diff --git a/Two-phase-Richards/multi-patch/layered_soil/TP-R-layered_soil-g-but-same-perm-coarse-dt-longterm.py b/Two-phase-Richards/multi-patch/layered_soil/TP-R-layered_soil-g-but-same-perm-coarse-dt-longterm.py new file mode 100644 index 0000000000000000000000000000000000000000..c41f753444423526f6ce50901918730e81f7ea9a --- /dev/null +++ b/Two-phase-Richards/multi-patch/layered_soil/TP-R-layered_soil-g-but-same-perm-coarse-dt-longterm.py @@ -0,0 +1,798 @@ +#!/usr/bin/python3 +"""Layered soil simulation. + +This program sets up an LDD simulation +""" + +import dolfin as df +import sympy as sym +import functools as ft +import LDDsimulation as ldd +import helpers as hlp +import datetime +import os +import pandas as pd + +# check if output directory exists +if not os.path.exists('./output'): + os.mkdir('./output') + print("Directory ", './output', " created ") +else: + print("Directory ", './output', " already exists. Will use as output \ + directory") + +date = datetime.datetime.now() +datestr = date.strftime("%Y-%m-%d") + +# init sympy session +sym.init_printing() +# solver_tol = 6E-7 +use_case = "TP-R-layered-soil-realistic-g-same-intrinsic-perm" +# name of this very file. Needed for log output. +thisfile = "TP-R-layered_soil-g-but-same-perm-coarse-dt-longterm.py" + +max_iter_num = 1000 +FEM_Lagrange_degree = 1 +mesh_study = False +resolutions = { + # 1: 9e-6, # h=2 + # 2: 9e-6, # h=1.1180 + # 4: 9e-6, # h=0.5590 + # 8: 9e-6, # h=0.2814 + # 16: 5e-6, # h=0.1412 + 32: 5e-6, + # 64: 1e-6, + # 128: 1e-6 + } + +# GRID ####################### +# mesh_resolution = 20 +timestep_size = 0.01 +number_of_timesteps = 400 +plot_timestep_every = 1 +# decide how many timesteps you want analysed. Analysed means, that we write +# out subsequent errors of the L-iteration within the timestep. +number_of_timesteps_to_analyse = 5 +starttimes = [0.0] + +Lw1 = 0.025 # /timestep_size +Lnw1 = Lw1 +Lw2 = 0.025 # /timestep_size +Lnw2 = Lw2 +Lw3 = 0.025 # /timestep_size +Lnw3 = Lw3 +Lw4 = 0.025 # /timestep_size +Lnw4 = Lw4 + +lambda12_w = 4 +lambda12_nw = 4 +lambda23_w = 4 +lambda23_nw = 4 +lambda34_w = 4 +lambda34_nw = 4 + +include_gravity = True +debugflag = False +analyse_condition = False + + +output_string = "./output/{}-{}_timesteps{}_P{}".format( + datestr, use_case, number_of_timesteps, FEM_Lagrange_degree + ) + +# toggle what should be written to files +if mesh_study: + write_to_file = { + 'space_errornorms': True, + 'meshes_and_markers': True, + 'L_iterations_per_timestep': False, + 'solutions': True, + 'absolute_differences': True, + 'condition_numbers': analyse_condition, + 'subsequent_errors': True + } +else: + write_to_file = { + 'space_errornorms': True, + 'meshes_and_markers': True, + 'L_iterations_per_timestep': False, + 'solutions': True, + 'absolute_differences': True, + 'condition_numbers': analyse_condition, + 'subsequent_errors': True + } + + +# global domain +subdomain0_vertices = [ + df.Point(-1.0, -1.0), + df.Point(1.0, -1.0), + df.Point(1.0, 1.0), + df.Point(-1.0, 1.0) + ] + + +interface12_vertices = [df.Point(-1.0, 0.8), + df.Point(0.3, 0.8), + df.Point(0.5, 0.9), + df.Point(0.8, 0.7), + df.Point(1.0, 0.65)] +# subdomain1. +subdomain1_vertices = [ + interface12_vertices[0], + interface12_vertices[1], + interface12_vertices[2], + interface12_vertices[3], + interface12_vertices[4], # southern boundary, 12 interface + subdomain0_vertices[2], # eastern boundary, outer boundary + subdomain0_vertices[3] # northern boundary, outer on_boundary + ] + + +# vertex coordinates of the outer boundaries. If it can not be specified as a +# polygon, use an entry per boundary polygon. This information is used for +# defining the Dirichlet boundary conditions. If a domain is completely +# internal, the dictionary entry should be 0: None +subdomain1_outer_boundary_verts = { + 0: [interface12_vertices[4], + subdomain0_vertices[2], # eastern boundary, outer boundary + subdomain0_vertices[3], + interface12_vertices[0]] +} + + +# interface23 +interface23_vertices = [ + df.Point(-1.0, 0.0), + df.Point(-0.35, 0.0), + # df.Point(6.5, 4.5), + df.Point(0.0, 0.0), + df.Point(0.5, 0.0), + # df.Point(11.5, 3.5), + # df.Point(13.0, 3) + df.Point(0.85, 0.0), + df.Point(1.0, 0.0) + ] + +# subdomain1 +subdomain2_vertices = [ + interface23_vertices[0], + interface23_vertices[1], + interface23_vertices[2], + interface23_vertices[3], + interface23_vertices[4], + interface23_vertices[5], # southern boundary, 23 interface + subdomain1_vertices[4], # eastern boundary, outer boundary + subdomain1_vertices[3], + subdomain1_vertices[2], + subdomain1_vertices[1], + subdomain1_vertices[0] # northern boundary, 12 interface + ] + +subdomain2_outer_boundary_verts = { + 0: [interface23_vertices[5], + subdomain1_vertices[4]], + 1: [subdomain1_vertices[0], + interface23_vertices[0]] +} + + +# interface34 +interface34_vertices = [df.Point(-1.0, -0.6), + df.Point(-0.6, -0.45), + df.Point(0.3, -0.25), + df.Point(0.65, -0.6), + df.Point(1.0, -0.7)] + +# subdomain3 +subdomain3_vertices = [ + interface34_vertices[0], + interface34_vertices[1], + interface34_vertices[2], + interface34_vertices[3], + interface34_vertices[4], # southern boundary, 34 interface + subdomain2_vertices[5], # eastern boundary, outer boundary + subdomain2_vertices[4], + subdomain2_vertices[3], + subdomain2_vertices[2], + subdomain2_vertices[1], + subdomain2_vertices[0] # northern boundary, 23 interface + ] + +subdomain3_outer_boundary_verts = { + 0: [interface34_vertices[4], + subdomain2_vertices[5]], + 1: [subdomain2_vertices[0], + interface34_vertices[0]] +} + +# subdomain4 +subdomain4_vertices = [ + subdomain0_vertices[0], + subdomain0_vertices[1], # southern boundary, outer boundary + subdomain3_vertices[4], # eastern boundary, outer boundary + subdomain3_vertices[3], + subdomain3_vertices[2], + subdomain3_vertices[1], + subdomain3_vertices[0] + ] # northern boundary, 34 interface + + +subdomain4_outer_boundary_verts = { + 0: [subdomain4_vertices[6], + subdomain4_vertices[0], + subdomain4_vertices[1], + subdomain4_vertices[2]] +} + + +subdomain_def_points = [ + subdomain0_vertices, + subdomain1_vertices, + subdomain2_vertices, + subdomain3_vertices, + subdomain4_vertices + ] + +# interface_vertices introduces a global numbering of interfaces. +interface_def_points = [ + interface12_vertices, interface23_vertices, interface34_vertices + ] + +adjacent_subdomains = [[1, 2], [2, 3], [3, 4]] + +# if a subdomain has no outer boundary write None instead, i.e. +# i: None +# if i is the index of the inner subdomain. +outer_boundary_def_points = { + # subdomain number + 1: subdomain1_outer_boundary_verts, + 2: subdomain2_outer_boundary_verts, + 3: subdomain3_outer_boundary_verts, + 4: subdomain4_outer_boundary_verts +} + +isRichards = { + 1: True, + 2: True, + 3: False, + 4: False + } + + +# Dict of the form: { subdom_num : viscosity } +viscosity = { + 1: {'wetting': 1, + 'nonwetting': 1/50}, + 2: {'wetting': 1, + 'nonwetting': 1/50}, + 3: {'wetting': 1, + 'nonwetting': 1/50}, + 4: {'wetting': 1, + 'nonwetting': 1/50}, +} + +# Dict of the form: { subdom_num : density } +# densities = { +# 1: {'wetting': 9.97, # 997 +# 'nonwetting': 0.01225}, # 1.225}}, +# 2: {'wetting': 9.97, # 997 +# 'nonwetting': 0.01225}, # 1.225}}, +# 3: {'wetting': 9.97, # 997 +# 'nonwetting': 0.01225}, # 1.225}}, +# 4: {'wetting': 9.97, # 997 +# 'nonwetting': 0.01225}, # 1.225}} +# } + +densities = { + 1: {'wetting': 997, # 997 + 'nonwetting': 1.225}, # 1.225}}, + 2: {'wetting': 997, # 997 + 'nonwetting': 1.225}, # 1.225}}, + 3: {'wetting': 997, # 997 + 'nonwetting': 1.225}, # 1.225}}, + 4: {'wetting': 997, # 997 + 'nonwetting': 1.225}, # 1.225}} +} + +gravity_acceleration = 9.81 +# porosities taken from +# https://www.geotechdata.info/parameter/soil-porosity.html +# Dict of the form: { subdom_num : porosity } +porosity = { + 1: 0.37, # 0.2, # Clayey gravels, clayey sandy gravels + 2: 0.22, # 0.22, # Silty gravels, silty sandy gravels + 3: 0.2, # 0.37, # Clayey sands + 4: 0.22, # 0.2 # Silty or sandy clay +} + +# subdom_num : subdomain L for L-scheme +L = { + 1: {'wetting': Lw1, + 'nonwetting': Lnw1}, + 2: {'wetting': Lw2, + 'nonwetting': Lnw2}, + 3: {'wetting': Lw3, + 'nonwetting': Lnw3}, + 4: {'wetting': Lw4, + 'nonwetting': Lnw4} +} + +# interface_num : lambda parameter for the L-scheme on that interface. +# Note that interfaces are numbered starting from 0, because +# adjacent_subdomains is a list and not a dict. Historic fuckup, I know +lambda_param = { + 0: {'wetting': lambda12_w, + 'nonwetting': lambda12_nw}, + 1: {'wetting': lambda23_w, + 'nonwetting': lambda23_nw}, + 2: {'wetting': lambda34_w, + 'nonwetting': lambda34_nw}, +} +# lambda_param = { +# 1: {'wetting': lambda_w, +# 'nonwetting': lambda_nw}, +# 2: {'wetting': lambda_w, +# 'nonwetting': lambda_nw}, +# 3: {'wetting': lambda_w, +# 'nonwetting': lambda_nw}, +# 4: {'wetting': lambda_w, +# 'nonwetting': lambda_nw}, +# } + +# after Lewis, see pdf file +intrinsic_permeability = { + 1: 0.01, # sand + 2: 0.01, # sand, there is a range + 3: 0.01, # 10e-2, # clay has a range + 4: 0.01, # 10e-3 +} + + +# relative permeabilty functions on subdomain 1 +def rel_perm1w(s): + # relative permeabilty wetting on subdomain1 + return intrinsic_permeability[1]*s**2 + + +def rel_perm1nw(s): + # relative permeabilty nonwetting on subdomain1 + return intrinsic_permeability[1]*(1-s)**2 + + +# relative permeabilty functions on subdomain 2 +def rel_perm2w(s): + # relative permeabilty wetting on subdomain2 + return intrinsic_permeability[2]*s**2 + + +def rel_perm2nw(s): + # relative permeabilty nonwetting on subdomain2 + return intrinsic_permeability[2]*(1-s)**2 + + +# relative permeabilty functions on subdomain 3 +def rel_perm3w(s): + # relative permeabilty wetting on subdomain3 + return intrinsic_permeability[3]*s**3 + + +def rel_perm3nw(s): + # relative permeabilty nonwetting on subdomain3 + return intrinsic_permeability[3]*(1-s)**3 + + +# relative permeabilty functions on subdomain 4 +def rel_perm4w(s): + # relative permeabilty wetting on subdomain4 + return intrinsic_permeability[4]*s**3 + + +def rel_perm4nw(s): + # relative permeabilty nonwetting on subdomain4 + return intrinsic_permeability[4]*(1-s)**3 + +_rel_perm1w = ft.partial(rel_perm1w) +_rel_perm1nw = ft.partial(rel_perm1nw) +_rel_perm2w = ft.partial(rel_perm2w) +_rel_perm2nw = ft.partial(rel_perm2nw) + +_rel_perm3w = ft.partial(rel_perm3w) +_rel_perm3nw = ft.partial(rel_perm3nw) +_rel_perm4w = ft.partial(rel_perm4w) +_rel_perm4nw = ft.partial(rel_perm4nw) + + +subdomain1_rel_perm = { + 'wetting': _rel_perm1w, + 'nonwetting': _rel_perm1nw +} + +subdomain2_rel_perm = { + 'wetting': _rel_perm2w, + 'nonwetting': _rel_perm2nw +} + +subdomain3_rel_perm = { + 'wetting': _rel_perm3w, + 'nonwetting': _rel_perm3nw +} + +subdomain4_rel_perm = { + 'wetting': _rel_perm4w, + 'nonwetting': _rel_perm4nw +} + +# dictionary of relative permeabilties on all domains. +# relative_permeability = { +# 1: subdomain1_rel_perm, +# 2: subdomain1_rel_perm, +# 3: subdomain2_rel_perm, +# 4: subdomain2_rel_perm +# } +relative_permeability = { + 1: subdomain1_rel_perm, + 2: subdomain2_rel_perm, + 3: subdomain3_rel_perm, + 4: subdomain4_rel_perm +} + + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 1 +def rel_perm1w_prime(s): + # relative permeabilty on subdomain1 + return intrinsic_permeability[1]*2*s + + +def rel_perm1nw_prime(s): + # relative permeabilty on subdomain1 + return -1*intrinsic_permeability[1]*2*(1-s) + + +def rel_perm2w_prime(s): + # relative permeabilty on subdomain2 + return intrinsic_permeability[2]*2*s + + +def rel_perm2nw_prime(s): + # relative permeabilty on subdomain2 + return -1*intrinsic_permeability[2]*2*(1-s) + + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 3 +def rel_perm3w_prime(s): + # relative permeabilty on subdomain3 + return intrinsic_permeability[3]*3*s**2 + + +def rel_perm3nw_prime(s): + # relative permeabilty on subdomain3 + return -1*intrinsic_permeability[3]*3*(1-s)**2 + + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 4 +def rel_perm4w_prime(s): + # relative permeabilty on subdomain4 + return intrinsic_permeability[4]*3*s**2 + + +def rel_perm4nw_prime(s): + # relative permeabilty on subdomain4 + return -1*intrinsic_permeability[4]*3*(1-s)**2 + + +_rel_perm1w_prime = ft.partial(rel_perm1w_prime) +_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime) +_rel_perm2w_prime = ft.partial(rel_perm2w_prime) +_rel_perm2nw_prime = ft.partial(rel_perm2nw_prime) +_rel_perm3w_prime = ft.partial(rel_perm3w_prime) +_rel_perm3nw_prime = ft.partial(rel_perm3nw_prime) +_rel_perm4w_prime = ft.partial(rel_perm4w_prime) +_rel_perm4nw_prime = ft.partial(rel_perm4nw_prime) + +subdomain1_rel_perm_prime = { + 'wetting': _rel_perm1w_prime, + 'nonwetting': _rel_perm1nw_prime +} + + +subdomain2_rel_perm_prime = { + 'wetting': _rel_perm2w_prime, + 'nonwetting': _rel_perm2nw_prime +} + +subdomain3_rel_perm_prime = { + 'wetting': _rel_perm3w_prime, + 'nonwetting': _rel_perm3nw_prime +} + + +subdomain4_rel_perm_prime = { + 'wetting': _rel_perm4w_prime, + 'nonwetting': _rel_perm4nw_prime +} + + +# dictionary of relative permeabilties on all domains. +# ka_prime = { +# 1: subdomain1_rel_perm_prime, +# 2: subdomain1_rel_perm_prime, +# 3: subdomain2_rel_perm_prime, +# 4: subdomain2_rel_perm_prime +# } +ka_prime = { + 1: subdomain1_rel_perm_prime, + 2: subdomain2_rel_perm_prime, + 3: subdomain3_rel_perm_prime, + 4: subdomain4_rel_perm_prime +} + +# S-pc-relation ship. We use the van Genuchten approach, i.e. +# pc = 1/alpha*(S^{-1/m} -1)^1/n, where we set alpha = 0, assume m = 1-1/n +# (see Helmig) and assume that residual saturation is Sw +# this function needs to be monotonically decreasing in the capillary pressure +# pc. Since in the richards case pc=-pw, this becomes as a function of pw a +# mono tonically INCREASING function like in our Richards-Richards paper. +# However since we unify the treatment in the code for Richards and two-phase, +# we need the same requierment for both cases, two-phase and Richards. +def saturation(pc, n_index, alpha): + # inverse capillary pressure-saturation-relationship + expr = df.conditional( + pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1) + return expr + + +# S-pc-relation ship. We use the van Genuchten approach, i.e. +# pc = 1/alpha*(S^{-1/m} -1)^1/n, where we set alpha = 0, assume m = 1-1/n +# (see Helmig) and assume that residual saturation is Sw +def saturation_sym(pc, n_index, alpha): + # inverse capillary pressure-saturation-relationship + # df.conditional(pc > 0, + return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)) + + +# derivative of S-pc relationship with respect to pc. This is needed for the +# construction of a analytic solution. +def saturation_sym_prime(pc, n_index, alpha): + # inverse capillary pressure-saturation-relationship + expr = -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1))\ + / ((1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index)) + return expr + + +# note that the conditional definition of S-pc in the nonsymbolic part will be +# incorporated in the construction of the exact solution below. +S_pc_sym = { + 1: ft.partial(saturation_sym, n_index=3, alpha=0.001), + 2: ft.partial(saturation_sym, n_index=3, alpha=0.001), + 3: ft.partial(saturation_sym, n_index=6, alpha=0.001), + 4: ft.partial(saturation_sym, n_index=6, alpha=0.001) +} + + +S_pc_sym_prime = { + 1: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), + 2: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), + 3: ft.partial(saturation_sym_prime, n_index=6, alpha=0.001), + 4: ft.partial(saturation_sym_prime, n_index=6, alpha=0.001) +} + + +sat_pressure_relationship = { + 1: ft.partial(saturation, n_index=3, alpha=0.001), + 2: ft.partial(saturation, n_index=3, alpha=0.001), + 3: ft.partial(saturation, n_index=6, alpha=0.001), + 4: ft.partial(saturation, n_index=6, alpha=0.001) +} + + +############################################# +# Manufacture source expressions with sympy # +############################################# +x, y = sym.symbols('x[0], x[1]') # needed by UFL +t = sym.symbols('t', positive=True) + +p_e_sym_2patch = { + 1: {'wetting': -6 - (1+t*t)*(1 + x*x + y*y), + 'nonwetting': 0.0*t}, # -1-t*(1.1 + y + x**2)**2}, + 2: {'wetting': -6.0 - (1.0 + t*t)*(1.0 + x*x), + 'nonwetting': (-1-t*(1.1+y + x**2))*y**2}, + # 'nonwetting': (-1-t*(1.1 + x**2)**2 - sym.sqrt(5+t**2))*y**2}, +} + +p_e_sym = { + 1: {'wetting': p_e_sym_2patch[1]['wetting'], + 'nonwetting': p_e_sym_2patch[1]['nonwetting']}, + 2: {'wetting': p_e_sym_2patch[1]['wetting'], + 'nonwetting': p_e_sym_2patch[1]['nonwetting']}, + 3: {'wetting': p_e_sym_2patch[2]['wetting'], + 'nonwetting': p_e_sym_2patch[2]['nonwetting']}, + 4: {'wetting': p_e_sym_2patch[2]['wetting'], + 'nonwetting': p_e_sym_2patch[2]['nonwetting']} +} + + +# p_e_sym = { +# 1: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-5.0)*(y-5.0)), +# 'nonwetting': +# -2 - t*(1 + (y - 5.0) + x**2)**2 +# - sym.sqrt(2 + t**2)*(1 + (y - 5.0)) +# }, +# 2: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-5.0)*(y-5.0)), +# 'nonwetting': +# - 2 - t*(1 + (y - 5.0) + x**2)**2 +# - sym.sqrt(2 + t**2)*(1 + (y - 5.0)) +# }, +# 3: {'wetting': +# 1.0 - (1.0 + t*t)*(10.0 + x*x + (y - 5.0)*(y - 5.0)) +# - (y - 5.0)*(y - 5.0)*3*sym.sin(-2*t + 2*x)*sym.sin(1/2*y - 1.2*t), +# 'nonwetting': - 2 - t*(1 + x**2)**2 - sym.sqrt(2 + t**2) +# }, +# 4: {'wetting': +# 1.0 - (1.0 + t*t)*(10.0 + x*x + (y - 5.0)*(y - 5.0)) +# - (y - 5.0)*(y - 5.0)*3*sym.sin(-2*t + 2*x)*sym.sin(1/2*y - 1.2*t), +# 'nonwetting': - 2 - t*(1 + x**2)**2 - sym.sqrt(2 + t**2) +# } +# } + +pc_e_sym = dict() +for subdomain, isR in isRichards.items(): + if isR: + pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']}) + else: + pc_e_sym.update( + {subdomain: p_e_sym[subdomain]['nonwetting'] + - p_e_sym[subdomain]['wetting']} + ) + + +symbols = {"x": x, + "y": y, + "t": t} +# turn above symbolic code into exact solution for dolphin and +# construct the rhs that matches the above exact solution. +exact_solution_example = hlp.generate_exact_solution_expressions( + symbols=symbols, + isRichards=isRichards, + symbolic_pressure=p_e_sym, + symbolic_capillary_pressure=pc_e_sym, + saturation_pressure_relationship=S_pc_sym, + saturation_pressure_relationship_prime=S_pc_sym_prime, + viscosity=viscosity, + porosity=porosity, + relative_permeability=relative_permeability, + relative_permeability_prime=ka_prime, + densities=densities, + gravity_acceleration=gravity_acceleration, + include_gravity=include_gravity, + ) +source_expression = exact_solution_example['source'] +exact_solution = exact_solution_example['exact_solution'] +initial_condition = exact_solution_example['initial_condition'] + +# Dictionary of dirichlet boundary conditions. +dirichletBC = dict() +# similarly to the outer boundary dictionary, if a patch has no outer boundary +# None should be written instead of an expression. +# This is a bit of a brainfuck: +# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind. +# Since a domain patch can have several disjoint outer boundary parts, the +# expressions need to get an enumaration index which starts at 0. +# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of +# subdomain ind and boundary part j. +# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting'] +# return the actual expression needed for the dirichlet condition for both +# phases if present. + +# subdomain index: {outer boudary part index: {phase: expression}} +for subdomain in isRichards.keys(): + # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] + # is None + if outer_boundary_def_points[subdomain] is None: + dirichletBC.update({subdomain: None}) + else: + dirichletBC.update({subdomain: dict()}) + # set the dirichlet conditions to be the same code as exact solution on + # the subdomain. + for outer_boundary_ind in outer_boundary_def_points[subdomain].keys(): + dirichletBC[subdomain].update( + {outer_boundary_ind: exact_solution[subdomain]} + ) + + +# LOG FILE OUTPUT ############################################################# +# read this file and print it to std out. This way the simulation can produce a +# log file with ./TP-R-layered_soil.py | tee simulation.log +f = open(thisfile, 'r') +print(f.read()) +f.close() + + +# RUN ######################################################################### +for starttime in starttimes: + for mesh_resolution, solver_tol in resolutions.items(): + # initialise LDD simulation class + simulation = ldd.LDDsimulation( + tol=1E-14, + LDDsolver_tol=solver_tol, + debug=debugflag, + max_iter_num=max_iter_num, + FEM_Lagrange_degree=FEM_Lagrange_degree, + mesh_study=mesh_study + ) + + simulation.set_parameters( + use_case=use_case, + output_dir=output_string, + subdomain_def_points=subdomain_def_points, + isRichards=isRichards, + interface_def_points=interface_def_points, + outer_boundary_def_points=outer_boundary_def_points, + adjacent_subdomains=adjacent_subdomains, + mesh_resolution=mesh_resolution, + viscosity=viscosity, + porosity=porosity, + L=L, + lambda_param=lambda_param, + relative_permeability=relative_permeability, + saturation=sat_pressure_relationship, + starttime=starttime, + number_of_timesteps=number_of_timesteps, + number_of_timesteps_to_analyse=number_of_timesteps_to_analyse, + plot_timestep_every=plot_timestep_every, + timestep_size=timestep_size, + sources=source_expression, + initial_conditions=initial_condition, + dirichletBC_expression_strings=dirichletBC, + exact_solution=exact_solution, + densities=densities, + include_gravity=include_gravity, + gravity_acceleration=gravity_acceleration, + write2file=write_to_file, + ) + + simulation.initialise() + output_dir = simulation.output_dir + # simulation.write_exact_solution_to_xdmf() + output = simulation.run(analyse_condition=analyse_condition) + for subdomain_index, subdomain_output in output.items(): + mesh_h = subdomain_output['mesh_size'] + for phase, error_dict in subdomain_output['errornorm'].items(): + filename = output_dir \ + + "subdomain{}".format(subdomain_index)\ + + "-space-time-errornorm-{}-phase.csv".format(phase) + # for errortype, errornorm in error_dict.items(): + + # eocfile = open("eoc_filename", "a") + # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" ) + # eocfile.close() + # if subdomain.isRichards:mesh_h + data_dict = { + 'mesh_parameter': mesh_resolution, + 'mesh_h': mesh_h, + } + for norm_type, errornorm in error_dict.items(): + data_dict.update( + {norm_type: errornorm} + ) + errors = pd.DataFrame(data_dict, index=[mesh_resolution]) + # check if file exists + if os.path.isfile(filename) is True: + with open(filename, 'a') as f: + errors.to_csv( + f, + header=False, + sep='\t', + encoding='utf-8', + index=False + ) + else: + errors.to_csv( + filename, + sep='\t', + encoding='utf-8', + index=False + )