diff --git a/Two-phase-Richards/multi-patch/layered_soil_with_inner_patch/mesh_study/TP-R-layered_soil_with_inner_patch-realistic-same-intrinsic.py b/Two-phase-Richards/multi-patch/layered_soil_with_inner_patch/mesh_study/TP-R-layered_soil_with_inner_patch-realistic-same-intrinsic.py new file mode 100644 index 0000000000000000000000000000000000000000..cb6372a665985099e1e0b064bbbc38be26984370 --- /dev/null +++ b/Two-phase-Richards/multi-patch/layered_soil_with_inner_patch/mesh_study/TP-R-layered_soil_with_inner_patch-realistic-same-intrinsic.py @@ -0,0 +1,481 @@ +#!/usr/bin/python3 +"""Layered soil simulation with inner patch. + +This program sets up an LDD simulation +""" +import dolfin as df +import sympy as sym +import functions as fts +import LDDsimulation as ldd +import helpers as hlp +import datetime +import os +import multiprocessing as mp +import domainSubstructuring as dss + +# init sympy session +sym.init_printing() + +# PREREQUISITS ############################################################### +# check if output directory "./output" exists. This will be used in +# the generation of the output string. +if not os.path.exists('./output'): + os.mkdir('./output') + print("Directory ", './output', " created ") +else: + print("Directory ", './output', " already exists. Will use as output \ + directory") + +date = datetime.datetime.now() +datestr = date.strftime("%Y-%m-%d") + +# Name of the usecase that will be printed during simulation. +use_case = "TP-R-layered-soil-with-inner-patch-realistic-same-intrinsic" +# The name of this very file. Needed for creating log output. +thisfile = "TP-R-layered_soil_with_inner_patch-realistic-same-intrinsic.py" + +# GENERAL SOLVER CONFIG ###################################################### +# maximal iteration per timestep +max_iter_num = 1000 +FEM_Lagrange_degree = 1 + +# GRID AND MESH STUDY SPECIFICATIONS ######################################### +mesh_study = True +resolutions = { + 1: 2e-6, # h=2 + 2: 2e-6, # h=1.1180 + 4: 2e-6, # h=0.5590 + 8: 2e-6, # h=0.2814 + 16: 1e-6, # h=0.1412 + 32: 1e-6, + 64: 5e-7, + 128: 5e-7 + } + +# starttimes gives a list of starttimes to run the simulation from. +# The list is looped over and a simulation is run with t_0 as initial time +# for each element t_0 in starttimes. +starttimes = {0: 0.0} +# starttimes = {0: 0.0, 1:0.3, 2:0.6, 3:0.9} +timestep_size = 0.001 +number_of_timesteps = 1000 + +# LDD scheme parameters ###################################################### + +Lw1 = 0.01 # /timestep_size +Lnw1 = Lw1 + +Lw2 = 0.01 # /timestep_size +Lnw2 = Lw2 + +Lw3 = 0.01 # /timestep_size +Lnw3 = 0.003 + +Lw4 = 0.01 # /timestep_size +Lnw4 = 0.003 + +Lw5 = 0.01 # /timestep_size +Lnw5 = 0.003 + +Lw6 = 0.01 # /timestep_size +Lnw6 = 0.003 + +lambda12_w = 0.5 +lambda12_nw = 0.5 + +lambda23_w = 0.5 +lambda23_nw = 0.5 + +lambda24_w = 0.5 +lambda24_nw= 0.5 + +lambda25_w= 0.5 +lambda25_nw= 0.5 + +lambda34_w = 0.5 +lambda34_nw = 0.5 + +lambda36_w = 0.5 +lambda36_nw = 0.5 + +lambda45_w = 0.5 +lambda45_nw = 0.5 + +lambda46_w = 0.5 +lambda46_nw = 0.5 + +lambda56_w = 0.5 +lambda56_nw = 0.5 + +include_gravity = False +debugflag = False +analyse_condition = False + +# I/O CONFIG ################################################################# +# when number_of_timesteps is high, it might take a long time to write all +# timesteps to disk. Therefore, you can choose to only write data of every +# plot_timestep_every timestep to disk. +plot_timestep_every = 3 +# Decide how many timesteps you want analysed. Analysed means, that +# subsequent errors of the L-iteration within the timestep are written out. +number_of_timesteps_to_analyse = 5 + +# fine grained control over data to be written to disk in the mesh study case +# as well as for a regular simuation for a fixed grid. +if mesh_study: + write_to_file = { + # output the relative errornorm (integration in space) w.r.t. an exact + # solution for each timestep into a csv file. + 'space_errornorms': True, + # save the mesh and marker functions to disk + 'meshes_and_markers': True, + # save xdmf/h5 data for each LDD iteration for timesteps determined by + # number_of_timesteps_to_analyse. I/O intensive! + 'L_iterations_per_timestep': False, + # save solution to xdmf/h5. + 'solutions': True, + # save absolute differences w.r.t an exact solution to xdmf/h5 file + # to monitor where on the domains errors happen + 'absolute_differences': True, + # analyise condition numbers for timesteps determined by + # number_of_timesteps_to_analyse and save them over time to csv. + 'condition_numbers': analyse_condition, + # output subsequent iteration errors measured in L^2 to csv for + # timesteps determined by number_of_timesteps_to_analyse. + # Usefull to monitor convergence of the acutal LDD solver. + 'subsequent_errors': True + } +else: + write_to_file = { + 'space_errornorms': True, + 'meshes_and_markers': True, + 'L_iterations_per_timestep': False, + 'solutions': True, + 'absolute_differences': True, + 'condition_numbers': analyse_condition, + 'subsequent_errors': True + } + +# OUTPUT FILE STRING ######################################################### +output_string = "./output/{}-{}_timesteps{}_P{}".format( + datestr, use_case, number_of_timesteps, FEM_Lagrange_degree + ) + +# DOMAIN AND INTERFACES ####################################################### +substructuring = dss.layeredSoilInnerPatch() +interface_def_points = substructuring.interface_def_points +adjacent_subdomains = substructuring.adjacent_subdomains +subdomain_def_points = substructuring.subdomain_def_points +outer_boundary_def_points = substructuring.outer_boundary_def_points + +# MODEL CONFIGURATION ######################################################### +isRichards = { + 1: True, + 2: True, + 3: False, + 4: False, + 5: False, + 6: False + } + +# isRichards = { +# 1: True, +# 2: True, +# 3: True, +# 4: True, +# 5: True, +# 6: True +# } + +# Dict of the form: { subdom_num : viscosity } +viscosity = { + 1: {'wetting' :1, + 'nonwetting': 1/50}, + 2: {'wetting' :1, + 'nonwetting': 1/50}, + 3: {'wetting' :1, + 'nonwetting': 1/50}, + 4: {'wetting' :1, + 'nonwetting': 1/50}, + 5: {'wetting' :1, + 'nonwetting': 1/50}, + 6: {'wetting' :1, + 'nonwetting': 1/50}, +} + +# Dict of the form: { subdom_num : density } +densities = { + 1: {'wetting': 997.0, #997 + 'nonwetting': 1.225}, #1}, #1.225}, + 2: {'wetting': 997.0, #997 + 'nonwetting': 1.225}, #1.225}, + 3: {'wetting': 997.0, #997 + 'nonwetting': 1.225}, #1.225}, + 4: {'wetting': 997.0, #997 + 'nonwetting': 1.225}, #1.225} + 5: {'wetting': 997.0, #997 + 'nonwetting': 1.225}, #1.225}, + 6: {'wetting': 997.0, #997 + 'nonwetting': 1.225} #1.225} +} + +gravity_acceleration = 9.81 +# porosities taken from +# https://www.geotechdata.info/parameter/soil-porosity.html +# Dict of the form: { subdom_num : porosity } +porosity = { + 1: 0.2, #0.2, # Clayey gravels, clayey sandy gravels + 2: 0.2, #0.22, # Silty gravels, silty sandy gravels + 3: 0.2, #0.37, # Clayey sands + 4: 0.2, #0.2 # Silty or sandy clay + 5: 0.2, # + 6: 0.2, # +} + +# subdom_num : subdomain L for L-scheme +L = { + 1: {'wetting' :Lw1, + 'nonwetting': Lnw1}, + 2: {'wetting' :Lw2, + 'nonwetting': Lnw2}, + 3: {'wetting' :Lw3, + 'nonwetting': Lnw3}, + 4: {'wetting' :Lw4, + 'nonwetting': Lnw4}, + 5: {'wetting' :Lw5, + 'nonwetting': Lnw5}, + 6: {'wetting' :Lw6, + 'nonwetting': Lnw6} +} + + +# interface_num : lambda parameter for the L-scheme on that interface. +# Note that interfaces are numbered starting from 0, because +# adjacent_subdomains is a list and not a dict. Historic fuckup, I know +# We have defined above as interfaces +# # interface_vertices introduces a global numbering of interfaces. +# interface_def_points = [interface12_vertices, +# interface23_vertices, +# interface24_vertices, +# interface25_vertices, +# interface34_vertices, +# interface36_vertices, +# interface45_vertices_a, +# interface45_vertices_b, +# interface46_vertices, +# interface56_vertices, +# ] +lambda_param = { + 0: {'wetting': lambda12_w, + 'nonwetting': lambda12_nw}, + 1: {'wetting': lambda23_w, + 'nonwetting': lambda23_nw}, + 2: {'wetting': lambda24_w, + 'nonwetting': lambda24_nw}, + 3: {'wetting': lambda25_w, + 'nonwetting': lambda25_nw}, + 4: {'wetting': lambda34_w, + 'nonwetting': lambda34_nw}, + 5: {'wetting': lambda36_w, + 'nonwetting': lambda36_nw}, + 6: {'wetting': lambda45_w, + 'nonwetting': lambda45_nw}, + 7: {'wetting': lambda45_w, + 'nonwetting': lambda45_nw}, + 8: {'wetting': lambda46_w, + 'nonwetting': lambda46_nw}, + 9: {'wetting': lambda56_w, + 'nonwetting': lambda56_nw}, +} + + +# after Lewis, see pdf file +intrinsic_permeability = { + 1: 0.01, # sand + 2: 0.01, # sand, there is a range + 3: 0.01, #10e-2, # clay has a range + 4: 0.01, #10e-3 + 5: 0.01, #10e-2, # clay has a range + 6: 0.01, #10e-3 +} + +# relative permeabilties +rel_perm_definition = { + 1: {"wetting": "Spow2", + "nonwetting": "oneMinusSpow2"}, + 2: {"wetting": "Spow2", + "nonwetting": "oneMinusSpow2"}, + 3: {"wetting": "Spow3", + "nonwetting": "oneMinusSpow3"}, + 4: {"wetting": "Spow3", + "nonwetting": "oneMinusSpow3"}, + 5: {"wetting": "Spow3", + "nonwetting": "oneMinusSpow3"}, + 6: {"wetting": "Spow3", + "nonwetting": "oneMinusSpow3"}, +} + +rel_perm_dict = fts.generate_relative_permeability_dicts(rel_perm_definition) +relative_permeability = rel_perm_dict["ka"] +ka_prime = rel_perm_dict["ka_prime"] + +# S-pc relation +Spc_on_subdomains = { + 1: {"testSpc": {"index": 1}}, + 2: {"testSpc": {"index": 1}}, + 3: {"testSpc": {"index": 2}}, + 4: {"testSpc": {"index": 2}}, + 5: {"testSpc": {"index": 2}}, + 6: {"testSpc": {"index": 2}}, +} + +Spc = fts.generate_Spc_dicts(Spc_on_subdomains) +S_pc_sym = Spc["symbolic"] +S_pc_sym_prime = Spc["prime_symbolic"] +sat_pressure_relationship = Spc["dolfin"] + +############################################################################### +# Manufacture source expressions with sympy # +############################################################################### +x, y = sym.symbols('x[0], x[1]') # needed by UFL +t = sym.symbols('t', positive=True) + + +p_e_sym = { + 1: {'wetting': -7.0 - (1.0 + t*t)*(1.0 + x*x + y*y), + 'nonwetting': 0*t }, + 2: {'wetting': -7.0 - (1.0 + t*t)*(1.0 + x*x + y*y), + 'nonwetting': 0*t }, + 3: {'wetting': (-7.0 - (1.0 + t*t)*(1.0 + x*x)), + 'nonwetting': (-1.0 -t*(1.0 + x**2) - sym.sqrt(2+t**2)**2)*y**2 }, + 4: {'wetting': (-7.0 - (1.0 + t*t)*(1.0 + x*x)), + 'nonwetting': (-1.0 -t*(1.0 + x**2) - sym.sqrt(2+t**2)**2)*y**2 }, + 5: {'wetting': (-7.0 - (1.0 + t*t)*(1.0 + x*x)), + 'nonwetting': (-1.0 -t*(1.0 + x**2) - sym.sqrt(2+t**2)**2)*y**2 }, + 6: {'wetting': (-7.0 - (1.0 + t*t)*(1.0 + x*x)), + 'nonwetting': (-1.0 -t*(1.0 + x**2) - sym.sqrt(2+t**2)**2)*y**2 }, +} + +pc_e_sym = hlp.generate_exact_symbolic_pc( + isRichards=isRichards, + symbolic_pressure=p_e_sym + ) + +symbols = {"x": x, + "y": y, + "t": t} +# turn above symbolic code into exact solution for dolphin and +# construct the rhs that matches the above exact solution. +exact_solution_example = hlp.generate_exact_solution_expressions( + symbols=symbols, + isRichards=isRichards, + symbolic_pressure=p_e_sym, + symbolic_capillary_pressure=pc_e_sym, + saturation_pressure_relationship=S_pc_sym, + saturation_pressure_relationship_prime=S_pc_sym_prime, + viscosity=viscosity, + porosity=porosity, + intrinsic_permeability=intrinsic_permeability, + relative_permeability=relative_permeability, + relative_permeability_prime=ka_prime, + densities=densities, + gravity_acceleration=gravity_acceleration, + include_gravity=include_gravity, + ) +source_expression = exact_solution_example['source'] +exact_solution = exact_solution_example['exact_solution'] +initial_condition = exact_solution_example['initial_condition'] + +# BOUNDARY CONDITIONS ######################################################### +# Dictionary of dirichlet boundary conditions. If an exact solution case is +# used, use the hlp.generate_exact_DirichletBC() method to generate the +# Dirichlet Boundary conditions from the exact solution. +dirichletBC = hlp.generate_exact_DirichletBC( + isRichards=isRichards, + outer_boundary_def_points=outer_boundary_def_points, + exact_solution=exact_solution + ) +# If no exact solution is provided you need to provide a dictionary of boundary +# conditions. See the definiton of hlp.generate_exact_DirichletBC() to see +# the structure. + +# LOG FILE OUTPUT ############################################################# +# read this file and print it to std out. This way the simulation can produce a +# log file with ./TP-R-layered_soil.py | tee simulation.log +f = open(thisfile, 'r') +print(f.read()) +f.close() + +# MAIN ######################################################################## +if __name__ == '__main__': + # dictionary of simualation parameters to pass to the run function. + # mesh_resolution and starttime are excluded, as they get passed explicitly + # to achieve parallelisation in these parameters in these parameters for + # mesh studies etc. + simulation_parameter = { + "tol": 1E-14, + "debugflag": debugflag, + "max_iter_num": max_iter_num, + "FEM_Lagrange_degree": FEM_Lagrange_degree, + "mesh_study": mesh_study, + "use_case": use_case, + "output_string": output_string, + "subdomain_def_points": subdomain_def_points, + "isRichards": isRichards, + "interface_def_points": interface_def_points, + "outer_boundary_def_points": outer_boundary_def_points, + "adjacent_subdomains": adjacent_subdomains, + # "mesh_resolution": mesh_resolution, + "viscosity": viscosity, + "porosity": porosity, + "L": L, + "lambda_param": lambda_param, + "relative_permeability": relative_permeability, + "intrinsic_permeability": intrinsic_permeability, + "sat_pressure_relationship": sat_pressure_relationship, + # "starttime": starttime, + "number_of_timesteps": number_of_timesteps, + "number_of_timesteps_to_analyse": number_of_timesteps_to_analyse, + "plot_timestep_every": plot_timestep_every, + "timestep_size": timestep_size, + "source_expression": source_expression, + "initial_condition": initial_condition, + "dirichletBC": dirichletBC, + "exact_solution": exact_solution, + "densities": densities, + "include_gravity": include_gravity, + "gravity_acceleration": gravity_acceleration, + "write_to_file": write_to_file, + "analyse_condition": analyse_condition + } + for number_shift, starttime in starttimes.items(): + simulation_parameter.update( + {"starttime_timestep_number_shift": number_shift} + ) + for mesh_resolution, solver_tol in resolutions.items(): + simulation_parameter.update({"solver_tol": solver_tol}) + hlp.info(simulation_parameter["use_case"]) + processQueue = mp.Queue() + LDDsim = mp.Process( + target=hlp.run_simulation, + args=( + simulation_parameter, + processQueue, + starttime, + mesh_resolution + ) + ) + LDDsim.start() + # LDDsim.join() + # hlp.run_simulation( + # mesh_resolution=mesh_resolution, + # starttime=starttime, + # parameter=simulation_parameter + # ) + + LDDsim.join() + if mesh_study: + simulation_output_dir = processQueue.get() + hlp.merge_spacetime_errornorms(isRichards=isRichards, + resolutions=resolutions, + output_dir=simulation_output_dir)