From b21db78dd02fc0107bc3a756dbc1e125a5e386a2 Mon Sep 17 00:00:00 2001 From: David Seus <david.seus@ians.uni-stuttgart.de> Date: Mon, 22 Jun 2020 19:45:25 +0200 Subject: [PATCH] set up alternative inner patch example. --- .../TP-R-multi-patch-with-inner-patch.py | 810 ++++++++++++++++++ .../run-simulation | 16 + ...ith_inner_patch-all-params-one-finer-dt.py | 0 ...layered_soil_with_inner_patch-realistic.py | 34 +- 4 files changed, 841 insertions(+), 19 deletions(-) create mode 100755 Two-phase-Richards/multi-patch/five_patch_domain_with_inner_patch/TP-R-multi-patch-with-inner-patch.py create mode 100755 Two-phase-Richards/multi-patch/five_patch_domain_with_inner_patch/run-simulation mode change 100644 => 100755 Two-phase-Richards/multi-patch/layered_soil_with_inner_patch/TP-R-layered_soil_with_inner_patch-all-params-one-finer-dt.py diff --git a/Two-phase-Richards/multi-patch/five_patch_domain_with_inner_patch/TP-R-multi-patch-with-inner-patch.py b/Two-phase-Richards/multi-patch/five_patch_domain_with_inner_patch/TP-R-multi-patch-with-inner-patch.py new file mode 100755 index 0000000..15f9e9d --- /dev/null +++ b/Two-phase-Richards/multi-patch/five_patch_domain_with_inner_patch/TP-R-multi-patch-with-inner-patch.py @@ -0,0 +1,810 @@ +#!/usr/bin/python3 +"""Multi-patch simulation with inner patch. + +This program sets up an LDD simulation +""" + +import dolfin as df +import sympy as sym +import functools as ft +import LDDsimulation as ldd +import helpers as hlp +import datetime +import os +import pandas as pd + +# check if output directory exists +if not os.path.exists('./output'): + os.mkdir('./output') + print("Directory ", './output', " created ") +else: + print("Directory ", './output', " already exists. Will use as output \ + directory") + +date = datetime.datetime.now() +datestr = date.strftime("%Y-%m-%d") + + +# init sympy session +sym.init_printing() +# solver_tol = 6E-7 +use_case = "TP-R-five-domain-with-inner-patch-realistic" +# name of this very file. Needed for log output. +thisfile = "TP-R-multi-patch-with-inner-patch.py" +max_iter_num = 700 +FEM_Lagrange_degree = 1 +mesh_study = False +resolutions = { + # 1: 2e-6, # h=2 + # 2: 2e-6, # h=1.1180 + # 4: 2e-6, # h=0.5590 + # 8: 2e-6, # h=0.2814 + # 16: 8e-6, # h=0.1412 + 32: 5e-6, + # 64: 2e-6, + # 128: 2e-6 + } + +# GRID ####################### +# mesh_resolution = 20 +timestep_size = 0.001 +number_of_timesteps = 1000 +plot_timestep_every = 2 +# decide how many timesteps you want analysed. Analysed means, that we write +# out subsequent errors of the L-iteration within the timestep. +number_of_timesteps_to_analyse = 8 +starttimes = [0.0] + +Lw1 = 0.5 # /timestep_size +Lnw1 = Lw1 + +Lw2 = 0.5 # /timestep_size +Lnw2 = Lw2 + +Lw3 = 0.5 # /timestep_size +Lnw3 = Lw3 + +Lw4 = 0.5 # /timestep_size +Lnw4 = Lw4 + +Lw5 = 0.5 # /timestep_size +Lnw5 = Lw5 + + +lambda13_w= 4 +lambda13_nw= 4 + +lambda12_w = 4 +lambda12_nw = 4 + +lambda23_w = 4 +lambda23_nw = 4 + +lambda24_w = 4 +lambda24_nw= 4 + +lambda34_w = 4 +lambda34_nw = 4 + +lambda45_w = 4 +lambda45_nw = 4 + +lambda15_w = 4 +lambda15_nw = 4 + + +include_gravity = True +debugflag = False +analyse_condition = False + +output_string = "./output/{}-{}_timesteps{}_P{}".format( + datestr, use_case, number_of_timesteps, FEM_Lagrange_degree + ) + + +# toggle what should be written to files +if mesh_study: + write_to_file = { + 'space_errornorms': True, + 'meshes_and_markers': True, + 'L_iterations_per_timestep': False, + 'solutions': True, + 'absolute_differences': True, + 'condition_numbers': analyse_condition, + 'subsequent_errors': True + } +else: + write_to_file = { + 'space_errornorms': True, + 'meshes_and_markers': True, + 'L_iterations_per_timestep': False, + 'solutions': True, + 'absolute_differences': True, + 'condition_numbers': analyse_condition, + 'subsequent_errors': True + } + + +# ----------------------------------------------------------------------------# +# ------------------- Domain and Interface -----------------------------------# +# ----------------------------------------------------------------------------# +# global simulation domain domain +sub_domain0_vertices = [df.Point(-1.0, -1.0), + df.Point(1.0, -1.0), + df.Point(1.0, 1.0), + df.Point(-1.0, 1.0)] + +# interfaces + +interface23_vertices = [df.Point(0.0, -0.6), + df.Point(0.7, 0.0)] + +interface12_vertices = [interface23_vertices[1], + df.Point(1.0, 0.0)] + +interface13_vertices = [df.Point(0.0, 0.0), + interface23_vertices[1]] + +interface15_vertices = [df.Point(0.0, 0.0), + df.Point(0.0, 1.0)] + +interface34_vertices = [df.Point(0.0, 0.0), + interface23_vertices[0]] + +interface24_vertices = [interface23_vertices[0], + df.Point(0.0, -1.0)] + +interface45_vertices = [df.Point(-1.0, 0.0), + df.Point(0.0, 0.0)] +# subdomain1. +sub_domain1_vertices = [interface23_vertices[0], + interface23_vertices[1], + interface12_vertices[1], + sub_domain0_vertices[2], + df.Point(0.0, 1.0)] + +# vertex coordinates of the outer boundaries. If it can not be specified as a +# polygon, use an entry per boundary polygon. This information is used for +# defining the Dirichlet boundary conditions. If a domain is completely inter- +# nal, the dictionary entry should be 0: None +subdomain1_outer_boundary_verts = { + 0: [interface12_vertices[1], + sub_domain0_vertices[2], + df.Point(0.0, 1.0)] +} +# subdomain2 +sub_domain2_vertices = [interface24_vertices[1], + sub_domain0_vertices[1], + interface12_vertices[1], + interface23_vertices[1], + interface23_vertices[0]] + +subdomain2_outer_boundary_verts = { + 0: [interface24_vertices[1], + sub_domain0_vertices[1], + interface12_vertices[1]] +} + +sub_domain3_vertices = [interface23_vertices[0], + interface23_vertices[1], + interface13_vertices[0]] + +subdomain3_outer_boundary_verts = None + + +sub_domain4_vertices = [sub_domain0_vertices[0], + interface24_vertices[1], + interface34_vertices[1], + interface34_vertices[0], + interface45_vertices[0]] + +subdomain4_outer_boundary_verts = { + 0: [interface45_vertices[0], + sub_domain0_vertices[0], + interface24_vertices[1]] +} + +sub_domain5_vertices = [interface45_vertices[0], + interface15_vertices[0], + interface15_vertices[1], + sub_domain0_vertices[3]] + +subdomain5_outer_boundary_verts = { + 0: [interface15_vertices[1], + sub_domain0_vertices[3], + interface45_vertices[0]] +} + +# list of subdomains given by the boundary polygon vertices. +# Subdomains are given as a list of dolfin points forming +# a closed polygon, such that mshr.Polygon(subdomain_def_points[i]) can be used +# to create the subdomain. subdomain_def_points[0] contains the +# vertices of the global simulation domain and subdomain_def_points[i] contains +# the vertices of the subdomain i. +subdomain_def_points = [sub_domain0_vertices, + sub_domain1_vertices, + sub_domain2_vertices, + sub_domain3_vertices, + sub_domain4_vertices, + sub_domain5_vertices] +# in the below list, index 0 corresponds to the 12 interface which has global +# marker value 1 +interface_def_points = [interface13_vertices, + interface12_vertices, + interface23_vertices, + interface24_vertices, + interface34_vertices, + interface45_vertices, + interface15_vertices,] + +# adjacent_subdomains[i] contains the indices of the subdomains sharing the +# interface i (i.e. given by interface_def_points[i]). +adjacent_subdomains = [[1, 3], [1, 2], [2, 3], [2, 4], [3, 4], [4, 5], [1, 5]] + +# if a subdomain has no outer boundary write None instead, i.e. +# i: None +# if i is the index of the inner subdomain. +outer_boundary_def_points = { + # subdomain number + 1: subdomain1_outer_boundary_verts, + 2: subdomain2_outer_boundary_verts, + 3: subdomain3_outer_boundary_verts, + 4: subdomain4_outer_boundary_verts, + 5: subdomain5_outer_boundary_verts +} + +isRichards = { + 1: True, + 2: False, + 3: False, + 4: False, + 5: True, + } + +# isRichards = { +# 1: True, +# 2: True, +# 3: True, +# 4: True, +# 5: True, +# 6: True +# } + +# Dict of the form: { subdom_num : viscosity } +viscosity = { + 1: {'wetting' :1, + 'nonwetting': 1/50}, + 2: {'wetting' :1, + 'nonwetting': 1/50}, + 3: {'wetting' :1, + 'nonwetting': 1/50}, + 4: {'wetting' :1, + 'nonwetting': 1/50}, + 5: {'wetting' :1, + 'nonwetting': 1/50}, +} + +# Dict of the form: { subdom_num : density } +densities = { + 1: {'wetting': 997.0, #997 + 'nonwetting': 1.225}, #1}, #1.225}, + 2: {'wetting': 997.0, #997 + 'nonwetting': 1.225}, #1.225}, + 3: {'wetting': 997.0, #997 + 'nonwetting': 1.225}, #1.225}, + 4: {'wetting': 997.0, #997 + 'nonwetting': 1.225}, #1.225} + 5: {'wetting': 997.0, #997 + 'nonwetting': 1.225}, #1.225}, +} +gravity_acceleration = 9.81 +# porosities taken from +# https://www.geotechdata.info/parameter/soil-porosity.html +# Dict of the form: { subdom_num : porosity } +porosity = { + 1: 0.2, #0.2, # Clayey gravels, clayey sandy gravels + 2: 0.2, #0.22, # Silty gravels, silty sandy gravels + 3: 0.2, #0.37, # Clayey sands + 4: 0.2, #0.2 # Silty or sandy clay + 5: 0.2, # +} + +# subdom_num : subdomain L for L-scheme +L = { + 1: {'wetting' :Lw1, + 'nonwetting': Lnw1}, + 2: {'wetting' :Lw2, + 'nonwetting': Lnw2}, + 3: {'wetting' :Lw3, + 'nonwetting': Lnw3}, + 4: {'wetting' :Lw4, + 'nonwetting': Lnw4}, + 5: {'wetting' :Lw5, + 'nonwetting': Lnw5}, +} + + +# interface_num : lambda parameter for the L-scheme on that interface. +# Note that interfaces are numbered starting from 0, because +# adjacent_subdomains is a list and not a dict. Historic fuckup, I know +# We have defined above as interfaces +# # interface_vertices introduces a global numbering of interfaces. +# interface_def_points = [interface13_vertices, +# interface12_vertices, +# interface23_vertices, +# interface24_vertices, +# interface34_vertices, +# interface45_vertices, +# interface15_vertices,] +lambda_param = { + 0: {'wetting': lambda13_w, + 'nonwetting': lambda13_nw},# + 1: {'wetting': lambda12_w, + 'nonwetting': lambda12_nw},# + 2: {'wetting': lambda23_w, + 'nonwetting': lambda23_nw},# + 3: {'wetting': lambda24_w, + 'nonwetting': lambda24_nw},# + 4: {'wetting': lambda34_w, + 'nonwetting': lambda34_nw},# + 5: {'wetting': lambda45_w, + 'nonwetting': lambda45_nw},# + 6: {'wetting': lambda15_w, + 'nonwetting': lambda15_nw}# +} + + +# after Lewis, see pdf file +intrinsic_permeability = { + 1: 0.01, # sand + 2: 0.01, # sand, there is a range + 3: 0.01, #10e-2, # clay has a range + 4: 0.01, #10e-3 + 5: 0.01, #10e-2, # clay has a range + 6: 0.01, #10e-3 +} + + + +# relative permeabilty functions on subdomain 1 +def rel_perm1w(s): + # relative permeabilty wetting on subdomain1 + return intrinsic_permeability[1]*s**2 + + +def rel_perm1nw(s): + # relative permeabilty nonwetting on subdomain1 + return intrinsic_permeability[1]*(1-s)**2 + + +# relative permeabilty functions on subdomain 2 +def rel_perm2w(s): + # relative permeabilty wetting on subdomain2 + return intrinsic_permeability[2]*s**3 + + +def rel_perm2nw(s): + # relative permeabilty nonwetting on subdomain2 + return intrinsic_permeability[2]*(1-s)**3 + + +# relative permeabilty functions on subdomain 3 +def rel_perm3w(s): + # relative permeabilty wetting on subdomain3 + return intrinsic_permeability[3]*s**3 + + +def rel_perm3nw(s): + # relative permeabilty nonwetting on subdomain3 + return intrinsic_permeability[3]*(1-s)**3 + + +# relative permeabilty functions on subdomain 4 +def rel_perm4w(s): + # relative permeabilty wetting on subdomain4 + return intrinsic_permeability[4]*s**3 + + +def rel_perm4nw(s): + # relative permeabilty nonwetting on subdomain4 + return intrinsic_permeability[4]*(1-s)**3 + + +# relative permeabilty functions on subdomain 5 +def rel_perm5w(s): + # relative permeabilty wetting on subdomain5 + return intrinsic_permeability[5]*s**2 + + +def rel_perm5nw(s): + # relative permeabilty nonwetting on subdomain5 + return intrinsic_permeability[5]*(1-s)**2 + + +_rel_perm1w = ft.partial(rel_perm1w) +_rel_perm1nw = ft.partial(rel_perm1nw) + +_rel_perm2w = ft.partial(rel_perm2w) +_rel_perm2nw = ft.partial(rel_perm2nw) + +_rel_perm3w = ft.partial(rel_perm3w) +_rel_perm3nw = ft.partial(rel_perm3nw) + +_rel_perm4w = ft.partial(rel_perm4w) +_rel_perm4nw = ft.partial(rel_perm4nw) + +_rel_perm5w = ft.partial(rel_perm5w) +_rel_perm5nw = ft.partial(rel_perm5nw) + + +subdomain1_rel_perm = { + 'wetting': _rel_perm1w, + 'nonwetting': _rel_perm1nw +} + +subdomain2_rel_perm = { + 'wetting': _rel_perm2w, + 'nonwetting': _rel_perm2nw +} + +subdomain3_rel_perm = { + 'wetting': _rel_perm3w, + 'nonwetting': _rel_perm3nw +} + +subdomain4_rel_perm = { + 'wetting': _rel_perm4w, + 'nonwetting': _rel_perm4nw +} + +subdomain5_rel_perm = { + 'wetting': _rel_perm5w, + 'nonwetting': _rel_perm5nw +} + + +# dictionary of relative permeabilties on all domains. +relative_permeability = { + 1: subdomain1_rel_perm, + 2: subdomain2_rel_perm, + 3: subdomain3_rel_perm, + 4: subdomain4_rel_perm, + 5: subdomain5_rel_perm +} + + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 1 +def rel_perm1w_prime(s): + # relative permeabilty on subdomain1 + return intrinsic_permeability[1]*2*s + + +def rel_perm1nw_prime(s): + # relative permeabilty on subdomain1 + return -1*intrinsic_permeability[1]*2*(1-s) + + +def rel_perm2w_prime(s): + # relative permeabilty on subdomain2 + return intrinsic_permeability[2]*3.0*s**2 + + +def rel_perm2nw_prime(s): + # relative permeabilty on subdomain2 + return -1*intrinsic_permeability[2]*3.0*(1-s)**2 + + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 3 +def rel_perm3w_prime(s): + # relative permeabilty on subdomain3 + return intrinsic_permeability[3]*3.0*s**2 + + +def rel_perm3nw_prime(s): + # relative permeabilty on subdomain3 + return -1*intrinsic_permeability[3]*3.0*(1-s)**2 + + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 4 +def rel_perm4w_prime(s): + # relative permeabilty on subdomain4 + return intrinsic_permeability[4]*3.0*s**2 + + +def rel_perm4nw_prime(s): + # relative permeabilty on subdomain4 + return -1*intrinsic_permeability[4]*3.0*(1-s)**2 + + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 5 +def rel_perm5w_prime(s): + # relative permeabilty on subdomain5 + return intrinsic_permeability[5]*2.0*s + + +def rel_perm5nw_prime(s): + # relative permeabilty on subdomain5 + return -1*intrinsic_permeability[5]*2.0*(1-s) + + +_rel_perm1w_prime = ft.partial(rel_perm1w_prime) +_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime) +_rel_perm2w_prime = ft.partial(rel_perm2w_prime) +_rel_perm2nw_prime = ft.partial(rel_perm2nw_prime) +_rel_perm3w_prime = ft.partial(rel_perm3w_prime) +_rel_perm3nw_prime = ft.partial(rel_perm3nw_prime) +_rel_perm4w_prime = ft.partial(rel_perm4w_prime) +_rel_perm4nw_prime = ft.partial(rel_perm4nw_prime) +_rel_perm5w_prime = ft.partial(rel_perm5w_prime) +_rel_perm5nw_prime = ft.partial(rel_perm5nw_prime) + +subdomain1_rel_perm_prime = { + 'wetting': _rel_perm1w_prime, + 'nonwetting': _rel_perm1nw_prime +} + + +subdomain2_rel_perm_prime = { + 'wetting': _rel_perm2w_prime, + 'nonwetting': _rel_perm2nw_prime +} + +subdomain3_rel_perm_prime = { + 'wetting': _rel_perm3w_prime, + 'nonwetting': _rel_perm3nw_prime +} + + +subdomain4_rel_perm_prime = { + 'wetting': _rel_perm4w_prime, + 'nonwetting': _rel_perm4nw_prime +} + +subdomain5_rel_perm_prime = { + 'wetting': _rel_perm5w_prime, + 'nonwetting': _rel_perm5nw_prime +} + + +# dictionary of relative permeabilties on all domains. +ka_prime = { + 1: subdomain1_rel_perm_prime, + 2: subdomain2_rel_perm_prime, + 3: subdomain3_rel_perm_prime, + 4: subdomain4_rel_perm_prime, + 5: subdomain5_rel_perm_prime +} + + + +# this function needs to be monotonically decreasing in the capillary_pressure. +# since in the richards case pc=-pw, this becomes as a function of pw a mono +# tonically INCREASING function like in our Richards-Richards paper. However +# since we unify the treatment in the code for Richards and two-phase, we need +# the same requierment +# for both cases, two-phase and Richards. +def saturation(pc, index): + # inverse capillary pressure-saturation-relationship + return df.conditional(pc > 0, 1/((1 + pc)**(1/(index + 1))), 1) + + +def saturation_sym(pc, index): + # inverse capillary pressure-saturation-relationship + return 1/((1 + pc)**(1/(index + 1))) + + +# derivative of S-pc relationship with respect to pc. This is needed for the +# construction of a analytic solution. +def saturation_sym_prime(pc, index): + # inverse capillary pressure-saturation-relationship + return -1/((index+1)*(1 + pc)**((index+2)/(index+1))) + + +# note that the conditional definition of S-pc in the nonsymbolic part will be +# incorporated in the construction of the exact solution below. +S_pc_sym = { + 1: ft.partial(saturation_sym, index=1), + 2: ft.partial(saturation_sym, index=2), + 3: ft.partial(saturation_sym, index=2), + 4: ft.partial(saturation_sym, index=2), + 5: ft.partial(saturation_sym, index=1) +} + +S_pc_sym_prime = { + 1: ft.partial(saturation_sym_prime, index=1), + 2: ft.partial(saturation_sym_prime, index=2), + 3: ft.partial(saturation_sym_prime, index=2), + 4: ft.partial(saturation_sym_prime, index=2), + 5: ft.partial(saturation_sym_prime, index=1) +} + +sat_pressure_relationship = { + 1: ft.partial(saturation, index=1), + 2: ft.partial(saturation, index=2), + 3: ft.partial(saturation, index=2), + 4: ft.partial(saturation, index=2), + 5: ft.partial(saturation, index=1) +} + +############################################# +# Manufacture source expressions with sympy # +############################################# +x, y = sym.symbols('x[0], x[1]') # needed by UFL +t = sym.symbols('t', positive=True) + + +p_e_sym = { + 1: {'wetting': -7.0 - (1.0 + t*t)*(1.0 + x*x + y*y), + 'nonwetting': 0*t }, + 2: {'wetting': -7.0 - (1.0 + t*t)*(1.0 + x*x), + 'nonwetting': (-1.0 -t*(1.0 + x**2) - sym.sqrt(2+t**2)**2)*y**2 }, + 3: {'wetting': -7.0 - (1.0 + t*t)*(1.0 + x*x), + 'nonwetting': (-1.0 -t*(1.0 + x**2) - sym.sqrt(2+t**2)**2)*y**2 }, + 4: {'wetting': -7.0 - (1.0 + t*t)*(1.0 + x*x), + 'nonwetting': (-1.0 -t*(1.0 + x**2) - sym.sqrt(2+t**2)**2)*y**2 }, + 5: {'wetting': -7.0 - (1.0 + t*t)*(1.0 + x*x + y*y), + 'nonwetting': 0*t }, +} + +pc_e_sym = dict() +for subdomain, isR in isRichards.items(): + if isR: + pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']}) + else: + pc_e_sym.update( + {subdomain: p_e_sym[subdomain]['nonwetting'] + - p_e_sym[subdomain]['wetting']} + ) + + +symbols = {"x": x, + "y": y, + "t": t} +# turn above symbolic code into exact solution for dolphin and +# construct the rhs that matches the above exact solution. +exact_solution_example = hlp.generate_exact_solution_expressions( + symbols=symbols, + isRichards=isRichards, + symbolic_pressure=p_e_sym, + symbolic_capillary_pressure=pc_e_sym, + saturation_pressure_relationship=S_pc_sym, + saturation_pressure_relationship_prime=S_pc_sym_prime, + viscosity=viscosity, + porosity=porosity, + relative_permeability=relative_permeability, + relative_permeability_prime=ka_prime, + densities=densities, + gravity_acceleration=gravity_acceleration, + include_gravity=include_gravity, + ) +source_expression = exact_solution_example['source'] +exact_solution = exact_solution_example['exact_solution'] +initial_condition = exact_solution_example['initial_condition'] + +# Dictionary of dirichlet boundary conditions. +dirichletBC = dict() +# similarly to the outer boundary dictionary, if a patch has no outer boundary +# None should be written instead of an expression. +# This is a bit of a brainfuck: +# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind. +# Since a domain patch can have several disjoint outer boundary parts, the +# expressions need to get an enumaration index which starts at 0. +# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of +# subdomain ind and boundary part j. +# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting'] +# return the actual expression needed for the dirichlet condition for both +# phases if present. + +# subdomain index: {outer boudary part index: {phase: expression}} +for subdomain in isRichards.keys(): + # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] + # is None + if outer_boundary_def_points[subdomain] is None: + dirichletBC.update({subdomain: None}) + else: + dirichletBC.update({subdomain: dict()}) + # set the dirichlet conditions to be the same code as exact solution on + # the subdomain. + for outer_boundary_ind in outer_boundary_def_points[subdomain].keys(): + dirichletBC[subdomain].update( + {outer_boundary_ind: exact_solution[subdomain]} + ) + + +# LOG FILE OUTPUT ############################################################# +# read this file and print it to std out. This way the simulation can produce a +# log file with ./TP-R-layered_soil.py | tee simulation.log +f = open(thisfile, 'r') +print(f.read()) +f.close() + + +# RUN ######################################################################### +for starttime in starttimes: + for mesh_resolution, solver_tol in resolutions.items(): + # initialise LDD simulation class + simulation = ldd.LDDsimulation( + tol=1E-14, + LDDsolver_tol=solver_tol, + debug=debugflag, + max_iter_num=max_iter_num, + FEM_Lagrange_degree=FEM_Lagrange_degree, + mesh_study=mesh_study + ) + + simulation.set_parameters( + use_case=use_case, + output_dir=output_string, + subdomain_def_points=subdomain_def_points, + isRichards=isRichards, + interface_def_points=interface_def_points, + outer_boundary_def_points=outer_boundary_def_points, + adjacent_subdomains=adjacent_subdomains, + mesh_resolution=mesh_resolution, + viscosity=viscosity, + porosity=porosity, + L=L, + lambda_param=lambda_param, + relative_permeability=relative_permeability, + saturation=sat_pressure_relationship, + starttime=starttime, + number_of_timesteps=number_of_timesteps, + number_of_timesteps_to_analyse=number_of_timesteps_to_analyse, + plot_timestep_every=plot_timestep_every, + timestep_size=timestep_size, + sources=source_expression, + initial_conditions=initial_condition, + dirichletBC_expression_strings=dirichletBC, + exact_solution=exact_solution, + densities=densities, + include_gravity=include_gravity, + gravity_acceleration=gravity_acceleration, + write2file=write_to_file, + ) + + simulation.initialise() + output_dir = simulation.output_dir + # simulation.write_exact_solution_to_xdmf() + output = simulation.run(analyse_condition=analyse_condition) + for subdomain_index, subdomain_output in output.items(): + mesh_h = subdomain_output['mesh_size'] + for phase, error_dict in subdomain_output['errornorm'].items(): + filename = output_dir \ + + "subdomain{}".format(subdomain_index)\ + + "-space-time-errornorm-{}-phase.csv".format(phase) + # for errortype, errornorm in error_dict.items(): + + # eocfile = open("eoc_filename", "a") + # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" ) + # eocfile.close() + # if subdomain.isRichards:mesh_h + data_dict = { + 'mesh_parameter': mesh_resolution, + 'mesh_h': mesh_h, + } + for norm_type, errornorm in error_dict.items(): + data_dict.update( + {norm_type: errornorm} + ) + errors = pd.DataFrame(data_dict, index=[mesh_resolution]) + # check if file exists + if os.path.isfile(filename) is True: + with open(filename, 'a') as f: + errors.to_csv( + f, + header=False, + sep='\t', + encoding='utf-8', + index=False + ) + else: + errors.to_csv( + filename, + sep='\t', + encoding='utf-8', + index=False + ) diff --git a/Two-phase-Richards/multi-patch/five_patch_domain_with_inner_patch/run-simulation b/Two-phase-Richards/multi-patch/five_patch_domain_with_inner_patch/run-simulation new file mode 100755 index 0000000..0eb4975 --- /dev/null +++ b/Two-phase-Richards/multi-patch/five_patch_domain_with_inner_patch/run-simulation @@ -0,0 +1,16 @@ +#!/bin/bash + +[ $# -eq 0 ] && { echo "Usage: $0 simulation_file [logfile_name]"; exit 1; } + +SIMULATION_FILE=$1 +SIMULATION=${SIMULATION_FILE%.py} +LOGFILE_DEFAULT="$SIMULATION.log" + +DATE=$(date -I) +LOGFILE=${2:-$DATE-$LOGFILE_DEFAULT} + +GREETING="Simulation $SIMULATION is run on $DATE by $USER" + +echo $GREETING +echo "running $SIMULATION_FILE | tee $LOGFILE" +./$SIMULATION_FILE | tee $LOGFILE diff --git a/Two-phase-Richards/multi-patch/layered_soil_with_inner_patch/TP-R-layered_soil_with_inner_patch-all-params-one-finer-dt.py b/Two-phase-Richards/multi-patch/layered_soil_with_inner_patch/TP-R-layered_soil_with_inner_patch-all-params-one-finer-dt.py old mode 100644 new mode 100755 diff --git a/Two-phase-Richards/multi-patch/layered_soil_with_inner_patch/TP-R-layered_soil_with_inner_patch-realistic.py b/Two-phase-Richards/multi-patch/layered_soil_with_inner_patch/TP-R-layered_soil_with_inner_patch-realistic.py index ec5f1d5..d818585 100755 --- a/Two-phase-Richards/multi-patch/layered_soil_with_inner_patch/TP-R-layered_soil_with_inner_patch-realistic.py +++ b/Two-phase-Richards/multi-patch/layered_soil_with_inner_patch/TP-R-layered_soil_with_inner_patch-realistic.py @@ -5,12 +5,8 @@ This program sets up an LDD simulation """ import dolfin as df -# import mshr -# import numpy as np import sympy as sym -# import typing as tp import functools as ft -# import domainPatch as dp import LDDsimulation as ldd import helpers as hlp import datetime @@ -34,8 +30,8 @@ sym.init_printing() # solver_tol = 6E-7 use_case = "TP-R-layered-soil-with-inner-patch-realistic" # name of this very file. Needed for log output. -thisfile = "TP-R-layered_soil_with_inner_patch.py" -max_iter_num = 300 +thisfile = "TP-R-layered_soil_with_inner_patch-realistic.py" +max_iter_num = 700 FEM_Lagrange_degree = 1 mesh_study = False resolutions = { @@ -43,7 +39,7 @@ resolutions = { # 2: 2e-6, # h=1.1180 # 4: 2e-6, # h=0.5590 # 8: 2e-6, # h=0.2814 - 16: 2e-6, # h=0.1412 + 16: 8e-6, # h=0.1412 # 32: 2e-6, # 64: 2e-6, # 128: 2e-6 @@ -835,18 +831,18 @@ t = sym.symbols('t', positive=True) p_e_sym = { - 1: {'wetting': -5.0 - (1.0 + t*t)*(1.0 + x*x + y*y), - 'nonwetting': (-1 -t*(1.1 + y + x**2)) }, - 2: {'wetting': -5.0 - (1.0 + t*t)*(1.0 + x*x + y*y), - 'nonwetting': (-1 -t*(1.1 + y + x**2)) }, - 3: {'wetting': (-5.0 - (1.0 + t*t)*(1.0 + x*x)), - 'nonwetting': (-1 -t*(1 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2) }, - 4: {'wetting': (-5.0 - (1.0 + t*t)*(1.0 + x*x)), - 'nonwetting': (-1 -t*(1 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2) }, - 5: {'wetting': (-5.0 - (1.0 + t*t)*(1.0 + x*x)), - 'nonwetting': (-1 -t*(1 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2) }, - 6: {'wetting': (-5.0 - (1.0 + t*t)*(1.0 + x*x)), - 'nonwetting': (-1 -t*(1 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2) }, + 1: {'wetting': -7.0 - (1.0 + t*t)*(1.0 + x*x + y*y), + 'nonwetting': 0*t }, + 2: {'wetting': -7.0 - (1.0 + t*t)*(1.0 + x*x + y*y), + 'nonwetting': 0*t }, + 3: {'wetting': (-7.0 - (1.0 + t*t)*(1.0 + x*x)), + 'nonwetting': (-1.0 -t*(1.0 + x**2) - sym.sqrt(2+t**2)**2)*y**2 }, + 4: {'wetting': (-7.0 - (1.0 + t*t)*(1.0 + x*x)), + 'nonwetting': (-1.0 -t*(1.0 + x**2) - sym.sqrt(2+t**2)**2)*y**2 }, + 5: {'wetting': (-7.0 - (1.0 + t*t)*(1.0 + x*x)), + 'nonwetting': (-1.0 -t*(1.0 + x**2) - sym.sqrt(2+t**2)**2)*y**2 }, + 6: {'wetting': (-7.0 - (1.0 + t*t)*(1.0 + x*x)), + 'nonwetting': (-1.0 -t*(1.0 + x**2) - sym.sqrt(2+t**2)**2)*y**2 }, } pc_e_sym = dict() -- GitLab