From 9d289a6aed3b5e690555293c5e160c612afe4f3e Mon Sep 17 00:00:00 2001
From: David Seus <david.seus@ians.uni-stuttgart.de>
Date: Tue, 24 Sep 2019 15:21:36 +0200
Subject: [PATCH] set up TP-TP layered soil with inner patch

---
 ...nner_patch-realistic-split-up-interface.py | 750 ------------------
 ...layered_soil_with_inner_patch-realistic.py | 205 +++--
 2 files changed, 145 insertions(+), 810 deletions(-)
 delete mode 100755 Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch-realistic-split-up-interface.py

diff --git a/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch-realistic-split-up-interface.py b/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch-realistic-split-up-interface.py
deleted file mode 100755
index bf29769..0000000
--- a/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch-realistic-split-up-interface.py
+++ /dev/null
@@ -1,750 +0,0 @@
-#!/usr/bin/python3
-"""This program sets up a domain together with a decomposition into subdomains
-modelling layered soil. This is used for our LDD article with tp-tp and tp-r
-coupling.
-
-Along with the subdomains and the mesh domain markers are set upself.
-The resulting mesh is saved into files for later use.
-"""
-
-#!/usr/bin/python3
-import dolfin as df
-import mshr
-import numpy as np
-import sympy as sym
-import typing as tp
-import functools as ft
-import domainPatch as dp
-import LDDsimulation as ldd
-import helpers as hlp
-
-# init sympy session
-sym.init_printing()
-
-use_case = "TP-TP-layered-soil-with-inner-patch-realistic-split-interface-with-gravity"
-solver_tol = 5E-6
-max_iter_num = 100
-############ GRID #######################ü
-mesh_resolution = 30
-timestep_size = 0.00001
-number_of_timesteps = 1
-# decide how many timesteps you want analysed. Analysed means, that we write out
-# subsequent errors of the L-iteration within the timestep.
-number_of_timesteps_to_analyse = 0
-starttime = 0
-
-Lw = 2  #/timestep_size
-Lnw=Lw
-
-lambda_w = 40
-lambda_nw = 40
-
-include_gravity = True
-debugflag = True
-analyse_condition = False
-
-output_string = "./output/2019-08-30-debug-{}-timesteps{}_".format(use_case, number_of_timesteps)
-
-# global domain
-subdomain0_vertices = [df.Point(-1.0,-1.0), #
-                        df.Point(1.0,-1.0),#
-                        df.Point(1.0,1.0),#
-                        df.Point(-1.0,1.0)]
-
-interface12_vertices = [df.Point(-1.0, 0.8),
-                        df.Point(0.3, 0.8),
-                        df.Point(0.5, 0.9),
-                        df.Point(0.8, 0.7),
-                        df.Point(1.0, 0.65)]
-
-
-                        # interface23
-interface23_vertices = [df.Point(-1.0, 0.0),
-                        df.Point(-0.35, 0.0),
-                        # df.Point(6.5, 4.5),
-                        df.Point(0.0, 0.0)]
-
-interface24_vertices = [interface23_vertices[2],
-                        df.Point(0.6, 0.0),
-                        ]
-
-interface25_vertices = [interface24_vertices[1],
-                        df.Point(1.0, 0.0)
-                        ]
-
-
-interface32_vertices = [interface23_vertices[2],
-                        interface23_vertices[1],
-                        interface23_vertices[0]]
-
-
-interface36_vertices = [df.Point(-1.0, -0.6),
-                        df.Point(-0.6, -0.45)]
-
-
-interface46_vertices = [interface36_vertices[1],
-                        df.Point(0.3, -0.25)]
-
-interface56_vertices = [interface46_vertices[1],
-                        df.Point(0.65, -0.6),
-                        df.Point(1.0, -0.7)]
-
-
-
-
-interface34_vertices = [interface36_vertices[1],
-                        interface23_vertices[2]]
-# interface36
-
-
-interface45_vertices_a = [interface56_vertices[0],
-                        df.Point(0.7, -0.2),#df.Point(0.7, -0.2),
-                        ]
-interface45_vertices_b = [df.Point(0.7, -0.2),#df.Point(0.7, -0.2),
-                        interface25_vertices[0]
-                        ]
-
-
-# # subdomain1.
-# subdomain1_vertices = [interface12_vertices[0],
-#                         interface12_vertices[1],
-#                         interface12_vertices[2],
-#                         interface12_vertices[3],
-#                         interface12_vertices[4], # southern boundary, 12 interface
-#                         subdomain0_vertices[2], # eastern boundary, outer boundary
-#                         subdomain0_vertices[3]] # northern boundary, outer on_boundary
-#
-# # vertex coordinates of the outer boundaries. If it can not be specified as a
-# # polygon, use an entry per boundary polygon. This information is used for defining
-# # the Dirichlet boundary conditions. If a domain is completely internal, the
-# # dictionary entry should be 0: None
-# subdomain1_outer_boundary_verts = {
-#     0: [interface12_vertices[4], #
-#         subdomain0_vertices[2], # eastern boundary, outer boundary
-#         subdomain0_vertices[3],
-#         interface12_vertices[0]]
-# }
-#
-
-
-# #subdomain1
-# subdomain2_vertices = [interface23_vertices[0],
-#                         interface23_vertices[1],
-#                         interface23_vertices[2],
-#                         interface23_vertices[3],
-#                         interface23_vertices[4],
-#                         interface23_vertices[5], # southern boundary, 23 interface
-#                         subdomain1_vertices[4], # eastern boundary, outer boundary
-#                         subdomain1_vertices[3],
-#                         subdomain1_vertices[2],
-#                         subdomain1_vertices[1],
-#                         subdomain1_vertices[0] ] # northern boundary, 12 interface
-#
-# subdomain2_outer_boundary_verts = {
-#     0: [interface23_vertices[5],
-#         subdomain1_vertices[4]],
-#     1: [subdomain1_vertices[0],
-#         interface23_vertices[0]]
-# }
-#
-
-# interface_vertices introduces a global numbering of interfaces.
-interface_def_points = [interface12_vertices,
-                        interface23_vertices,
-                        interface24_vertices,
-                        interface25_vertices,
-                        interface34_vertices,
-                        interface36_vertices,
-                        # interface45_vertices,
-                        interface45_vertices_a,
-                        interface45_vertices_b,
-                        interface46_vertices,
-                        interface56_vertices,
-                        ]
-adjacent_subdomains = [[1,2],
-                       [2,3],
-                       [2,4],
-                       [2,5],
-                       [3,4],
-                       [3,6],
-                       [4,5],
-                       [4,5],
-                       [4,6],
-                       [5,6]
-                       ]
-
-# subdomain1.
-subdomain1_vertices = [interface12_vertices[0],
-                        interface12_vertices[1],
-                        interface12_vertices[2],
-                        interface12_vertices[3],
-                        interface12_vertices[4], # southern boundary, 12 interface
-                        subdomain0_vertices[2], # eastern boundary, outer boundary
-                        subdomain0_vertices[3]] # northern boundary, outer on_boundary
-
-# vertex coordinates of the outer boundaries. If it can not be specified as a
-# polygon, use an entry per boundary polygon. This information is used for defining
-# the Dirichlet boundary conditions. If a domain is completely internal, the
-# dictionary entry should be 0: None
-subdomain1_outer_boundary_verts = {
-    0: [subdomain1_vertices[4], #
-        subdomain1_vertices[5], # eastern boundary, outer boundary
-        subdomain1_vertices[6],
-        subdomain1_vertices[0]]
-}
-
-#subdomain1
-subdomain2_vertices = [interface23_vertices[0],
-                        interface23_vertices[1],
-                        interface23_vertices[2],
-                        interface24_vertices[1],
-                        interface25_vertices[1], # southern boundary, 23 interface
-                        subdomain1_vertices[4], # eastern boundary, outer boundary
-                        subdomain1_vertices[3],
-                        subdomain1_vertices[2],
-                        subdomain1_vertices[1],
-                        subdomain1_vertices[0] ] # northern boundary, 12 interface
-
-subdomain2_outer_boundary_verts = {
-    0: [subdomain2_vertices[9],
-        subdomain2_vertices[0]],
-    1: [subdomain2_vertices[4],
-        subdomain2_vertices[5]]
-}
-
-
-subdomain3_vertices = [interface36_vertices[0],
-                       interface36_vertices[1],
-                       # interface34_vertices[0],
-                       interface34_vertices[1],
-                       # interface32_vertices[0],
-                       interface32_vertices[1],
-                       interface32_vertices[2]
-                       ]
-
-subdomain3_outer_boundary_verts = {
-    0: [subdomain3_vertices[4],
-        subdomain3_vertices[0]]
-}
-
-
-# subdomain3
-subdomain4_vertices = [interface46_vertices[0],
-                       interface46_vertices[1],
-                       # interface45_vertices[1],
-                       interface45_vertices_a[1],
-                       interface24_vertices[1],
-                       interface24_vertices[0],
-                       interface34_vertices[1]
-                       ]
-
-subdomain4_outer_boundary_verts = None
-
-subdomain5_vertices = [interface56_vertices[0],
-                       interface56_vertices[1],
-                       interface56_vertices[2],
-                       interface25_vertices[1],
-                       interface25_vertices[0],
-                       interface45_vertices_b[1],
-                       interface45_vertices_b[0]
-]
-
-
-subdomain5_outer_boundary_verts = {
-    0: [subdomain5_vertices[2],
-        subdomain5_vertices[3]]
-}
-
-
-
-subdomain6_vertices = [subdomain0_vertices[0],
-                       subdomain0_vertices[1], # southern boundary, outer boundary
-                       interface56_vertices[2],
-                       interface56_vertices[1],
-                       interface56_vertices[0],
-                       interface36_vertices[1],
-                       interface36_vertices[0]
-                       ]
-
-subdomain6_outer_boundary_verts = {
-    0: [subdomain6_vertices[6],
-        subdomain6_vertices[0],
-        subdomain6_vertices[1],
-        subdomain6_vertices[2]]
-}
-
-
-subdomain_def_points = [subdomain0_vertices,#
-                      subdomain1_vertices,#
-                      subdomain2_vertices,#
-                      subdomain3_vertices,#
-                      subdomain4_vertices,
-                      subdomain5_vertices,
-                      subdomain6_vertices
-                      ]
-
-
-# if a subdomain has no outer boundary write None instead, i.e.
-# i: None
-# if i is the index of the inner subdomain.
-outer_boundary_def_points = {
-    # subdomain number
-    1: subdomain1_outer_boundary_verts,
-    2: subdomain2_outer_boundary_verts,
-    3: subdomain3_outer_boundary_verts,
-    4: subdomain4_outer_boundary_verts,
-    5: subdomain5_outer_boundary_verts,
-    6: subdomain6_outer_boundary_verts
-}
-
-
-isRichards = {
-    1: False,
-    2: False,
-    3: False,
-    4: False,
-    5: False,
-    6: False
-    }
-
-# isRichards = {
-#     1: True,
-#     2: True,
-#     3: True,
-#     4: True,
-#     5: True,
-#     6: True
-#     }
-
-# Dict of the form: { subdom_num : viscosity }
-viscosity = {
-    1: {'wetting' :1,
-         'nonwetting': 1/50},
-    2: {'wetting' :1,
-         'nonwetting': 1/50},
-    3: {'wetting' :1,
-         'nonwetting': 1/50},
-    4: {'wetting' :1,
-         'nonwetting': 1/50},
-    5: {'wetting' :1,
-         'nonwetting': 1/50},
-    6: {'wetting' :1,
-         'nonwetting': 1/50},
-}
-
-# Dict of the form: { subdom_num : density }
-densities = {
-    1: {'wetting': 997,  #997
-         'nonwetting': 1.225},  #1},  #1.225},
-    2: {'wetting': 997,  #997
-         'nonwetting': 1.225},  #1.225},
-    3: {'wetting': 997,  #997
-         'nonwetting': 1.225},  #1.225},
-    4: {'wetting': 997,  #997
-         'nonwetting': 1.225},  #1.225}
-    5: {'wetting': 997,  #997
-         'nonwetting': 1.225},  #1.225},
-    6: {'wetting': 997,  #997
-         'nonwetting': 1.225}  #1.225}
-}
-
-gravity_acceleration = 9.81
-# porosities taken from
-# https://www.geotechdata.info/parameter/soil-porosity.html
-# Dict of the form: { subdom_num : porosity }
-porosity = {
-    1: 0.2,  #0.2,  # Clayey gravels, clayey sandy gravels
-    2: 0.22,  #0.22, # Silty gravels, silty sandy gravels
-    3: 0.22,  #0.37, # Clayey sands
-    4: 0.27,  #0.2 # Silty or sandy clay
-    5: 0.2,  #
-    6: 0.02,  #
-}
-
-# subdom_num : subdomain L for L-scheme
-L = {
-    1: {'wetting' :Lw,
-         'nonwetting': Lnw},
-    2: {'wetting' :Lw,
-         'nonwetting': Lnw},
-    3: {'wetting' :Lw,
-         'nonwetting': Lnw},
-    4: {'wetting' :Lw,
-         'nonwetting': Lnw},
-    5: {'wetting' :Lw,
-         'nonwetting': Lnw},
-    6: {'wetting' :Lw,
-         'nonwetting': Lnw}
-}
-
-# subdom_num : lambda parameter for the L-scheme
-lambda_param = {
-    1: {'wetting': lambda_w,
-         'nonwetting': lambda_nw},#
-    2: {'wetting': lambda_w,
-         'nonwetting': lambda_nw},#
-    3: {'wetting': lambda_w,
-         'nonwetting': lambda_nw},#
-    4: {'wetting': lambda_w,
-         'nonwetting': lambda_nw},#
-    5: {'wetting': lambda_w,
-         'nonwetting': lambda_nw},#
-    6: {'wetting': lambda_w,
-         'nonwetting': lambda_nw},#
-}
-
-
-## relative permeabilty functions on subdomain 1
-def rel_perm1w(s):
-    # relative permeabilty wetting on subdomain1
-    return s**2
-
-
-def rel_perm1nw(s):
-    # relative permeabilty nonwetting on subdomain1
-    return (1-s)**2
-
-
-## relative permeabilty functions on subdomain 2
-def rel_perm2w(s):
-    # relative permeabilty wetting on subdomain2
-    return s**3
-
-
-def rel_perm2nw(s):
-    # relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2
-    return (1-s)**3
-
-
-_rel_perm1w = ft.partial(rel_perm1w)
-_rel_perm1nw = ft.partial(rel_perm1nw)
-_rel_perm2w = ft.partial(rel_perm2w)
-_rel_perm2nw = ft.partial(rel_perm2nw)
-
-subdomain1_rel_perm = {
-    'wetting': _rel_perm1w,#
-    'nonwetting': _rel_perm1nw
-}
-
-subdomain2_rel_perm = {
-    'wetting': _rel_perm2w,#
-    'nonwetting': _rel_perm2nw
-}
-
-# _rel_perm3 = ft.partial(rel_perm2)
-# subdomain3_rel_perm = subdomain2_rel_perm.copy()
-#
-# _rel_perm4 = ft.partial(rel_perm1)
-# subdomain4_rel_perm = subdomain1_rel_perm.copy()
-
-# dictionary of relative permeabilties on all domains.
-relative_permeability = {
-    1: subdomain1_rel_perm,
-    2: subdomain1_rel_perm,
-    3: subdomain2_rel_perm,
-    4: subdomain2_rel_perm,
-    5: subdomain2_rel_perm,
-    6: subdomain2_rel_perm,
-}
-
-# definition of the derivatives of the relative permeabilities
-# relative permeabilty functions on subdomain 1
-def rel_perm1w_prime(s):
-    # relative permeabilty on subdomain1
-    return 2*s
-
-def rel_perm1nw_prime(s):
-    # relative permeabilty on subdomain1
-    return -2*(1-s)
-
-# definition of the derivatives of the relative permeabilities
-# relative permeabilty functions on subdomain 1
-def rel_perm2w_prime(s):
-    # relative permeabilty on subdomain1
-    return 3*s**2
-
-def rel_perm2nw_prime(s):
-    # relative permeabilty on subdomain1
-    return -3*(1-s)**2
-
-_rel_perm1w_prime = ft.partial(rel_perm1w_prime)
-_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime)
-_rel_perm2w_prime = ft.partial(rel_perm2w_prime)
-_rel_perm2nw_prime = ft.partial(rel_perm2nw_prime)
-
-subdomain1_rel_perm_prime = {
-    'wetting': _rel_perm1w_prime,
-    'nonwetting': _rel_perm1nw_prime
-}
-
-
-subdomain2_rel_perm_prime = {
-    'wetting': _rel_perm2w_prime,
-    'nonwetting': _rel_perm2nw_prime
-}
-
-# dictionary of relative permeabilties on all domains.
-ka_prime = {
-    1: subdomain1_rel_perm_prime,
-    2: subdomain1_rel_perm_prime,
-    3: subdomain2_rel_perm_prime,
-    4: subdomain2_rel_perm_prime,
-    5: subdomain2_rel_perm_prime,
-    6: subdomain2_rel_perm_prime,
-}
-
-
-
-# S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where
-# we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw
-# this function needs to be monotonically decreasing in the capillary pressure pc.
-# since in the richards case pc=-pw, this becomes as a function of pw a mono
-# tonically INCREASING function like in our Richards-Richards paper. However
-# since we unify the treatment in the code for Richards and two-phase, we need
-# the same requierment
-# for both cases, two-phase and Richards.
-# def saturation(pc, n_index, alpha):
-#     # inverse capillary pressure-saturation-relationship
-#     return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1)
-#
-# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where
-# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw
-# def saturation_sym(pc, n_index, alpha):
-#     # inverse capillary pressure-saturation-relationship
-#     #df.conditional(pc > 0,
-#     return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index))
-#
-#
-# # derivative of S-pc relationship with respect to pc. This is needed for the
-# # construction of a analytic solution.
-# def saturation_sym_prime(pc, n_index, alpha):
-#     # inverse capillary pressure-saturation-relationship
-#     return -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1)) / ( (1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index) )
-#
-# derivative of S-pc relationship with respect to pc. This is needed for the
-# construction of a analytic solution.
-
-#
-# # note that the conditional definition of S-pc in the nonsymbolic part will be
-# # incorporated in the construction of the exact solution below.
-# S_pc_sym = {
-#     1: ft.partial(saturation_sym, n_index=3, alpha=0.001),
-#     2: ft.partial(saturation_sym, n_index=3, alpha=0.001),
-#     3: ft.partial(saturation_sym, n_index=3, alpha=0.001),
-#     4: ft.partial(saturation_sym, n_index=3, alpha=0.001),
-#     5: ft.partial(saturation_sym, n_index=3, alpha=0.001),
-#     6: ft.partial(saturation_sym, n_index=3, alpha=0.001)
-# }
-#
-# S_pc_sym_prime = {
-#     1: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
-#     2: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
-#     3: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
-#     4: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
-#     5: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001),
-#     6: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001)
-# }
-#
-# sat_pressure_relationship = {
-#     1: ft.partial(saturation, n_index=3, alpha=0.001),
-#     2: ft.partial(saturation, n_index=3, alpha=0.001),
-#     3: ft.partial(saturation, n_index=3, alpha=0.001),
-#     4: ft.partial(saturation, n_index=3, alpha=0.001),
-#     5: ft.partial(saturation, n_index=3, alpha=0.001),
-#     6: ft.partial(saturation, n_index=3, alpha=0.001)
-# }
-
-def saturation(pc, n_index):
-    # inverse capillary pressure-saturation-relationship
-    return df.conditional(pc > 0, 1/((1 + pc)**(1/(n_index + 1))), 1)
-
-
-def saturation_sym(pc, n_index):
-    # inverse capillary pressure-saturation-relationship
-    return 1/((1 + pc)**(1/(n_index + 1)))
-
-def saturation_sym_prime(pc, n_index):
-    # inverse capillary pressure-saturation-relationship
-    return -1/((n_index+1)*(1 + pc)**((n_index+2)/(n_index+1)))
-
-
-S_pc_sym = {
-    1: ft.partial(saturation_sym, n_index=1),
-    2: ft.partial(saturation_sym, n_index=1),
-    3: ft.partial(saturation_sym, n_index=2),
-    4: ft.partial(saturation_sym, n_index=2),
-    5: ft.partial(saturation_sym, n_index=2),
-    6: ft.partial(saturation_sym, n_index=2)
-}
-
-S_pc_sym_prime = {
-    1: ft.partial(saturation_sym_prime, n_index=1),
-    2: ft.partial(saturation_sym_prime, n_index=1),
-    3: ft.partial(saturation_sym_prime, n_index=2),
-    4: ft.partial(saturation_sym_prime, n_index=2),
-    5: ft.partial(saturation_sym_prime, n_index=2),
-    6: ft.partial(saturation_sym_prime, n_index=2)
-}
-
-sat_pressure_relationship = {
-    1: ft.partial(saturation, n_index=1),
-    2: ft.partial(saturation, n_index=1),
-    3: ft.partial(saturation, n_index=2),
-    4: ft.partial(saturation, n_index=2),
-    5: ft.partial(saturation, n_index=2),
-    6: ft.partial(saturation, n_index=2)
-}
-
-
-#############################################
-# Manufacture source expressions with sympy #
-#############################################
-x, y = sym.symbols('x[0], x[1]')  # needed by UFL
-t = sym.symbols('t', positive=True)
-
-
-p_e_sym = {
-    1: {'wetting': -5.0 - (1.0 + t*t)*(1.0 + x*x + y*y),
-        'nonwetting': (-1 -t*(1.1 + y + x**2)) },
-    2: {'wetting': -5.0 - (1.0 + t*t)*(1.0 + x*x + y*y),
-        'nonwetting': (-1 -t*(1.1 + y + x**2)) },
-    3: {'wetting': (-5.0 - (1.0 + t*t)*(1.0 + x*x)),
-        'nonwetting': (-1 -t*(1 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2) },
-    4: {'wetting': (-5.0 - (1.0 + t*t)*(1.0 + x*x)),
-        'nonwetting': (-1 -t*(1 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2) },
-    5: {'wetting': (-5.0 - (1.0 + t*t)*(1.0 + x*x)),
-        'nonwetting': (-1 -t*(1 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2) },
-    6: {'wetting': (-5.0 - (1.0 + t*t)*(1.0 + x*x)),
-        'nonwetting': (-1 -t*(1 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2) },
-    # 2: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-5.0)*(y-5.0)),
-    #     'nonwetting': - 2 - t*(1 + (y-5.0) + x**2)**2 -sym.sqrt(2+t**2)*(1 + (y-5.0))},
-    # 3: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-5.0)*(y-5.0)*3*sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t)),
-    #     'nonwetting': - 2 - t*(1 + x**2)**2 -sym.sqrt(2+t**2)},
-    # 4: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-5.0)*(y-5.0)*3*sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t)),
-    #     'nonwetting': - 2 - t*(1 + x**2)**2 -sym.sqrt(2+t**2)}
-}
-
-# pc_e_sym = {
-#     1: p_e_sym[1]['nonwetting'] - p_e_sym[1]['wetting'],
-#     2: p_e_sym[2]['nonwetting'] - p_e_sym[2]['wetting'],
-#     3: p_e_sym[3]['nonwetting'] - p_e_sym[3]['wetting'],
-#     4: p_e_sym[4]['nonwetting'] - p_e_sym[4]['wetting'],
-#     5: p_e_sym[5]['nonwetting'] - p_e_sym[5]['wetting'],
-#     6: p_e_sym[5]['nonwetting'] - p_e_sym[6]['wetting']
-# }
-
-# pc_e_sym = {
-#     1: -p_e_sym[1]['wetting'],
-#     2: -p_e_sym[2]['wetting'],
-#     3: -p_e_sym[3]['wetting'],
-#     4: -p_e_sym[4]['wetting'],
-#     5: -p_e_sym[5]['wetting'],
-#     6: -p_e_sym[6]['wetting']
-# }
-
-
-pc_e_sym = dict()
-for subdomain, isR in isRichards.items():
-    if isR:
-        pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']})
-    else:
-        pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting']
-                                        - p_e_sym[subdomain]['wetting']})
-
-
-symbols = {"x": x,
-           "y": y,
-           "t": t}
-# turn above symbolic code into exact solution for dolphin and
-# construct the rhs that matches the above exact solution.
-exact_solution_example = hlp.generate_exact_solution_expressions(
-                        symbols=symbols,
-                        isRichards=isRichards,
-                        symbolic_pressure=p_e_sym,
-                        symbolic_capillary_pressure=pc_e_sym,
-                        saturation_pressure_relationship=S_pc_sym,
-                        saturation_pressure_relationship_prime=S_pc_sym_prime,
-                        viscosity=viscosity,
-                        porosity=porosity,
-                        relative_permeability=relative_permeability,
-                        relative_permeability_prime=ka_prime,
-                        densities=densities,
-                        gravity_acceleration=gravity_acceleration,
-                        include_gravity=include_gravity,
-                        )
-source_expression = exact_solution_example['source']
-exact_solution = exact_solution_example['exact_solution']
-initial_condition = exact_solution_example['initial_condition']
-
-# Dictionary of dirichlet boundary conditions.
-dirichletBC = dict()
-# similarly to the outer boundary dictionary, if a patch has no outer boundary
-# None should be written instead of an expression.
-# This is a bit of a brainfuck:
-# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind.
-# Since a domain patch can have several disjoint outer boundary parts, the
-# expressions need to get an enumaration index which starts at 0.
-# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of
-# subdomain ind and boundary part j.
-# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting']
-# return the actual expression needed for the dirichlet condition for both
-# phases if present.
-
-# subdomain index: {outer boudary part index: {phase: expression}}
-for subdomain in isRichards.keys():
-    # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None
-    if outer_boundary_def_points[subdomain] is None:
-        dirichletBC.update({subdomain: None})
-    else:
-        dirichletBC.update({subdomain: dict()})
-        # set the dirichlet conditions to be the same code as exact solution on
-        # the subdomain.
-        for outer_boundary_ind in outer_boundary_def_points[subdomain].keys():
-            dirichletBC[subdomain].update(
-                {outer_boundary_ind: exact_solution[subdomain]}
-                )
-
-write_to_file = {
-    'meshes_and_markers': True,
-    'L_iterations': True
-}
-
-# initialise LDD simulation class
-simulation = ldd.LDDsimulation(
-    tol=1E-14,
-    debug=debugflag,
-    LDDsolver_tol=solver_tol,
-    max_iter_num=max_iter_num
-    )
-simulation.set_parameters(use_case=use_case,
-                          output_dir=output_string,
-                          subdomain_def_points=subdomain_def_points,
-                          isRichards=isRichards,
-                          interface_def_points=interface_def_points,
-                          outer_boundary_def_points=outer_boundary_def_points,
-                          adjacent_subdomains=adjacent_subdomains,
-                          mesh_resolution=mesh_resolution,
-                          viscosity=viscosity,
-                          porosity=porosity,
-                          L=L,
-                          lambda_param=lambda_param,
-                          relative_permeability=relative_permeability,
-                          saturation=sat_pressure_relationship,
-                          starttime=starttime,
-                          number_of_timesteps=number_of_timesteps,
-                          number_of_timesteps_to_analyse=number_of_timesteps_to_analyse,
-                          timestep_size=timestep_size,
-                          sources=source_expression,
-                          initial_conditions=initial_condition,
-                          dirichletBC_expression_strings=dirichletBC,
-                          exact_solution=exact_solution,
-                          densities=densities,
-                          include_gravity=include_gravity,
-                          write2file=write_to_file,
-                          )
-
-simulation.initialise()
-# print(simulation.__dict__)
-simulation.run(analyse_condition=analyse_condition)
-# simulation.LDDsolver(time=0, debug=True, analyse_timestep=True)
-# df.info(parameters, True)
diff --git a/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch-realistic.py b/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch-realistic.py
index 37d337a..ec01e72 100755
--- a/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch-realistic.py
+++ b/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch-realistic.py
@@ -17,33 +17,79 @@ import functools as ft
 import domainPatch as dp
 import LDDsimulation as ldd
 import helpers as hlp
+import datetime
+import os
+import pandas as pd
+
+date = datetime.datetime.now()
+datestr = date.strftime("%Y-%m-%d")
 
 # init sympy session
 sym.init_printing()
-
-use_case = "TP-TP-layered-soil-with-inner-patch-realistic-with-gravity"
-solver_tol = 2E-6
-
-############ GRID #######################ü
-mesh_resolution = 20
-timestep_size = 0.00005
-number_of_timesteps = 1000
+# solver_tol = 6E-7
+use_case = "TP-TP-layered-soil-realistic"
+max_iter_num = 50
+FEM_Lagrange_degree = 1
+mesh_study = False
+resolutions = {
+                # 1: 1e-7,  # h=2
+                # 2: 2e-5,  # h=1.1180
+                # 4: 1e-6,  # h=0.5590
+                # 8: 1e-6,  # h=0.2814
+                # 16: 5e-7, # h=0.1412
+                # 32: 4e-7,   # h=0.0706
+                64: 7e-7,
+                # 128: 5e-7
+                }
+
+############ GRID #######################
+# mesh_resolution = 20
+timestep_size = 0.005
+number_of_timesteps = 15
+plot_timestep_every = 1
 # decide how many timesteps you want analysed. Analysed means, that we write out
 # subsequent errors of the L-iteration within the timestep.
-number_of_timesteps_to_analyse = 10
-starttime = 0
+number_of_timesteps_to_analyse = 0
+starttime = 0.0
 
-Lw = 1  #/timestep_size
+Lw = 0.025 #/timestep_size
 Lnw=Lw
 
-lambda_w = 4
-lambda_nw = 4
+lambda_w = 40
+lambda_nw = 40
 
-include_gravity = True
+include_gravity = False
 debugflag = True
 analyse_condition = False
 
-output_string = "./output/2019-08-30-{}_timesteps{}_".format(use_case, number_of_timesteps)
+if mesh_study:
+    output_string = "./output/{}-{}_timesteps{}_P{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree)
+else:
+    for tol in resolutions.values():
+        solver_tol = tol
+    output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol)
+
+# toggle what should be written to files
+if mesh_study:
+    write_to_file = {
+        'space_errornorms': True,
+        'meshes_and_markers': True,
+        'L_iterations_per_timestep': False,
+        'solutions': False,
+        'absolute_differences': False,
+        'condition_numbers': analyse_condition,
+        'subsequent_errors': False
+    }
+else:
+    write_to_file = {
+        'space_errornorms': True,
+        'meshes_and_markers': True,
+        'L_iterations_per_timestep': False,
+        'solutions': True,
+        'absolute_differences': True,
+        'condition_numbers': analyse_condition,
+        'subsequent_errors': True
+    }
 
 # global domain
 subdomain0_vertices = [df.Point(-1.0,-1.0), #
@@ -96,11 +142,15 @@ interface34_vertices = [interface36_vertices[1],
                         interface23_vertices[2]]
 # interface36
 
-interface45_vertices = [interface56_vertices[0],
-                        df.Point(0.7, -0.2),
+
+interface45_vertices_a = [interface56_vertices[0],
+                        df.Point(0.7, -0.2),#df.Point(0.7, -0.2),
+                        ]
+interface45_vertices_b = [df.Point(0.7, -0.2),#df.Point(0.7, -0.2),
                         interface25_vertices[0]
                         ]
 
+
 # # subdomain1.
 # subdomain1_vertices = [interface12_vertices[0],
 #                         interface12_vertices[1],
@@ -151,7 +201,9 @@ interface_def_points = [interface12_vertices,
                         interface25_vertices,
                         interface34_vertices,
                         interface36_vertices,
-                        interface45_vertices,
+                        # interface45_vertices,
+                        interface45_vertices_a,
+                        interface45_vertices_b,
                         interface46_vertices,
                         interface56_vertices,
                         ]
@@ -162,6 +214,7 @@ adjacent_subdomains = [[1,2],
                        [3,4],
                        [3,6],
                        [4,5],
+                       [4,5],
                        [4,6],
                        [5,6]
                        ]
@@ -224,7 +277,8 @@ subdomain3_outer_boundary_verts = {
 # subdomain3
 subdomain4_vertices = [interface46_vertices[0],
                        interface46_vertices[1],
-                       interface45_vertices[1],
+                       # interface45_vertices[1],
+                       interface45_vertices_a[1],
                        interface24_vertices[1],
                        interface24_vertices[0],
                        interface34_vertices[1]
@@ -237,10 +291,11 @@ subdomain5_vertices = [interface56_vertices[0],
                        interface56_vertices[2],
                        interface25_vertices[1],
                        interface25_vertices[0],
-                       interface45_vertices[1],
-                       interface45_vertices[0]
+                       interface45_vertices_b[1],
+                       interface45_vertices_b[0]
 ]
 
+
 subdomain5_outer_boundary_verts = {
     0: [subdomain5_vertices[2],
         subdomain5_vertices[3]]
@@ -345,7 +400,7 @@ gravity_acceleration = 9.81
 # Dict of the form: { subdom_num : porosity }
 porosity = {
     1: 0.2,  #0.2,  # Clayey gravels, clayey sandy gravels
-    2: 0.22,  #0.22, # Silty gravels, silty sandy gravels
+    2: 0.0022,  #0.22, # Silty gravels, silty sandy gravels
     3: 0.22,  #0.37, # Clayey sands
     4: 0.27,  #0.2 # Silty or sandy clay
     5: 0.2,  #
@@ -695,42 +750,72 @@ for subdomain in isRichards.keys():
                 {outer_boundary_ind: exact_solution[subdomain]}
                 )
 
-write_to_file = {
-    'meshes_and_markers': True,
-    'L_iterations': True
-}
 
-# initialise LDD simulation class
-simulation = ldd.LDDsimulation(tol=1E-14, debug=debugflag, LDDsolver_tol=solver_tol)
-simulation.set_parameters(use_case=use_case,
-                          output_dir=output_string,
-                          subdomain_def_points=subdomain_def_points,
-                          isRichards=isRichards,
-                          interface_def_points=interface_def_points,
-                          outer_boundary_def_points=outer_boundary_def_points,
-                          adjacent_subdomains=adjacent_subdomains,
-                          mesh_resolution=mesh_resolution,
-                          viscosity=viscosity,
-                          porosity=porosity,
-                          L=L,
-                          lambda_param=lambda_param,
-                          relative_permeability=relative_permeability,
-                          saturation=sat_pressure_relationship,
-                          starttime=starttime,
-                          number_of_timesteps=number_of_timesteps,
-                          number_of_timesteps_to_analyse=number_of_timesteps_to_analyse,
-                          timestep_size=timestep_size,
-                          sources=source_expression,
-                          initial_conditions=initial_condition,
-                          dirichletBC_expression_strings=dirichletBC,
-                          exact_solution=exact_solution,
-                          densities=densities,
-                          include_gravity=include_gravity,
-                          write2file=write_to_file,
-                          )
-
-simulation.initialise()
-# print(simulation.__dict__)
-simulation.run(analyse_condition=analyse_condition)
-# simulation.LDDsolver(time=0, debug=True, analyse_timestep=True)
-# df.info(parameters, True)
+for mesh_resolution, solver_tol in resolutions.items():
+    # initialise LDD simulation class
+    simulation = ldd.LDDsimulation(
+        tol=1E-14,
+        LDDsolver_tol=solver_tol,
+        debug=debugflag,
+        max_iter_num=max_iter_num,
+        FEM_Lagrange_degree=FEM_Lagrange_degree,
+        mesh_study=mesh_study
+        )
+
+    simulation.set_parameters(use_case=use_case,
+                              output_dir=output_string,
+                              subdomain_def_points=subdomain_def_points,
+                              isRichards=isRichards,
+                              interface_def_points=interface_def_points,
+                              outer_boundary_def_points=outer_boundary_def_points,
+                              adjacent_subdomains=adjacent_subdomains,
+                              mesh_resolution=mesh_resolution,
+                              viscosity=viscosity,
+                              porosity=porosity,
+                              L=L,
+                              lambda_param=lambda_param,
+                              relative_permeability=relative_permeability,
+                              saturation=sat_pressure_relationship,
+                              starttime=starttime,
+                              number_of_timesteps=number_of_timesteps,
+                              number_of_timesteps_to_analyse=number_of_timesteps_to_analyse,
+                              plot_timestep_every=plot_timestep_every,
+                              timestep_size=timestep_size,
+                              sources=source_expression,
+                              initial_conditions=initial_condition,
+                              dirichletBC_expression_strings=dirichletBC,
+                              exact_solution=exact_solution,
+                              densities=densities,
+                              include_gravity=include_gravity,
+                              write2file=write_to_file,
+                              )
+
+    simulation.initialise()
+    output_dir = simulation.output_dir
+    # simulation.write_exact_solution_to_xdmf()
+    output = simulation.run(analyse_condition=analyse_condition)
+    for subdomain_index, subdomain_output in output.items():
+        mesh_h = subdomain_output['mesh_size']
+        for phase, different_errornorms in subdomain_output['errornorm'].items():
+            filename = output_dir + "subdomain{}-space-time-errornorm-{}-phase.csv".format(subdomain_index, phase)
+            # for errortype, errornorm in different_errornorms.items():
+
+                # eocfile = open("eoc_filename", "a")
+                # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" )
+                # eocfile.close()
+                # if subdomain.isRichards:mesh_h
+            data_dict = {
+                'mesh_parameter': mesh_resolution,
+                'mesh_h': mesh_h,
+            }
+            for error_type, errornorms in different_errornorms.items():
+                data_dict.update(
+                    {error_type: errornorms}
+                )
+            errors = pd.DataFrame(data_dict, index=[mesh_resolution])
+            # check if file exists
+            if os.path.isfile(filename) == True:
+                with open(filename, 'a') as f:
+                    errors.to_csv(f, header=False, sep='\t', encoding='utf-8', index=False)
+            else:
+                errors.to_csv(filename, sep='\t', encoding='utf-8', index=False)
-- 
GitLab