From 9d289a6aed3b5e690555293c5e160c612afe4f3e Mon Sep 17 00:00:00 2001 From: David Seus <david.seus@ians.uni-stuttgart.de> Date: Tue, 24 Sep 2019 15:21:36 +0200 Subject: [PATCH] set up TP-TP layered soil with inner patch --- ...nner_patch-realistic-split-up-interface.py | 750 ------------------ ...layered_soil_with_inner_patch-realistic.py | 205 +++-- 2 files changed, 145 insertions(+), 810 deletions(-) delete mode 100755 Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch-realistic-split-up-interface.py diff --git a/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch-realistic-split-up-interface.py b/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch-realistic-split-up-interface.py deleted file mode 100755 index bf29769..0000000 --- a/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch-realistic-split-up-interface.py +++ /dev/null @@ -1,750 +0,0 @@ -#!/usr/bin/python3 -"""This program sets up a domain together with a decomposition into subdomains -modelling layered soil. This is used for our LDD article with tp-tp and tp-r -coupling. - -Along with the subdomains and the mesh domain markers are set upself. -The resulting mesh is saved into files for later use. -""" - -#!/usr/bin/python3 -import dolfin as df -import mshr -import numpy as np -import sympy as sym -import typing as tp -import functools as ft -import domainPatch as dp -import LDDsimulation as ldd -import helpers as hlp - -# init sympy session -sym.init_printing() - -use_case = "TP-TP-layered-soil-with-inner-patch-realistic-split-interface-with-gravity" -solver_tol = 5E-6 -max_iter_num = 100 -############ GRID #######################ü -mesh_resolution = 30 -timestep_size = 0.00001 -number_of_timesteps = 1 -# decide how many timesteps you want analysed. Analysed means, that we write out -# subsequent errors of the L-iteration within the timestep. -number_of_timesteps_to_analyse = 0 -starttime = 0 - -Lw = 2 #/timestep_size -Lnw=Lw - -lambda_w = 40 -lambda_nw = 40 - -include_gravity = True -debugflag = True -analyse_condition = False - -output_string = "./output/2019-08-30-debug-{}-timesteps{}_".format(use_case, number_of_timesteps) - -# global domain -subdomain0_vertices = [df.Point(-1.0,-1.0), # - df.Point(1.0,-1.0),# - df.Point(1.0,1.0),# - df.Point(-1.0,1.0)] - -interface12_vertices = [df.Point(-1.0, 0.8), - df.Point(0.3, 0.8), - df.Point(0.5, 0.9), - df.Point(0.8, 0.7), - df.Point(1.0, 0.65)] - - - # interface23 -interface23_vertices = [df.Point(-1.0, 0.0), - df.Point(-0.35, 0.0), - # df.Point(6.5, 4.5), - df.Point(0.0, 0.0)] - -interface24_vertices = [interface23_vertices[2], - df.Point(0.6, 0.0), - ] - -interface25_vertices = [interface24_vertices[1], - df.Point(1.0, 0.0) - ] - - -interface32_vertices = [interface23_vertices[2], - interface23_vertices[1], - interface23_vertices[0]] - - -interface36_vertices = [df.Point(-1.0, -0.6), - df.Point(-0.6, -0.45)] - - -interface46_vertices = [interface36_vertices[1], - df.Point(0.3, -0.25)] - -interface56_vertices = [interface46_vertices[1], - df.Point(0.65, -0.6), - df.Point(1.0, -0.7)] - - - - -interface34_vertices = [interface36_vertices[1], - interface23_vertices[2]] -# interface36 - - -interface45_vertices_a = [interface56_vertices[0], - df.Point(0.7, -0.2),#df.Point(0.7, -0.2), - ] -interface45_vertices_b = [df.Point(0.7, -0.2),#df.Point(0.7, -0.2), - interface25_vertices[0] - ] - - -# # subdomain1. -# subdomain1_vertices = [interface12_vertices[0], -# interface12_vertices[1], -# interface12_vertices[2], -# interface12_vertices[3], -# interface12_vertices[4], # southern boundary, 12 interface -# subdomain0_vertices[2], # eastern boundary, outer boundary -# subdomain0_vertices[3]] # northern boundary, outer on_boundary -# -# # vertex coordinates of the outer boundaries. If it can not be specified as a -# # polygon, use an entry per boundary polygon. This information is used for defining -# # the Dirichlet boundary conditions. If a domain is completely internal, the -# # dictionary entry should be 0: None -# subdomain1_outer_boundary_verts = { -# 0: [interface12_vertices[4], # -# subdomain0_vertices[2], # eastern boundary, outer boundary -# subdomain0_vertices[3], -# interface12_vertices[0]] -# } -# - - -# #subdomain1 -# subdomain2_vertices = [interface23_vertices[0], -# interface23_vertices[1], -# interface23_vertices[2], -# interface23_vertices[3], -# interface23_vertices[4], -# interface23_vertices[5], # southern boundary, 23 interface -# subdomain1_vertices[4], # eastern boundary, outer boundary -# subdomain1_vertices[3], -# subdomain1_vertices[2], -# subdomain1_vertices[1], -# subdomain1_vertices[0] ] # northern boundary, 12 interface -# -# subdomain2_outer_boundary_verts = { -# 0: [interface23_vertices[5], -# subdomain1_vertices[4]], -# 1: [subdomain1_vertices[0], -# interface23_vertices[0]] -# } -# - -# interface_vertices introduces a global numbering of interfaces. -interface_def_points = [interface12_vertices, - interface23_vertices, - interface24_vertices, - interface25_vertices, - interface34_vertices, - interface36_vertices, - # interface45_vertices, - interface45_vertices_a, - interface45_vertices_b, - interface46_vertices, - interface56_vertices, - ] -adjacent_subdomains = [[1,2], - [2,3], - [2,4], - [2,5], - [3,4], - [3,6], - [4,5], - [4,5], - [4,6], - [5,6] - ] - -# subdomain1. -subdomain1_vertices = [interface12_vertices[0], - interface12_vertices[1], - interface12_vertices[2], - interface12_vertices[3], - interface12_vertices[4], # southern boundary, 12 interface - subdomain0_vertices[2], # eastern boundary, outer boundary - subdomain0_vertices[3]] # northern boundary, outer on_boundary - -# vertex coordinates of the outer boundaries. If it can not be specified as a -# polygon, use an entry per boundary polygon. This information is used for defining -# the Dirichlet boundary conditions. If a domain is completely internal, the -# dictionary entry should be 0: None -subdomain1_outer_boundary_verts = { - 0: [subdomain1_vertices[4], # - subdomain1_vertices[5], # eastern boundary, outer boundary - subdomain1_vertices[6], - subdomain1_vertices[0]] -} - -#subdomain1 -subdomain2_vertices = [interface23_vertices[0], - interface23_vertices[1], - interface23_vertices[2], - interface24_vertices[1], - interface25_vertices[1], # southern boundary, 23 interface - subdomain1_vertices[4], # eastern boundary, outer boundary - subdomain1_vertices[3], - subdomain1_vertices[2], - subdomain1_vertices[1], - subdomain1_vertices[0] ] # northern boundary, 12 interface - -subdomain2_outer_boundary_verts = { - 0: [subdomain2_vertices[9], - subdomain2_vertices[0]], - 1: [subdomain2_vertices[4], - subdomain2_vertices[5]] -} - - -subdomain3_vertices = [interface36_vertices[0], - interface36_vertices[1], - # interface34_vertices[0], - interface34_vertices[1], - # interface32_vertices[0], - interface32_vertices[1], - interface32_vertices[2] - ] - -subdomain3_outer_boundary_verts = { - 0: [subdomain3_vertices[4], - subdomain3_vertices[0]] -} - - -# subdomain3 -subdomain4_vertices = [interface46_vertices[0], - interface46_vertices[1], - # interface45_vertices[1], - interface45_vertices_a[1], - interface24_vertices[1], - interface24_vertices[0], - interface34_vertices[1] - ] - -subdomain4_outer_boundary_verts = None - -subdomain5_vertices = [interface56_vertices[0], - interface56_vertices[1], - interface56_vertices[2], - interface25_vertices[1], - interface25_vertices[0], - interface45_vertices_b[1], - interface45_vertices_b[0] -] - - -subdomain5_outer_boundary_verts = { - 0: [subdomain5_vertices[2], - subdomain5_vertices[3]] -} - - - -subdomain6_vertices = [subdomain0_vertices[0], - subdomain0_vertices[1], # southern boundary, outer boundary - interface56_vertices[2], - interface56_vertices[1], - interface56_vertices[0], - interface36_vertices[1], - interface36_vertices[0] - ] - -subdomain6_outer_boundary_verts = { - 0: [subdomain6_vertices[6], - subdomain6_vertices[0], - subdomain6_vertices[1], - subdomain6_vertices[2]] -} - - -subdomain_def_points = [subdomain0_vertices,# - subdomain1_vertices,# - subdomain2_vertices,# - subdomain3_vertices,# - subdomain4_vertices, - subdomain5_vertices, - subdomain6_vertices - ] - - -# if a subdomain has no outer boundary write None instead, i.e. -# i: None -# if i is the index of the inner subdomain. -outer_boundary_def_points = { - # subdomain number - 1: subdomain1_outer_boundary_verts, - 2: subdomain2_outer_boundary_verts, - 3: subdomain3_outer_boundary_verts, - 4: subdomain4_outer_boundary_verts, - 5: subdomain5_outer_boundary_verts, - 6: subdomain6_outer_boundary_verts -} - - -isRichards = { - 1: False, - 2: False, - 3: False, - 4: False, - 5: False, - 6: False - } - -# isRichards = { -# 1: True, -# 2: True, -# 3: True, -# 4: True, -# 5: True, -# 6: True -# } - -# Dict of the form: { subdom_num : viscosity } -viscosity = { - 1: {'wetting' :1, - 'nonwetting': 1/50}, - 2: {'wetting' :1, - 'nonwetting': 1/50}, - 3: {'wetting' :1, - 'nonwetting': 1/50}, - 4: {'wetting' :1, - 'nonwetting': 1/50}, - 5: {'wetting' :1, - 'nonwetting': 1/50}, - 6: {'wetting' :1, - 'nonwetting': 1/50}, -} - -# Dict of the form: { subdom_num : density } -densities = { - 1: {'wetting': 997, #997 - 'nonwetting': 1.225}, #1}, #1.225}, - 2: {'wetting': 997, #997 - 'nonwetting': 1.225}, #1.225}, - 3: {'wetting': 997, #997 - 'nonwetting': 1.225}, #1.225}, - 4: {'wetting': 997, #997 - 'nonwetting': 1.225}, #1.225} - 5: {'wetting': 997, #997 - 'nonwetting': 1.225}, #1.225}, - 6: {'wetting': 997, #997 - 'nonwetting': 1.225} #1.225} -} - -gravity_acceleration = 9.81 -# porosities taken from -# https://www.geotechdata.info/parameter/soil-porosity.html -# Dict of the form: { subdom_num : porosity } -porosity = { - 1: 0.2, #0.2, # Clayey gravels, clayey sandy gravels - 2: 0.22, #0.22, # Silty gravels, silty sandy gravels - 3: 0.22, #0.37, # Clayey sands - 4: 0.27, #0.2 # Silty or sandy clay - 5: 0.2, # - 6: 0.02, # -} - -# subdom_num : subdomain L for L-scheme -L = { - 1: {'wetting' :Lw, - 'nonwetting': Lnw}, - 2: {'wetting' :Lw, - 'nonwetting': Lnw}, - 3: {'wetting' :Lw, - 'nonwetting': Lnw}, - 4: {'wetting' :Lw, - 'nonwetting': Lnw}, - 5: {'wetting' :Lw, - 'nonwetting': Lnw}, - 6: {'wetting' :Lw, - 'nonwetting': Lnw} -} - -# subdom_num : lambda parameter for the L-scheme -lambda_param = { - 1: {'wetting': lambda_w, - 'nonwetting': lambda_nw},# - 2: {'wetting': lambda_w, - 'nonwetting': lambda_nw},# - 3: {'wetting': lambda_w, - 'nonwetting': lambda_nw},# - 4: {'wetting': lambda_w, - 'nonwetting': lambda_nw},# - 5: {'wetting': lambda_w, - 'nonwetting': lambda_nw},# - 6: {'wetting': lambda_w, - 'nonwetting': lambda_nw},# -} - - -## relative permeabilty functions on subdomain 1 -def rel_perm1w(s): - # relative permeabilty wetting on subdomain1 - return s**2 - - -def rel_perm1nw(s): - # relative permeabilty nonwetting on subdomain1 - return (1-s)**2 - - -## relative permeabilty functions on subdomain 2 -def rel_perm2w(s): - # relative permeabilty wetting on subdomain2 - return s**3 - - -def rel_perm2nw(s): - # relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2 - return (1-s)**3 - - -_rel_perm1w = ft.partial(rel_perm1w) -_rel_perm1nw = ft.partial(rel_perm1nw) -_rel_perm2w = ft.partial(rel_perm2w) -_rel_perm2nw = ft.partial(rel_perm2nw) - -subdomain1_rel_perm = { - 'wetting': _rel_perm1w,# - 'nonwetting': _rel_perm1nw -} - -subdomain2_rel_perm = { - 'wetting': _rel_perm2w,# - 'nonwetting': _rel_perm2nw -} - -# _rel_perm3 = ft.partial(rel_perm2) -# subdomain3_rel_perm = subdomain2_rel_perm.copy() -# -# _rel_perm4 = ft.partial(rel_perm1) -# subdomain4_rel_perm = subdomain1_rel_perm.copy() - -# dictionary of relative permeabilties on all domains. -relative_permeability = { - 1: subdomain1_rel_perm, - 2: subdomain1_rel_perm, - 3: subdomain2_rel_perm, - 4: subdomain2_rel_perm, - 5: subdomain2_rel_perm, - 6: subdomain2_rel_perm, -} - -# definition of the derivatives of the relative permeabilities -# relative permeabilty functions on subdomain 1 -def rel_perm1w_prime(s): - # relative permeabilty on subdomain1 - return 2*s - -def rel_perm1nw_prime(s): - # relative permeabilty on subdomain1 - return -2*(1-s) - -# definition of the derivatives of the relative permeabilities -# relative permeabilty functions on subdomain 1 -def rel_perm2w_prime(s): - # relative permeabilty on subdomain1 - return 3*s**2 - -def rel_perm2nw_prime(s): - # relative permeabilty on subdomain1 - return -3*(1-s)**2 - -_rel_perm1w_prime = ft.partial(rel_perm1w_prime) -_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime) -_rel_perm2w_prime = ft.partial(rel_perm2w_prime) -_rel_perm2nw_prime = ft.partial(rel_perm2nw_prime) - -subdomain1_rel_perm_prime = { - 'wetting': _rel_perm1w_prime, - 'nonwetting': _rel_perm1nw_prime -} - - -subdomain2_rel_perm_prime = { - 'wetting': _rel_perm2w_prime, - 'nonwetting': _rel_perm2nw_prime -} - -# dictionary of relative permeabilties on all domains. -ka_prime = { - 1: subdomain1_rel_perm_prime, - 2: subdomain1_rel_perm_prime, - 3: subdomain2_rel_perm_prime, - 4: subdomain2_rel_perm_prime, - 5: subdomain2_rel_perm_prime, - 6: subdomain2_rel_perm_prime, -} - - - -# S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where -# we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw -# this function needs to be monotonically decreasing in the capillary pressure pc. -# since in the richards case pc=-pw, this becomes as a function of pw a mono -# tonically INCREASING function like in our Richards-Richards paper. However -# since we unify the treatment in the code for Richards and two-phase, we need -# the same requierment -# for both cases, two-phase and Richards. -# def saturation(pc, n_index, alpha): -# # inverse capillary pressure-saturation-relationship -# return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1) -# -# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where -# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw -# def saturation_sym(pc, n_index, alpha): -# # inverse capillary pressure-saturation-relationship -# #df.conditional(pc > 0, -# return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)) -# -# -# # derivative of S-pc relationship with respect to pc. This is needed for the -# # construction of a analytic solution. -# def saturation_sym_prime(pc, n_index, alpha): -# # inverse capillary pressure-saturation-relationship -# return -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1)) / ( (1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index) ) -# -# derivative of S-pc relationship with respect to pc. This is needed for the -# construction of a analytic solution. - -# -# # note that the conditional definition of S-pc in the nonsymbolic part will be -# # incorporated in the construction of the exact solution below. -# S_pc_sym = { -# 1: ft.partial(saturation_sym, n_index=3, alpha=0.001), -# 2: ft.partial(saturation_sym, n_index=3, alpha=0.001), -# 3: ft.partial(saturation_sym, n_index=3, alpha=0.001), -# 4: ft.partial(saturation_sym, n_index=3, alpha=0.001), -# 5: ft.partial(saturation_sym, n_index=3, alpha=0.001), -# 6: ft.partial(saturation_sym, n_index=3, alpha=0.001) -# } -# -# S_pc_sym_prime = { -# 1: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), -# 2: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), -# 3: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), -# 4: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), -# 5: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), -# 6: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001) -# } -# -# sat_pressure_relationship = { -# 1: ft.partial(saturation, n_index=3, alpha=0.001), -# 2: ft.partial(saturation, n_index=3, alpha=0.001), -# 3: ft.partial(saturation, n_index=3, alpha=0.001), -# 4: ft.partial(saturation, n_index=3, alpha=0.001), -# 5: ft.partial(saturation, n_index=3, alpha=0.001), -# 6: ft.partial(saturation, n_index=3, alpha=0.001) -# } - -def saturation(pc, n_index): - # inverse capillary pressure-saturation-relationship - return df.conditional(pc > 0, 1/((1 + pc)**(1/(n_index + 1))), 1) - - -def saturation_sym(pc, n_index): - # inverse capillary pressure-saturation-relationship - return 1/((1 + pc)**(1/(n_index + 1))) - -def saturation_sym_prime(pc, n_index): - # inverse capillary pressure-saturation-relationship - return -1/((n_index+1)*(1 + pc)**((n_index+2)/(n_index+1))) - - -S_pc_sym = { - 1: ft.partial(saturation_sym, n_index=1), - 2: ft.partial(saturation_sym, n_index=1), - 3: ft.partial(saturation_sym, n_index=2), - 4: ft.partial(saturation_sym, n_index=2), - 5: ft.partial(saturation_sym, n_index=2), - 6: ft.partial(saturation_sym, n_index=2) -} - -S_pc_sym_prime = { - 1: ft.partial(saturation_sym_prime, n_index=1), - 2: ft.partial(saturation_sym_prime, n_index=1), - 3: ft.partial(saturation_sym_prime, n_index=2), - 4: ft.partial(saturation_sym_prime, n_index=2), - 5: ft.partial(saturation_sym_prime, n_index=2), - 6: ft.partial(saturation_sym_prime, n_index=2) -} - -sat_pressure_relationship = { - 1: ft.partial(saturation, n_index=1), - 2: ft.partial(saturation, n_index=1), - 3: ft.partial(saturation, n_index=2), - 4: ft.partial(saturation, n_index=2), - 5: ft.partial(saturation, n_index=2), - 6: ft.partial(saturation, n_index=2) -} - - -############################################# -# Manufacture source expressions with sympy # -############################################# -x, y = sym.symbols('x[0], x[1]') # needed by UFL -t = sym.symbols('t', positive=True) - - -p_e_sym = { - 1: {'wetting': -5.0 - (1.0 + t*t)*(1.0 + x*x + y*y), - 'nonwetting': (-1 -t*(1.1 + y + x**2)) }, - 2: {'wetting': -5.0 - (1.0 + t*t)*(1.0 + x*x + y*y), - 'nonwetting': (-1 -t*(1.1 + y + x**2)) }, - 3: {'wetting': (-5.0 - (1.0 + t*t)*(1.0 + x*x)), - 'nonwetting': (-1 -t*(1 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2) }, - 4: {'wetting': (-5.0 - (1.0 + t*t)*(1.0 + x*x)), - 'nonwetting': (-1 -t*(1 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2) }, - 5: {'wetting': (-5.0 - (1.0 + t*t)*(1.0 + x*x)), - 'nonwetting': (-1 -t*(1 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2) }, - 6: {'wetting': (-5.0 - (1.0 + t*t)*(1.0 + x*x)), - 'nonwetting': (-1 -t*(1 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2) }, - # 2: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-5.0)*(y-5.0)), - # 'nonwetting': - 2 - t*(1 + (y-5.0) + x**2)**2 -sym.sqrt(2+t**2)*(1 + (y-5.0))}, - # 3: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-5.0)*(y-5.0)*3*sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t)), - # 'nonwetting': - 2 - t*(1 + x**2)**2 -sym.sqrt(2+t**2)}, - # 4: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-5.0)*(y-5.0)*3*sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t)), - # 'nonwetting': - 2 - t*(1 + x**2)**2 -sym.sqrt(2+t**2)} -} - -# pc_e_sym = { -# 1: p_e_sym[1]['nonwetting'] - p_e_sym[1]['wetting'], -# 2: p_e_sym[2]['nonwetting'] - p_e_sym[2]['wetting'], -# 3: p_e_sym[3]['nonwetting'] - p_e_sym[3]['wetting'], -# 4: p_e_sym[4]['nonwetting'] - p_e_sym[4]['wetting'], -# 5: p_e_sym[5]['nonwetting'] - p_e_sym[5]['wetting'], -# 6: p_e_sym[5]['nonwetting'] - p_e_sym[6]['wetting'] -# } - -# pc_e_sym = { -# 1: -p_e_sym[1]['wetting'], -# 2: -p_e_sym[2]['wetting'], -# 3: -p_e_sym[3]['wetting'], -# 4: -p_e_sym[4]['wetting'], -# 5: -p_e_sym[5]['wetting'], -# 6: -p_e_sym[6]['wetting'] -# } - - -pc_e_sym = dict() -for subdomain, isR in isRichards.items(): - if isR: - pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']}) - else: - pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'] - - p_e_sym[subdomain]['wetting']}) - - -symbols = {"x": x, - "y": y, - "t": t} -# turn above symbolic code into exact solution for dolphin and -# construct the rhs that matches the above exact solution. -exact_solution_example = hlp.generate_exact_solution_expressions( - symbols=symbols, - isRichards=isRichards, - symbolic_pressure=p_e_sym, - symbolic_capillary_pressure=pc_e_sym, - saturation_pressure_relationship=S_pc_sym, - saturation_pressure_relationship_prime=S_pc_sym_prime, - viscosity=viscosity, - porosity=porosity, - relative_permeability=relative_permeability, - relative_permeability_prime=ka_prime, - densities=densities, - gravity_acceleration=gravity_acceleration, - include_gravity=include_gravity, - ) -source_expression = exact_solution_example['source'] -exact_solution = exact_solution_example['exact_solution'] -initial_condition = exact_solution_example['initial_condition'] - -# Dictionary of dirichlet boundary conditions. -dirichletBC = dict() -# similarly to the outer boundary dictionary, if a patch has no outer boundary -# None should be written instead of an expression. -# This is a bit of a brainfuck: -# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind. -# Since a domain patch can have several disjoint outer boundary parts, the -# expressions need to get an enumaration index which starts at 0. -# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of -# subdomain ind and boundary part j. -# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting'] -# return the actual expression needed for the dirichlet condition for both -# phases if present. - -# subdomain index: {outer boudary part index: {phase: expression}} -for subdomain in isRichards.keys(): - # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None - if outer_boundary_def_points[subdomain] is None: - dirichletBC.update({subdomain: None}) - else: - dirichletBC.update({subdomain: dict()}) - # set the dirichlet conditions to be the same code as exact solution on - # the subdomain. - for outer_boundary_ind in outer_boundary_def_points[subdomain].keys(): - dirichletBC[subdomain].update( - {outer_boundary_ind: exact_solution[subdomain]} - ) - -write_to_file = { - 'meshes_and_markers': True, - 'L_iterations': True -} - -# initialise LDD simulation class -simulation = ldd.LDDsimulation( - tol=1E-14, - debug=debugflag, - LDDsolver_tol=solver_tol, - max_iter_num=max_iter_num - ) -simulation.set_parameters(use_case=use_case, - output_dir=output_string, - subdomain_def_points=subdomain_def_points, - isRichards=isRichards, - interface_def_points=interface_def_points, - outer_boundary_def_points=outer_boundary_def_points, - adjacent_subdomains=adjacent_subdomains, - mesh_resolution=mesh_resolution, - viscosity=viscosity, - porosity=porosity, - L=L, - lambda_param=lambda_param, - relative_permeability=relative_permeability, - saturation=sat_pressure_relationship, - starttime=starttime, - number_of_timesteps=number_of_timesteps, - number_of_timesteps_to_analyse=number_of_timesteps_to_analyse, - timestep_size=timestep_size, - sources=source_expression, - initial_conditions=initial_condition, - dirichletBC_expression_strings=dirichletBC, - exact_solution=exact_solution, - densities=densities, - include_gravity=include_gravity, - write2file=write_to_file, - ) - -simulation.initialise() -# print(simulation.__dict__) -simulation.run(analyse_condition=analyse_condition) -# simulation.LDDsolver(time=0, debug=True, analyse_timestep=True) -# df.info(parameters, True) diff --git a/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch-realistic.py b/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch-realistic.py index 37d337a..ec01e72 100755 --- a/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch-realistic.py +++ b/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch-realistic.py @@ -17,33 +17,79 @@ import functools as ft import domainPatch as dp import LDDsimulation as ldd import helpers as hlp +import datetime +import os +import pandas as pd + +date = datetime.datetime.now() +datestr = date.strftime("%Y-%m-%d") # init sympy session sym.init_printing() - -use_case = "TP-TP-layered-soil-with-inner-patch-realistic-with-gravity" -solver_tol = 2E-6 - -############ GRID #######################ü -mesh_resolution = 20 -timestep_size = 0.00005 -number_of_timesteps = 1000 +# solver_tol = 6E-7 +use_case = "TP-TP-layered-soil-realistic" +max_iter_num = 50 +FEM_Lagrange_degree = 1 +mesh_study = False +resolutions = { + # 1: 1e-7, # h=2 + # 2: 2e-5, # h=1.1180 + # 4: 1e-6, # h=0.5590 + # 8: 1e-6, # h=0.2814 + # 16: 5e-7, # h=0.1412 + # 32: 4e-7, # h=0.0706 + 64: 7e-7, + # 128: 5e-7 + } + +############ GRID ####################### +# mesh_resolution = 20 +timestep_size = 0.005 +number_of_timesteps = 15 +plot_timestep_every = 1 # decide how many timesteps you want analysed. Analysed means, that we write out # subsequent errors of the L-iteration within the timestep. -number_of_timesteps_to_analyse = 10 -starttime = 0 +number_of_timesteps_to_analyse = 0 +starttime = 0.0 -Lw = 1 #/timestep_size +Lw = 0.025 #/timestep_size Lnw=Lw -lambda_w = 4 -lambda_nw = 4 +lambda_w = 40 +lambda_nw = 40 -include_gravity = True +include_gravity = False debugflag = True analyse_condition = False -output_string = "./output/2019-08-30-{}_timesteps{}_".format(use_case, number_of_timesteps) +if mesh_study: + output_string = "./output/{}-{}_timesteps{}_P{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree) +else: + for tol in resolutions.values(): + solver_tol = tol + output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol) + +# toggle what should be written to files +if mesh_study: + write_to_file = { + 'space_errornorms': True, + 'meshes_and_markers': True, + 'L_iterations_per_timestep': False, + 'solutions': False, + 'absolute_differences': False, + 'condition_numbers': analyse_condition, + 'subsequent_errors': False + } +else: + write_to_file = { + 'space_errornorms': True, + 'meshes_and_markers': True, + 'L_iterations_per_timestep': False, + 'solutions': True, + 'absolute_differences': True, + 'condition_numbers': analyse_condition, + 'subsequent_errors': True + } # global domain subdomain0_vertices = [df.Point(-1.0,-1.0), # @@ -96,11 +142,15 @@ interface34_vertices = [interface36_vertices[1], interface23_vertices[2]] # interface36 -interface45_vertices = [interface56_vertices[0], - df.Point(0.7, -0.2), + +interface45_vertices_a = [interface56_vertices[0], + df.Point(0.7, -0.2),#df.Point(0.7, -0.2), + ] +interface45_vertices_b = [df.Point(0.7, -0.2),#df.Point(0.7, -0.2), interface25_vertices[0] ] + # # subdomain1. # subdomain1_vertices = [interface12_vertices[0], # interface12_vertices[1], @@ -151,7 +201,9 @@ interface_def_points = [interface12_vertices, interface25_vertices, interface34_vertices, interface36_vertices, - interface45_vertices, + # interface45_vertices, + interface45_vertices_a, + interface45_vertices_b, interface46_vertices, interface56_vertices, ] @@ -162,6 +214,7 @@ adjacent_subdomains = [[1,2], [3,4], [3,6], [4,5], + [4,5], [4,6], [5,6] ] @@ -224,7 +277,8 @@ subdomain3_outer_boundary_verts = { # subdomain3 subdomain4_vertices = [interface46_vertices[0], interface46_vertices[1], - interface45_vertices[1], + # interface45_vertices[1], + interface45_vertices_a[1], interface24_vertices[1], interface24_vertices[0], interface34_vertices[1] @@ -237,10 +291,11 @@ subdomain5_vertices = [interface56_vertices[0], interface56_vertices[2], interface25_vertices[1], interface25_vertices[0], - interface45_vertices[1], - interface45_vertices[0] + interface45_vertices_b[1], + interface45_vertices_b[0] ] + subdomain5_outer_boundary_verts = { 0: [subdomain5_vertices[2], subdomain5_vertices[3]] @@ -345,7 +400,7 @@ gravity_acceleration = 9.81 # Dict of the form: { subdom_num : porosity } porosity = { 1: 0.2, #0.2, # Clayey gravels, clayey sandy gravels - 2: 0.22, #0.22, # Silty gravels, silty sandy gravels + 2: 0.0022, #0.22, # Silty gravels, silty sandy gravels 3: 0.22, #0.37, # Clayey sands 4: 0.27, #0.2 # Silty or sandy clay 5: 0.2, # @@ -695,42 +750,72 @@ for subdomain in isRichards.keys(): {outer_boundary_ind: exact_solution[subdomain]} ) -write_to_file = { - 'meshes_and_markers': True, - 'L_iterations': True -} -# initialise LDD simulation class -simulation = ldd.LDDsimulation(tol=1E-14, debug=debugflag, LDDsolver_tol=solver_tol) -simulation.set_parameters(use_case=use_case, - output_dir=output_string, - subdomain_def_points=subdomain_def_points, - isRichards=isRichards, - interface_def_points=interface_def_points, - outer_boundary_def_points=outer_boundary_def_points, - adjacent_subdomains=adjacent_subdomains, - mesh_resolution=mesh_resolution, - viscosity=viscosity, - porosity=porosity, - L=L, - lambda_param=lambda_param, - relative_permeability=relative_permeability, - saturation=sat_pressure_relationship, - starttime=starttime, - number_of_timesteps=number_of_timesteps, - number_of_timesteps_to_analyse=number_of_timesteps_to_analyse, - timestep_size=timestep_size, - sources=source_expression, - initial_conditions=initial_condition, - dirichletBC_expression_strings=dirichletBC, - exact_solution=exact_solution, - densities=densities, - include_gravity=include_gravity, - write2file=write_to_file, - ) - -simulation.initialise() -# print(simulation.__dict__) -simulation.run(analyse_condition=analyse_condition) -# simulation.LDDsolver(time=0, debug=True, analyse_timestep=True) -# df.info(parameters, True) +for mesh_resolution, solver_tol in resolutions.items(): + # initialise LDD simulation class + simulation = ldd.LDDsimulation( + tol=1E-14, + LDDsolver_tol=solver_tol, + debug=debugflag, + max_iter_num=max_iter_num, + FEM_Lagrange_degree=FEM_Lagrange_degree, + mesh_study=mesh_study + ) + + simulation.set_parameters(use_case=use_case, + output_dir=output_string, + subdomain_def_points=subdomain_def_points, + isRichards=isRichards, + interface_def_points=interface_def_points, + outer_boundary_def_points=outer_boundary_def_points, + adjacent_subdomains=adjacent_subdomains, + mesh_resolution=mesh_resolution, + viscosity=viscosity, + porosity=porosity, + L=L, + lambda_param=lambda_param, + relative_permeability=relative_permeability, + saturation=sat_pressure_relationship, + starttime=starttime, + number_of_timesteps=number_of_timesteps, + number_of_timesteps_to_analyse=number_of_timesteps_to_analyse, + plot_timestep_every=plot_timestep_every, + timestep_size=timestep_size, + sources=source_expression, + initial_conditions=initial_condition, + dirichletBC_expression_strings=dirichletBC, + exact_solution=exact_solution, + densities=densities, + include_gravity=include_gravity, + write2file=write_to_file, + ) + + simulation.initialise() + output_dir = simulation.output_dir + # simulation.write_exact_solution_to_xdmf() + output = simulation.run(analyse_condition=analyse_condition) + for subdomain_index, subdomain_output in output.items(): + mesh_h = subdomain_output['mesh_size'] + for phase, different_errornorms in subdomain_output['errornorm'].items(): + filename = output_dir + "subdomain{}-space-time-errornorm-{}-phase.csv".format(subdomain_index, phase) + # for errortype, errornorm in different_errornorms.items(): + + # eocfile = open("eoc_filename", "a") + # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" ) + # eocfile.close() + # if subdomain.isRichards:mesh_h + data_dict = { + 'mesh_parameter': mesh_resolution, + 'mesh_h': mesh_h, + } + for error_type, errornorms in different_errornorms.items(): + data_dict.update( + {error_type: errornorms} + ) + errors = pd.DataFrame(data_dict, index=[mesh_resolution]) + # check if file exists + if os.path.isfile(filename) == True: + with open(filename, 'a') as f: + errors.to_csv(f, header=False, sep='\t', encoding='utf-8', index=False) + else: + errors.to_csv(filename, sep='\t', encoding='utf-8', index=False) -- GitLab