 40
 lambda34_w = 40
@@ -66,7 +68,7 @@ lambda34_nw = 40
 
 include_gravity = False
 debugflag = False
-analyse_condition = False
+analyse_condition = True
 
 if mesh_study:
     output_string = "./output/{}-{}_timesteps{}_P{}".format(
@@ -279,18 +281,28 @@ viscosity = {
 }
 
 # Dict of the form: { subdom_num : density }
+# densities = {
+#     1: {'wetting': 9.97,  # 997
+#         'nonwetting': 0.01225},  # 1.225}},
+#     2: {'wetting': 9.97,  # 997
+#         'nonwetting': 0.01225},  # 1.225}},
+#     3: {'wetting': 9.97,  # 997
+#         'nonwetting': 0.01225},  # 1.225}},
+#     4: {'wetting': 9.97,  # 997
+#         'nonwetting': 0.01225},  # 1.225}}
+# }
+
 densities = {
-    1: {'wetting': 9.97,  # 997
-        'nonwetting': 0.01225},  # 1.225}},
-    2: {'wetting': 9.97,  # 997
-        'nonwetting': 0.01225},  # 1.225}},
-    3: {'wetting': 9.97,  # 997
-        'nonwetting': 0.01225},  # 1.225}},
-    4: {'wetting': 9.97,  # 997
-        'nonwetting': 0.01225},  # 1.225}}
+    1: {'wetting': 997,  # 997
+        'nonwetting': 1.225},  # 1.225}},
+    2: {'wetting': 997,  # 997
+        'nonwetting': 1.225},  # 1.225}},
+    3: {'wetting': 997,  # 997
+        'nonwetting': 1.225},  # 1.225}},
+    4: {'wetting': 997,  # 997
+        'nonwetting': 1.225},  # 1.225}}
 }
 
-
 gravity_acceleration = 9.81
 # porosities taken from
 # https://www.geotechdata.info/parameter/soil-porosity.html
@@ -338,10 +350,10 @@ lambda_param = {
 
 # after Lewis, see pdf file
 intrinsic_permeability = {
-    1: 1,  # sand
+    1: 0.1,  # sand
     2: 0.1,  # sand, there is a range
-    3: 10e-2,  # clay has a range
-    4: 10e-4
+    3: 0.001,  #10e-2,  # clay has a range
+    4: 0.001,  #10e-3
 }
 
 
@@ -698,9 +710,10 @@ for subdomain in isRichards.keys():
                 {outer_boundary_ind: exact_solution[subdomain]}
                 )
 
+
 # read this file and print it to std out. This way the simulation can produce a
 # log file with ./TP-R-layered_soil.py | tee simulation.log
-f = open('TP-R-layered_soil.py', 'r')
+f = open(thisfile, 'r')
 print(f.read())
 f.close()
 
diff --git a/Two-phase-Richards/multi-patch/layered_soil/mesh_study/TP-R-layered_soil.py b/Two-phase-Richards/multi-patch/layered_soil/mesh_study/TP-R-layered_soil.py
new file mode 100755
index 0000000000000000000000000000000000000000..1d56fc1f6dabd48340891ee315ddd614306df6a4
--- /dev/null
+++ b/Two-phase-Richards/multi-patch/layered_soil/mesh_study/TP-R-layered_soil.py
@@ -0,0 +1,803 @@
+#!/usr/bin/python3
+"""Layered soil simulation.
+
+This program sets up an LDD simulation
+"""
+
+import dolfin as df
+# import mshr
+# import numpy as np
+import sympy as sym
+# import typing as tp
+import functools as ft
+# import domainPatch as dp
+import LDDsimulation as ldd
+import helpers as hlp
+import datetime
+import os
+import pandas as pd
+
+date = datetime.datetime.now()
+datestr = date.strftime("%Y-%m-%d")
+
+# init sympy session
+sym.init_printing()
+# solver_tol = 6E-7
+use_case = "TP-R-layered-soil-realistic"
+# name of this very file. Needed for log output.
+thisfile = "TP-R-layered_soil.py"
+max_iter_num = 300
+FEM_Lagrange_degree = 1
+mesh_study = True
+resolutions = {
+                1: 2e-6,  # h=2
+                2: 2e-6,  # h=1.1180
+                4: 2e-6,  # h=0.5590
+                8: 2e-6,  # h=0.2814
+                16: 2e-6, # h=0.1412
+                32: 2e-6,
+                64: 2e-6,
+                128: 2e-6
+                }
+
+# GRID #######################
+# mesh_resolution = 20
+timestep_size = 0.001
+number_of_timesteps = 800
+plot_timestep_every = 4
+# decide how many timesteps you want analysed. Analysed means, that we write
+# out subsequent errors of the L-iteration within the timestep.
+number_of_timesteps_to_analyse = 4
+starttimes = [0.0]
+
+Lw1 = 0.025  # /timestep_size
+Lnw1 = Lw1
+Lw2 = 0.025  # /timestep_size
+Lnw2 = Lw2
+Lw3 = 0.025  # /timestep_size
+Lnw3 = Lw3
+Lw4 = 0.025  # /timestep_size
+Lnw4 = Lw4
+
+lambda12_w = 40
+lambda12_nw = 40
+lambda23_w = 40
+lambda23_nw = 40
+lambda34_w = 40
+lambda34_nw = 40
+
+include_gravity = False
+debugflag = False
+analyse_condition = True
+
+if mesh_study:
+    output_string = "./output/{}-{}_timesteps{}_P{}".format(
+        datestr, use_case, number_of_timesteps, FEM_Lagrange_degree
+        )
+else:
+    for tol in resolutions.values():
+        solver_tol = tol
+    output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format(
+        datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol
+        )
+
+
+# toggle what should be written to files
+if mesh_study:
+    write_to_file = {
+        'space_errornorms': True,
+        'meshes_and_markers': True,
+        'L_iterations_per_timestep': False,
+        'solutions': True,
+        'absolute_differences': True,
+        'condition_numbers': analyse_condition,
+        'subsequent_errors': True
+    }
+else:
+    write_to_file = {
+        'space_errornorms': True,
+        'meshes_and_markers': True,
+        'L_iterations_per_timestep': False,
+        'solutions': True,
+        'absolute_differences': True,
+        'condition_numbers': analyse_condition,
+        'subsequent_errors': True
+    }
+
+
+# global domain
+subdomain0_vertices = [
+    df.Point(-1.0, -1.0),
+    df.Point(1.0, -1.0),
+    df.Point(1.0, 1.0),
+    df.Point(-1.0, 1.0)
+    ]
+
+
+interface12_vertices = [df.Point(-1.0, 0.8),
+                        df.Point(0.3, 0.8),
+                        df.Point(0.5, 0.9),
+                        df.Point(0.8, 0.7),
+                        df.Point(1.0, 0.65)]
+# subdomain1.
+subdomain1_vertices = [
+    interface12_vertices[0],
+    interface12_vertices[1],
+    interface12_vertices[2],
+    interface12_vertices[3],
+    interface12_vertices[4],  # southern boundary, 12 interface
+    subdomain0_vertices[2],  # eastern boundary, outer boundary
+    subdomain0_vertices[3]  # northern boundary, outer on_boundary
+    ]
+
+
+# vertex coordinates of the outer boundaries. If it can not be specified as a
+# polygon, use an entry per boundary polygon. This information is used for
+# defining the Dirichlet boundary conditions. If a domain is completely
+# internal, the dictionary entry should be 0: None
+subdomain1_outer_boundary_verts = {
+    0: [interface12_vertices[4],
+        subdomain0_vertices[2],  # eastern boundary, outer boundary
+        subdomain0_vertices[3],
+        interface12_vertices[0]]
+}
+
+
+# interface23
+interface23_vertices = [
+    df.Point(-1.0, 0.0),
+    df.Point(-0.35, 0.0),
+    # df.Point(6.5, 4.5),
+    df.Point(0.0, 0.0),
+    df.Point(0.5, 0.0),
+    # df.Point(11.5, 3.5),
+    # df.Point(13.0, 3)
+    df.Point(0.85, 0.0),
+    df.Point(1.0, 0.0)
+    ]
+
+# subdomain1
+subdomain2_vertices = [
+    interface23_vertices[0],
+    interface23_vertices[1],
+    interface23_vertices[2],
+    interface23_vertices[3],
+    interface23_vertices[4],
+    interface23_vertices[5],  # southern boundary, 23 interface
+    subdomain1_vertices[4],  # eastern boundary, outer boundary
+    subdomain1_vertices[3],
+    subdomain1_vertices[2],
+    subdomain1_vertices[1],
+    subdomain1_vertices[0]  # northern boundary, 12 interface
+    ]
+
+subdomain2_outer_boundary_verts = {
+    0: [interface23_vertices[5],
+        subdomain1_vertices[4]],
+    1: [subdomain1_vertices[0],
+        interface23_vertices[0]]
+}
+
+
+# interface34
+interface34_vertices = [df.Point(-1.0, -0.6),
+                        df.Point(-0.6, -0.45),
+                        df.Point(0.3, -0.25),
+                        df.Point(0.65, -0.6),
+                        df.Point(1.0, -0.7)]
+
+# subdomain3
+subdomain3_vertices = [
+    interface34_vertices[0],
+    interface34_vertices[1],
+    interface34_vertices[2],
+    interface34_vertices[3],
+    interface34_vertices[4],  # southern boundary, 34 interface
+    subdomain2_vertices[5],  # eastern boundary, outer boundary
+    subdomain2_vertices[4],
+    subdomain2_vertices[3],
+    subdomain2_vertices[2],
+    subdomain2_vertices[1],
+    subdomain2_vertices[0]  # northern boundary, 23 interface
+    ]
+
+subdomain3_outer_boundary_verts = {
+    0: [interface34_vertices[4],
+        subdomain2_vertices[5]],
+    1: [subdomain2_vertices[0],
+        interface34_vertices[0]]
+}
+
+# subdomain4
+subdomain4_vertices = [
+    subdomain0_vertices[0],
+    subdomain0_vertices[1],  # southern boundary, outer boundary
+    subdomain3_vertices[4],  # eastern boundary, outer boundary
+    subdomain3_vertices[3],
+    subdomain3_vertices[2],
+    subdomain3_vertices[1],
+    subdomain3_vertices[0]
+    ]  # northern boundary, 34 interface
+
+
+subdomain4_outer_boundary_verts = {
+    0: [subdomain4_vertices[6],
+        subdomain4_vertices[0],
+        subdomain4_vertices[1],
+        subdomain4_vertices[2]]
+}
+
+
+subdomain_def_points = [
+    subdomain0_vertices,
+    subdomain1_vertices,
+    subdomain2_vertices,
+    subdomain3_vertices,
+    subdomain4_vertices
+    ]
+
+# interface_vertices introduces a global numbering of interfaces.
+interface_def_points = [
+    interface12_vertices, interface23_vertices, interface34_vertices
+    ]
+
+adjacent_subdomains = [[1, 2], [2, 3], [3, 4]]
+
+# if a subdomain has no outer boundary write None instead, i.e.
+# i: None
+# if i is the index of the inner subdomain.
+outer_boundary_def_points = {
+    # subdomain number
+    1: subdomain1_outer_boundary_verts,
+    2: subdomain2_outer_boundary_verts,
+    3: subdomain3_outer_boundary_verts,
+    4: subdomain4_outer_boundary_verts
+}
+
+isRichards = {
+    1: True,
+    2: True,
+    3: False,
+    4: False
+    }
+
+# isRichards = {
+#     1: True,
+#     2: True,
+#     3: True,
+#     4: True
+#     }
+
+# Dict of the form: { subdom_num : viscosity }
+viscosity = {
+    1: {'wetting': 1,
+        'nonwetting': 1/50},
+    2: {'wetting': 1,
+        'nonwetting': 1/50},
+    3: {'wetting': 1,
+        'nonwetting': 1/50},
+    4: {'wetting': 1,
+        'nonwetting': 1/50},
+}
+
+# Dict of the form: { subdom_num : density }
+# densities = {
+#     1: {'wetting': 9.97,  # 997
+#         'nonwetting': 0.01225},  # 1.225}},
+#     2: {'wetting': 9.97,  # 997
+#         'nonwetting': 0.01225},  # 1.225}},
+#     3: {'wetting': 9.97,  # 997
+#         'nonwetting': 0.01225},  # 1.225}},
+#     4: {'wetting': 9.97,  # 997
+#         'nonwetting': 0.01225},  # 1.225}}
+# }
+
+densities = {
+    1: {'wetting': 997,  # 997
+        'nonwetting': 1.225},  # 1.225}},
+    2: {'wetting': 997,  # 997
+        'nonwetting': 1.225},  # 1.225}},
+    3: {'wetting': 997,  # 997
+        'nonwetting': 1.225},  # 1.225}},
+    4: {'wetting': 997,  # 997
+        'nonwetting': 1.225},  # 1.225}}
+}
+
+gravity_acceleration = 9.81
+# porosities taken from
+# https://www.geotechdata.info/parameter/soil-porosity.html
+# Dict of the form: { subdom_num : porosity }
+porosity = {
+    1: 0.37,  # 0.2,  # Clayey gravels, clayey sandy gravels
+    2: 0.22,  # 0.22, # Silty gravels, silty sandy gravels
+    3: 0.2,  # 0.37, # Clayey sands
+    4: 0.22,  # 0.2 # Silty or sandy clay
+}
+
+# subdom_num : subdomain L for L-scheme
+L = {
+    1: {'wetting': Lw1,
+        'nonwetting': Lnw1},
+    2: {'wetting': Lw2,
+        'nonwetting': Lnw2},
+    3: {'wetting': Lw3,
+        'nonwetting': Lnw3},
+    4: {'wetting': Lw4,
+        'nonwetting': Lnw4}
+}
+
+# interface_num : lambda parameter for the L-scheme on that interface.
+# Note that interfaces are numbered starting from 0, because
+# adjacent_subdomains is a list and not a dict. Historic fuckup, I know
+lambda_param = {
+    0: {'wetting': lambda12_w,
+        'nonwetting': lambda12_nw},
+    1: {'wetting': lambda23_w,
+        'nonwetting': lambda23_nw},
+    2: {'wetting': lambda34_w,
+        'nonwetting': lambda34_nw},
+}
+# lambda_param = {
+#     1: {'wetting': lambda_w,
+#         'nonwetting': lambda_nw},
+#     2: {'wetting': lambda_w,
+#         'nonwetting': lambda_nw},
+#     3: {'wetting': lambda_w,
+#         'nonwetting': lambda_nw},
+#     4: {'wetting': lambda_w,
+#         'nonwetting': lambda_nw},
+# }
+
+# after Lewis, see pdf file
+intrinsic_permeability = {
+    1: 0.1,  # sand
+    2: 0.1,  # sand, there is a range
+    3: 0.001,  #10e-2,  # clay has a range
+    4: 0.001,  #10e-3
+}
+
+
+# relative permeabilty functions on subdomain 1
+def rel_perm1w(s):
+    # relative permeabilty wetting on subdomain1
+    return intrinsic_permeability[1]*s**2
+
+
+def rel_perm1nw(s):
+    # relative permeabilty nonwetting on subdomain1
+    return intrinsic_permeability[1]*(1-s)**2
+
+
+# relative permeabilty functions on subdomain 2
+def rel_perm2w(s):
+    # relative permeabilty wetting on subdomain2
+    return intrinsic_permeability[2]*s**2
+
+
+def rel_perm2nw(s):
+    # relative permeabilty nonwetting on subdomain2
+    return intrinsic_permeability[2]*(1-s)**2
+
+
+# relative permeabilty functions on subdomain 3
+def rel_perm3w(s):
+    # relative permeabilty wetting on subdomain3
+    return intrinsic_permeability[3]*s**3
+
+
+def rel_perm3nw(s):
+    # relative permeabilty nonwetting on subdomain3
+    return intrinsic_permeability[3]*(1-s)**3
+
+
+# relative permeabilty functions on subdomain 4
+def rel_perm4w(s):
+    # relative permeabilty wetting on subdomain4
+    return intrinsic_permeability[4]*s**3
+
+
+def rel_perm4nw(s):
+    # relative permeabilty nonwetting on subdomain4
+    return intrinsic_permeability[4]*(1-s)**3
+
+_rel_perm1w = ft.partial(rel_perm1w)
+_rel_perm1nw = ft.partial(rel_perm1nw)
+_rel_perm2w = ft.partial(rel_perm2w)
+_rel_perm2nw = ft.partial(rel_perm2nw)
+
+_rel_perm3w = ft.partial(rel_perm3w)
+_rel_perm3nw = ft.partial(rel_perm3nw)
+_rel_perm4w = ft.partial(rel_perm4w)
+_rel_perm4nw = ft.partial(rel_perm4nw)
+
+
+subdomain1_rel_perm = {
+    'wetting': _rel_perm1w,
+    'nonwetting': _rel_perm1nw
+}
+
+subdomain2_rel_perm = {
+    'wetting': _rel_perm2w,
+    'nonwetting': _rel_perm2nw
+}
+
+subdomain3_rel_perm = {
+    'wetting': _rel_perm3w,
+    'nonwetting': _rel_perm3nw
+}
+
+subdomain4_rel_perm = {
+    'wetting': _rel_perm4w,
+    'nonwetting': _rel_perm4nw
+}
+
+# dictionary of relative permeabilties on all domains.
+# relative_permeability = {
+#     1: subdomain1_rel_perm,
+#     2: subdomain1_rel_perm,
+#     3: subdomain2_rel_perm,
+#     4: subdomain2_rel_perm
+# }
+relative_permeability = {
+    1: subdomain1_rel_perm,
+    2: subdomain2_rel_perm,
+    3: subdomain3_rel_perm,
+    4: subdomain4_rel_perm
+}
+
+
+# definition of the derivatives of the relative permeabilities
+# relative permeabilty functions on subdomain 1
+def rel_perm1w_prime(s):
+    # relative permeabilty on subdomain1
+    return intrinsic_permeability[1]*2*s
+
+
+def rel_perm1nw_prime(s):
+    # relative permeabilty on subdomain1
+    return -1*intrinsic_permeability[1]*2*(1-s)
+
+
+def rel_perm2w_prime(s):
+    # relative permeabilty on subdomain2
+    return intrinsic_permeability[2]*2*s
+
+
+def rel_perm2nw_prime(s):
+    # relative permeabilty on subdomain2
+    return -1*intrinsic_permeability[2]*2*(1-s)
+
+
+# definition of the derivatives of the relative permeabilities
+# relative permeabilty functions on subdomain 3
+def rel_perm3w_prime(s):
+    # relative permeabilty on subdomain3
+    return intrinsic_permeability[3]*3*s**2
+
+
+def rel_perm3nw_prime(s):
+    # relative permeabilty on subdomain3
+    return -1*intrinsic_permeability[3]*3*(1-s)**2
+
+
+# definition of the derivatives of the relative permeabilities
+# relative permeabilty functions on subdomain 4
+def rel_perm4w_prime(s):
+    # relative permeabilty on subdomain4
+    return intrinsic_permeability[4]*3*s**2
+
+
+def rel_perm4nw_prime(s):
+    # relative permeabilty on subdomain4
+    return -1*intrinsic_permeability[4]*3*(1-s)**2
+
+
+_rel_perm1w_prime = ft.partial(rel_perm1w_prime)
+_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime)
+_rel_perm2w_prime = ft.partial(rel_perm2w_prime)
+_rel_perm2nw_prime = ft.partial(rel_perm2nw_prime)
+_rel_perm3w_prime = ft.partial(rel_perm3w_prime)
+_rel_perm3nw_prime = ft.partial(rel_perm3nw_prime)
+_rel_perm4w_prime = ft.partial(rel_perm4w_prime)
+_rel_perm4nw_prime = ft.partial(rel_perm4nw_prime)
+
+subdomain1_rel_perm_prime = {
+    'wetting': _rel_perm1w_prime,
+    'nonwetting': _rel_perm1nw_prime
+}
+
+
+subdomain2_rel_perm_prime = {
+    'wetting': _rel_perm2w_prime,
+    'nonwetting': _rel_perm2nw_prime
+}
+
+subdomain3_rel_perm_prime = {
+    'wetting': _rel_perm3w_prime,
+    'nonwetting': _rel_perm3nw_prime
+}
+
+
+subdomain4_rel_perm_prime = {
+    'wetting': _rel_perm4w_prime,
+    'nonwetting': _rel_perm4nw_prime
+}
+
+
+# dictionary of relative permeabilties on all domains.
+# ka_prime = {
+#     1: subdomain1_rel_perm_prime,
+#     2: subdomain1_rel_perm_prime,
+#     3: subdomain2_rel_perm_prime,
+#     4: subdomain2_rel_perm_prime
+# }
+ka_prime = {
+    1: subdomain1_rel_perm_prime,
+    2: subdomain2_rel_perm_prime,
+    3: subdomain3_rel_perm_prime,
+    4: subdomain4_rel_perm_prime
+}
+
+# S-pc-relation ship. We use the van Genuchten approach, i.e.
+# pc = 1/alpha*(S^{-1/m} -1)^1/n, where we set alpha = 0, assume m = 1-1/n
+# (see Helmig) and assume that residual saturation is Sw
+# this function needs to be monotonically decreasing in the capillary pressure
+# pc. Since in the richards case pc=-pw, this becomes as a function of pw a
+# mono tonically INCREASING function like in our Richards-Richards paper.
+# However since we unify the treatment in the code for Richards and two-phase,
+# we need the same requierment for both cases, two-phase and Richards.
+def saturation(pc, n_index, alpha):
+    # inverse capillary pressure-saturation-relationship
+    expr = df.conditional(
+        pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1)
+    return expr
+
+
+# S-pc-relation ship. We use the van Genuchten approach, i.e.
+# pc = 1/alpha*(S^{-1/m} -1)^1/n, where we set alpha = 0, assume m = 1-1/n
+# (see Helmig) and assume that residual saturation is Sw
+def saturation_sym(pc, n_index, alpha):
+    # inverse capillary pressure-saturation-relationship
+    # df.conditional(pc > 0,
+    return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index))
+
+
+# derivative of S-pc relationship with respect to pc. This is needed for the
+# construction of a analytic solution.
+def saturation_sym_prime(pc, n_index, alpha):
+    # inverse capillary pressure-saturation-relationship
+    expr = -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1))\
+        / ((1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index))
+    return expr
+
+
+# note that the conditional definition of S-pc in the nonsymbolic part will be
+# incorporated in the construction of the exact solution below.
+S_pc_sym = {
+    1: ft.partial(saturation_sym, n_index=3, alpha=0.001),
+    2: ft.partial(saturation_sym, n_index=3, alpha=0.001),
+    3: ft.partial(saturation_sym, n_index=6, alpha=0.001),
+    4: ft.partial(saturation_sym, n_index=6, alpha=0.001)
+}
+
+
+S_pc_sym_prime = {
+    1: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
+    2: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
+    3: ft.partial(saturation_sym_prime, n_index=6, alpha=0.001),
+    4: ft.partial(saturation_sym_prime, n_index=6, alpha=0.001)
+}
+
+
+sat_pressure_relationship = {
+    1: ft.partial(saturation, n_index=3, alpha=0.001),
+    2: ft.partial(saturation, n_index=3, alpha=0.001),
+    3: ft.partial(saturation, n_index=6, alpha=0.001),
+    4: ft.partial(saturation, n_index=6, alpha=0.001)
+}
+
+
+#############################################
+# Manufacture source expressions with sympy #
+#############################################
+x, y = sym.symbols('x[0], x[1]')  # needed by UFL
+t = sym.symbols('t', positive=True)
+
+p_e_sym_2patch = {
+    1: {'wetting': -6 - (1+t*t)*(1 + x*x + y*y),
+        'nonwetting': 0.0*t},  # -1-t*(1.1 + y + x**2)**2},
+    2: {'wetting': -6.0 - (1.0 + t*t)*(1.0 + x*x),
+        'nonwetting': (-1-t*(1.1+y + x**2))*y**2},
+        # 'nonwetting': (-1-t*(1.1 + x**2)**2 - sym.sqrt(5+t**2))*y**2},
+}
+
+p_e_sym = {
+    1: {'wetting': p_e_sym_2patch[1]['wetting'],
+        'nonwetting': p_e_sym_2patch[1]['nonwetting']},
+    2: {'wetting': p_e_sym_2patch[1]['wetting'],
+        'nonwetting': p_e_sym_2patch[1]['nonwetting']},
+    3: {'wetting': p_e_sym_2patch[2]['wetting'],
+        'nonwetting': p_e_sym_2patch[2]['nonwetting']},
+    4: {'wetting': p_e_sym_2patch[2]['wetting'],
+        'nonwetting': p_e_sym_2patch[2]['nonwetting']}
+}
+
+
+# p_e_sym = {
+#     1: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-5.0)*(y-5.0)),
+#         'nonwetting':
+#             -2 - t*(1 + (y - 5.0) + x**2)**2
+#             - sym.sqrt(2 + t**2)*(1 + (y - 5.0))
+#         },
+#     2: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-5.0)*(y-5.0)),
+#         'nonwetting':
+#             - 2 - t*(1 + (y - 5.0) + x**2)**2
+#             - sym.sqrt(2 + t**2)*(1 + (y - 5.0))
+#         },
+#     3: {'wetting':
+#             1.0 - (1.0 + t*t)*(10.0 + x*x + (y - 5.0)*(y - 5.0))
+#             - (y - 5.0)*(y - 5.0)*3*sym.sin(-2*t + 2*x)*sym.sin(1/2*y - 1.2*t),
+#         'nonwetting': - 2 - t*(1 + x**2)**2 - sym.sqrt(2 + t**2)
+#         },
+#     4: {'wetting':
+#         1.0 - (1.0 + t*t)*(10.0 + x*x + (y - 5.0)*(y - 5.0))
+#         - (y - 5.0)*(y - 5.0)*3*sym.sin(-2*t + 2*x)*sym.sin(1/2*y - 1.2*t),
+#         'nonwetting': - 2 - t*(1 + x**2)**2 - sym.sqrt(2 + t**2)
+#         }
+# }
+
+pc_e_sym = dict()
+for subdomain, isR in isRichards.items():
+    if isR:
+        pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']})
+    else:
+        pc_e_sym.update(
+            {subdomain: p_e_sym[subdomain]['nonwetting']
+                - p_e_sym[subdomain]['wetting']}
+            )
+
+
+symbols = {"x": x,
+           "y": y,
+           "t": t}
+# turn above symbolic code into exact solution for dolphin and
+# construct the rhs that matches the above exact solution.
+exact_solution_example = hlp.generate_exact_solution_expressions(
+                        symbols=symbols,
+                        isRichards=isRichards,
+                        symbolic_pressure=p_e_sym,
+                        symbolic_capillary_pressure=pc_e_sym,
+                        saturation_pressure_relationship=S_pc_sym,
+                        saturation_pressure_relationship_prime=S_pc_sym_prime,
+                        viscosity=viscosity,
+                        porosity=porosity,
+                        relative_permeability=relative_permeability,
+                        relative_permeability_prime=ka_prime,
+                        densities=densities,
+                        gravity_acceleration=gravity_acceleration,
+                        include_gravity=include_gravity,
+                        )
+source_expression = exact_solution_example['source']
+exact_solution = exact_solution_example['exact_solution']
+initial_condition = exact_solution_example['initial_condition']
+
+# Dictionary of dirichlet boundary conditions.
+dirichletBC = dict()
+# similarly to the outer boundary dictionary, if a patch has no outer boundary
+# None should be written instead of an expression.
+# This is a bit of a brainfuck:
+# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind.
+# Since a domain patch can have several disjoint outer boundary parts, the
+# expressions need to get an enumaration index which starts at 0.
+# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of
+# subdomain ind and boundary part j.
+# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting']
+# return the actual expression needed for the dirichlet condition for both
+# phases if present.
+
+# subdomain index: {outer boudary part index: {phase: expression}}
+for subdomain in isRichards.keys():
+    # if subdomain has no outer boundary, outer_boundary_def_points[subdomain]
+    # is None
+    if outer_boundary_def_points[subdomain] is None:
+        dirichletBC.update({subdomain: None})
+    else:
+        dirichletBC.update({subdomain: dict()})
+        # set the dirichlet conditions to be the same code as exact solution on
+        # the subdomain.
+        for outer_boundary_ind in outer_boundary_def_points[subdomain].keys():
+            dirichletBC[subdomain].update(
+                {outer_boundary_ind: exact_solution[subdomain]}
+                )
+
+
+# read this file and print it to std out. This way the simulation can produce a
+# log file with ./TP-R-layered_soil.py | tee simulation.log
+f = open(thisfile, 'r')
+print(f.read())
+f.close()
+
+
+for starttime in starttimes:
+    for mesh_resolution, solver_tol in resolutions.items():
+        # initialise LDD simulation class
+        simulation = ldd.LDDsimulation(
+            tol=1E-14,
+            LDDsolver_tol=solver_tol,
+            debug=debugflag,
+            max_iter_num=max_iter_num,
+            FEM_Lagrange_degree=FEM_Lagrange_degree,
+            mesh_study=mesh_study
+            )
+
+        simulation.set_parameters(
+            use_case=use_case,
+            output_dir=output_string,
+            subdomain_def_points=subdomain_def_points,
+            isRichards=isRichards,
+            interface_def_points=interface_def_points,
+            outer_boundary_def_points=outer_boundary_def_points,
+            adjacent_subdomains=adjacent_subdomains,
+            mesh_resolution=mesh_resolution,
+            viscosity=viscosity,
+            porosity=porosity,
+            L=L,
+            lambda_param=lambda_param,
+            relative_permeability=relative_permeability,
+            saturation=sat_pressure_relationship,
+            starttime=starttime,
+            number_of_timesteps=number_of_timesteps,
+            number_of_timesteps_to_analyse=number_of_timesteps_to_analyse,
+            plot_timestep_every=plot_timestep_every,
+            timestep_size=timestep_size,
+            sources=source_expression,
+            initial_conditions=initial_condition,
+            dirichletBC_expression_strings=dirichletBC,
+            exact_solution=exact_solution,
+            densities=densities,
+            include_gravity=include_gravity,
+            write2file=write_to_file,
+            )
+
+        simulation.initialise()
+        output_dir = simulation.output_dir
+        # simulation.write_exact_solution_to_xdmf()
+        output = simulation.run(analyse_condition=analyse_condition)
+        for subdomain_index, subdomain_output in output.items():
+            mesh_h = subdomain_output['mesh_size']
+            for phase, error_dict in subdomain_output['errornorm'].items():
+                filename = output_dir \
+                    + "subdomain{}".format(subdomain_index)\
+                    + "-space-time-errornorm-{}-phase.csv".format(phase)
+                # for errortype, errornorm in error_dict.items():
+
+                # eocfile = open("eoc_filename", "a")
+                # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" )
+                # eocfile.close()
+                # if subdomain.isRichards:mesh_h
+                data_dict = {
+                    'mesh_parameter': mesh_resolution,
+                    'mesh_h': mesh_h,
+                }
+                for norm_type, errornorm in error_dict.items():
+                    data_dict.update(
+                        {norm_type: errornorm}
+                    )
+                errors = pd.DataFrame(data_dict, index=[mesh_resolution])
+                # check if file exists
+                if os.path.isfile(filename) is True:
+                    with open(filename, 'a') as f:
+                        errors.to_csv(
+                            f,
+                            header=False,
+                            sep='\t',
+                            encoding='utf-8',
+                            index=False
+                            )
+                else:
+                    errors.to_csv(
+                        filename,
+                        sep='\t',
+                        encoding='utf-8',
+                        index=False
+                        )
diff --git a/Two-phase-Richards/multi-patch/layered_soil/mesh_study/run-simulation b/Two-phase-Richards/multi-patch/layered_soil/mesh_study/run-simulation
new file mode 100755
index 0000000000000000000000000000000000000000..0eb497502a082a0fec07a5449b1fe946d59c8cc7
--- /dev/null
+++ b/Two-phase-Richards/multi-patch/layered_soil/mesh_study/run-simulation
@@ -0,0 +1,16 @@
+#!/bin/bash
+
+[ $# -eq 0 ] && { echo "Usage: $0 simulation_file [logfile_name]"; exit 1; }
+
+SIMULATION_FILE=$1
+SIMULATION=${SIMULATION_FILE%.py}
+LOGFILE_DEFAULT="$SIMULATION.log"
+
+DATE=$(date -I)
+LOGFILE=${2:-$DATE-$LOGFILE_DEFAULT}
+
+GREETING="Simulation $SIMULATION is run on $DATE by $USER"
+
+echo $GREETING
+echo "running $SIMULATION_FILE | tee $LOGFILE"
+./$SIMULATION_FILE | tee $LOGFILE
diff --git a/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/TP-R-2-patch-test.py b/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/TP-R-2-patch-test.py
index e116c9a8edd59e72d32472744ffdc312483b0f21..b85e062faf6615149b746450e97de28a528e8c25 100755
--- a/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/TP-R-2-patch-test.py
+++ b/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/TP-R-2-patch-test.py
@@ -20,6 +20,7 @@ datestr = date.strftime("%Y-%m-%d")
 sym.init_printing()
 
 use_case = "TP-R-2-patch-realistic-new-implementation"
+thisfile = "TP-R-2-patch-test.py"
 # solver_tol = 6E-7
 max_iter_num = 1000
 FEM_Lagrange_degree = 1
@@ -56,7 +57,17 @@ include_gravity = True
 debugflag = True
 analyse_condition = True
 
-output_string = "./output/{}-{}_timesteps{}_P{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree)
+if mesh_study:
+    output_string = "./output/{}-{}_timesteps{}_P{}".format(
+        datestr, use_case, number_of_timesteps, FEM_Lagrange_degree
+        )
+else:
+    for tol in resolutions.values():
+        solver_tol = tol
+    output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format(
+        datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol
+        )
+
 
 # toggle what should be written to files
 if mesh_study:
@@ -433,6 +444,10 @@ for subdomain in isRichards.keys():
                 {outer_boundary_ind: exact_solution[subdomain]}
                 )
 
+f = open(thisfile, 'r')
+print(f.read())
+f.close()
+
 
 for starttime in starttimes:
     for mesh_resolution, solver_tol in resolutions.items():
@@ -446,33 +461,34 @@ for starttime in starttimes:
             mesh_study=mesh_study
             )
 
-        simulation.set_parameters(use_case=use_case,
-                                  output_dir=output_string,
-                                  subdomain_def_points=subdomain_def_points,
-                                  isRichards=isRichards,
-                                  interface_def_points=interface_def_points,
-                                  outer_boundary_def_points=outer_boundary_def_points,
-                                  adjacent_subdomains=adjacent_subdomains,
-                                  mesh_resolution=mesh_resolution,
-                                  viscosity=viscosity,
-                                  porosity=porosity,
-                                  L=L,
-                                  lambda_param=lambda_param,
-                                  relative_permeability=relative_permeability,
-                                  saturation=sat_pressure_relationship,
-                                  starttime=starttime,
-                                  number_of_timesteps=number_of_timesteps,
-                                  number_of_timesteps_to_analyse=number_of_timesteps_to_analyse,
-                                  plot_timestep_every=plot_timestep_every,
-                                  timestep_size=timestep_size,
-                                  sources=source_expression,
-                                  initial_conditions=initial_condition,
-                                  dirichletBC_expression_strings=dirichletBC,
-                                  exact_solution=exact_solution,
-                                  densities=densities,
-                                  include_gravity=include_gravity,
-                                  write2file=write_to_file,
-                                  )
+        simulation.set_parameters(
+            use_case=use_case,
+            output_dir=output_string,
+            subdomain_def_points=subdomain_def_points,
+            isRichards=isRichards,
+            interface_def_points=interface_def_points,
+            outer_boundary_def_points=outer_boundary_def_points,
+            adjacent_subdomains=adjacent_subdomains,
+            mesh_resolution=mesh_resolution,
+            viscosity=viscosity,
+            porosity=porosity,
+            L=L,
+            lambda_param=lambda_param,
+            relative_permeability=relative_permeability,
+            saturation=sat_pressure_relationship,
+            starttime=starttime,
+            number_of_timesteps=number_of_timesteps,
+            number_of_timesteps_to_analyse=number_of_timesteps_to_analyse,
+            plot_timestep_every=plot_timestep_every,
+            timestep_size=timestep_size,
+            sources=source_expression,
+            initial_conditions=initial_condition,
+            dirichletBC_expression_strings=dirichletBC,
+            exact_solution=exact_solution,
+            densities=densities,
+            include_gravity=include_gravity,
+            write2file=write_to_file,
+            )
 
         simulation.initialise()
         output_dir = simulation.output_dir
@@ -480,26 +496,39 @@ for starttime in starttimes:
         output = simulation.run(analyse_condition=analyse_condition)
         for subdomain_index, subdomain_output in output.items():
             mesh_h = subdomain_output['mesh_size']
-            for phase, different_errornorms in subdomain_output['errornorm'].items():
-                filename = output_dir + "subdomain{}-space-time-errornorm-{}-phase.csv".format(subdomain_index, phase)
-                # for errortype, errornorm in different_errornorms.items():
-
-                    # eocfile = open("eoc_filename", "a")
-                    # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" )
-                    # eocfile.close()
-                    # if subdomain.isRichards:mesh_h
+            for phase, error_dict in subdomain_output['errornorm'].items():
+                filename = output_dir \
+                    + "subdomain{}".format(subdomain_index)\
+                    + "-space-time-errornorm-{}-phase.csv".format(phase)
+                # for errortype, errornorm in error_dict.items():
+
+                # eocfile = open("eoc_filename", "a")
+                # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" )
+                # eocfile.close()
+                # if subdomain.isRichards:mesh_h
                 data_dict = {
                     'mesh_parameter': mesh_resolution,
                     'mesh_h': mesh_h,
                 }
-                for error_type, errornorms in different_errornorms.items():
+                for norm_type, errornorm in error_dict.items():
                     data_dict.update(
-                        {error_type: errornorms}
+                        {norm_type: errornorm}
                     )
                 errors = pd.DataFrame(data_dict, index=[mesh_resolution])
                 # check if file exists
-                if os.path.isfile(filename) == True:
+                if os.path.isfile(filename) is True:
                     with open(filename, 'a') as f:
-                        errors.to_csv(f, header=False, sep='\t', encoding='utf-8', index=False)
+                        errors.to_csv(
+                            f,
+                            header=False,
+                            sep='\t',
+                            encoding='utf-8',
+                            index=False
+                            )
                 else:
-                    errors.to_csv(filename, sep='\t', encoding='utf-8', index=False)
+                    errors.to_csv(
+                        filename,
+                        sep='\t',
+                        encoding='utf-8',
+                        index=False
+                        )
diff --git a/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/TP-R-2-realistic-parameters-densities-scaled.py b/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/TP-R-2-realistic-parameters-densities-scaled.py
index fa82d47bb718d786b9e4564377f2524cc07ee1b2..8bef020d11bef0ad0397f2fbb47a46fa63919732 100755
--- a/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/TP-R-2-realistic-parameters-densities-scaled.py
+++ b/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/TP-R-2-realistic-parameters-densities-scaled.py
@@ -20,6 +20,7 @@ datestr = date.strftime("%Y-%m-%d")
 sym.init_printing()
 
 use_case = "TPR-2-desities-scaled-down"
+thisfile = "TP-R-2-realistic-parameters-densities-scaled.py"
 # solver_tol = 6E-7
 max_iter_num = 500
 FEM_Lagrange_degree = 1
@@ -57,11 +58,15 @@ debugflag = False
 analyse_condition = True
 
 if mesh_study:
-    output_string = "./output/{}-{}_timesteps{}_P{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree)
+    output_string = "./output/{}-{}_timesteps{}_P{}".format(
+        datestr, use_case, number_of_timesteps, FEM_Lagrange_degree
+        )
 else:
     for tol in resolutions.values():
         solver_tol = tol
-    output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol)
+    output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format(
+        datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol
+        )
 
 # toggle what should be written to files
 if mesh_study:
@@ -188,19 +193,12 @@ L = {#
 }
 
 
-lambda_param = {#
-# subdom_num : lambda parameter for the L-scheme
+lambda_param = {
+    # subdom_num : lambda parameter for the L-scheme
     0 : {'wetting' :lambda_w,
-         'nonwetting': lambda_nw},#
+         'nonwetting': lambda_nw},
 }
 
-# intrinsic_permeability = {
-#     1: {"wetting": 1,
-#         "nonwetting": 1},
-#     2: {"wetting": 1,
-#         "nonwetting": 1},
-# }
-
 intrinsic_permeability = {
     1: 1,
     2: 1,
@@ -459,7 +457,7 @@ for subdomain in isRichards.keys():
 #
 # sa
 
-f = open('TP-R-2-patch-mesh-study.py', 'r')
+f = open(thisfile, 'r')
 print(f.read())
 f.close()
 
@@ -476,33 +474,34 @@ for starttime in starttimes:
             mesh_study=mesh_study
             )
 
-        simulation.set_parameters(use_case=use_case,
-                                  output_dir=output_string,
-                                  subdomain_def_points=subdomain_def_points,
-                                  isRichards=isRichards,
-                                  interface_def_points=interface_def_points,
-                                  outer_boundary_def_points=outer_boundary_def_points,
-                                  adjacent_subdomains=adjacent_subdomains,
-                                  mesh_resolution=mesh_resolution,
-                                  viscosity=viscosity,
-                                  porosity=porosity,
-                                  L=L,
-                                  lambda_param=lambda_param,
-                                  relative_permeability=relative_permeability,
-                                  saturation=sat_pressure_relationship,
-                                  starttime=starttime,
-                                  number_of_timesteps=number_of_timesteps,
-                                  number_of_timesteps_to_analyse=number_of_timesteps_to_analyse,
-                                  plot_timestep_every=plot_timestep_every,
-                                  timestep_size=timestep_size,
-                                  sources=source_expression,
-                                  initial_conditions=initial_condition,
-                                  dirichletBC_expression_strings=dirichletBC,
-                                  exact_solution=exact_solution,
-                                  densities=densities,
-                                  include_gravity=include_gravity,
-                                  write2file=write_to_file,
-                                  )
+        simulation.set_parameters(
+            use_case=use_case,
+            output_dir=output_string,
+            subdomain_def_points=subdomain_def_points,
+            isRichards=isRichards,
+            interface_def_points=interface_def_points,
+            outer_boundary_def_points=outer_boundary_def_points,
+            adjacent_subdomains=adjacent_subdomains,
+            mesh_resolution=mesh_resolution,
+            viscosity=viscosity,
+            porosity=porosity,
+            L=L,
+            lambda_param=lambda_param,
+            relative_permeability=relative_permeability,
+            saturation=sat_pressure_relationship,
+            starttime=starttime,
+            number_of_timesteps=number_of_timesteps,
+            number_of_timesteps_to_analyse=number_of_timesteps_to_analyse,
+            plot_timestep_every=plot_timestep_every,
+            timestep_size=timestep_size,
+            sources=source_expression,
+            initial_conditions=initial_condition,
+            dirichletBC_expression_strings=dirichletBC,
+            exact_solution=exact_solution,
+            densities=densities,
+            include_gravity=include_gravity,
+            write2file=write_to_file,
+            )
 
         simulation.initialise()
         output_dir = simulation.output_dir
@@ -510,26 +509,39 @@ for starttime in starttimes:
         output = simulation.run(analyse_condition=analyse_condition)
         for subdomain_index, subdomain_output in output.items():
             mesh_h = subdomain_output['mesh_size']
-            for phase, different_errornorms in subdomain_output['errornorm'].items():
-                filename = output_dir + "subdomain{}-space-time-errornorm-{}-phase.csv".format(subdomain_index, phase)
-                # for errortype, errornorm in different_errornorms.items():
-
-                    # eocfile = open("eoc_filename", "a")
-                    # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" )
-                    # eocfile.close()
-                    # if subdomain.isRichards:mesh_h
+            for phase, error_dict in subdomain_output['errornorm'].items():
+                filename = output_dir \
+                    + "subdomain{}".format(subdomain_index)\
+                    + "-space-time-errornorm-{}-phase.csv".format(phase)
+                # for errortype, errornorm in error_dict.items():
+
+                # eocfile = open("eoc_filename", "a")
+                # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" )
+                # eocfile.close()
+                # if subdomain.isRichards:mesh_h
                 data_dict = {
                     'mesh_parameter': mesh_resolution,
                     'mesh_h': mesh_h,
                 }
-                for error_type, errornorms in different_errornorms.items():
+                for norm_type, errornorm in error_dict.items():
                     data_dict.update(
-                        {error_type: errornorms}
+                        {norm_type: errornorm}
                     )
                 errors = pd.DataFrame(data_dict, index=[mesh_resolution])
                 # check if file exists
-                if os.path.isfile(filename) == True:
+                if os.path.isfile(filename) is True:
                     with open(filename, 'a') as f:
-                        errors.to_csv(f, header=False, sep='\t', encoding='utf-8', index=False)
+                        errors.to_csv(
+                            f,
+                            header=False,
+                            sep='\t',
+                            encoding='utf-8',
+                            index=False
+                            )
                 else:
-                    errors.to_csv(filename, sep='\t', encoding='utf-8', index=False)
+                    errors.to_csv(
+                        filename,
+                        sep='\t',
+                        encoding='utf-8',
+                        index=False
+                        )