From 8e68b9916154f66de91e497e8e1b36ca2ac75b5c Mon Sep 17 00:00:00 2001
From: David Seus <david.seus@ians.uni-stuttgart.de>
Date: Tue, 10 Sep 2019 13:31:35 +0200
Subject: [PATCH] clean up run(). fix write to disc

---
 LDDsimulation/domainPatch.py                  |   4 +-
 ...TP-TP-2-patch-pure-dd-convergence-study.py |  26 +-
 .../TP-TP-2-patch-alterantive.py              | 303 ++++++++++--------
 TP-TP-2-patch-test-case/TP-TP-2-patch-test.py | 171 ++++++----
 4 files changed, 286 insertions(+), 218 deletions(-)

diff --git a/LDDsimulation/domainPatch.py b/LDDsimulation/domainPatch.py
index 9b02d78..6e69ec9 100644
--- a/LDDsimulation/domainPatch.py
+++ b/LDDsimulation/domainPatch.py
@@ -904,7 +904,7 @@ class DomainPatch(df.SubDomain):
         self.ds = df.Measure('ds', domain = self.mesh, subdomain_data = self.interface_marker)
 
 
-    def _calc_interface_dof_indices_and_coordinates(self, debug: bool = True):
+    def _calc_interface_dof_indices_and_coordinates(self, debug: bool = False):
         """ calculate dictionaries containing for each local facet index of
         interfaces a dictionary containing {interface_dof_index: dof_coordinates}
         """
@@ -944,7 +944,7 @@ class DomainPatch(df.SubDomain):
                         )
 
 
-    def _calc_corresponding_dof_indices(self, debug=True):
+    def _calc_corresponding_dof_indices(self, debug=False):
         """ calculate dictionary which for each interface and each phase holds
         for each facet index, the dof indices of the pressures and flux components
         corresponding to a given dof index of the gli function.
diff --git a/TP-TP-2-patch-pure-dd-avoid-interface-at-origin/mesh_study_convergence/TP-TP-2-patch-pure-dd-convergence-study.py b/TP-TP-2-patch-pure-dd-avoid-interface-at-origin/mesh_study_convergence/TP-TP-2-patch-pure-dd-convergence-study.py
index 2336cf7..a9195f7 100755
--- a/TP-TP-2-patch-pure-dd-avoid-interface-at-origin/mesh_study_convergence/TP-TP-2-patch-pure-dd-convergence-study.py
+++ b/TP-TP-2-patch-pure-dd-avoid-interface-at-origin/mesh_study_convergence/TP-TP-2-patch-pure-dd-convergence-study.py
@@ -19,7 +19,7 @@ datestr = date.strftime("%Y-%m-%d")
 # init sympy session
 sym.init_printing()
 
-use_case = "TP-TP-2-patch-pure-dd-mesh-study"
+use_case = "TP-TP-2-patch-pure-dd"
 solver_tol = 6E-7
 max_iter_num = 1000
 FEM_Lagrange_degree = 1
@@ -51,6 +51,7 @@ output_string = "./output/{}-{}_timesteps{}_P{}-solver_tol{}".format(datestr, us
 # toggle what should be written to files
 if mesh_study:
     write_to_file = {
+        'space_errornorms': True,
         'meshes_and_markers': True,
         'L_iterations_per_timestep': False,
         'solutions': False,
@@ -60,6 +61,7 @@ if mesh_study:
     }
 else:
     write_to_file = {
+        'space_errornorms': True,
         'meshes_and_markers': True,
         'L_iterations_per_timestep': False,
         'solutions': True,
@@ -535,29 +537,7 @@ for subdomain in isRichards.keys():
 #
 # sa
 
-# toggle what should be written to files
-if mesh_study:
-    write_to_file = {
-        'meshes_and_markers': True,
-        'L_iterations_per_timestep': False,
-        'solutions': False,
-        'absolute_differences': False,
-        'condition_numbers': analyse_condition,
-        'subsequent_errors': False
-    }
-else:
-    write_to_file = {
-        'meshes_and_markers': True,
-        'L_iterations_per_timestep': False,
-        'solutions': True,
-        'absolute_differences': True,
-        'condition_numbers': analyse_condition,
-        'subsequent_errors': True
-    }
-
-
 for mesh_resolution in resolutions:
-    use_case = use_case + "-mesh-res_{}".format(mesh_resolution)
     # initialise LDD simulation class
     simulation = ldd.LDDsimulation(
         tol=1E-14,
diff --git a/TP-TP-2-patch-test-case/TP-TP-2-patch-alterantive.py b/TP-TP-2-patch-test-case/TP-TP-2-patch-alterantive.py
index 5d31e8e..1df40d9 100755
--- a/TP-TP-2-patch-test-case/TP-TP-2-patch-alterantive.py
+++ b/TP-TP-2-patch-test-case/TP-TP-2-patch-alterantive.py
@@ -7,11 +7,70 @@ import typing as tp
 import domainPatch as dp
 import LDDsimulation as ldd
 import functools as ft
+import helpers as hlp
+import datetime
+import os
+import pandas as pd
+
+date = datetime.datetime.now()
+datestr = date.strftime("%Y-%m-%d")
 #import ufl as ufl
 
 # init sympy session
 sym.init_printing()
 
+use_case = "TP-TP-2-patch-alternative"
+solver_tol = 5E-7
+max_iter_num = 10
+FEM_Lagrange_degree = 1
+mesh_study = False
+resolutions = [20]
+
+############ GRID #######################
+# mesh_resolution = 20
+timestep_size = 0.0001
+number_of_timesteps = 50
+# smallest possible number is 1
+plot_timestep_every = 5
+# decide how many timesteps you want analysed. Analysed means, that we write out
+# subsequent errors of the L-iteration within the timestep.
+number_of_timesteps_to_analyse = 0
+starttime = 0.0
+
+Lw = 0.25 #/timestep_size
+Lnw=Lw
+
+lambda_w = 40
+lambda_nw = 40
+
+include_gravity = False
+debugflag = False
+analyse_condition = False
+
+output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}_".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol)
+
+# toggle what should be written to files
+if mesh_study:
+    write_to_file = {
+        'space_errornorms': True,
+        'meshes_and_markers': True,
+        'L_iterations_per_timestep': False,
+        'solutions': False,
+        'absolute_differences': False,
+        'condition_numbers': analyse_condition,
+        'subsequent_errors': False
+    }
+else:
+    write_to_file = {
+        'space_errornorms': True,
+        'meshes_and_markers': True,
+        'L_iterations_per_timestep': False,
+        'solutions': True,
+        'absolute_differences': True,
+        'condition_numbers': analyse_condition,
+        'subsequent_errors': True
+    }
+
 ##### Domain and Interface ####
 # global simulation domain domain
 sub_domain0_vertices = [df.Point(-1.0,-1.0), #
@@ -88,20 +147,6 @@ isRichards = {
     }
 
 
-solver_tol = 1E-6
-
-############ GRID #######################ü
-mesh_resolution = 30
-timestep_size = 0.001
-number_of_timesteps = 1500
-# decide how many timesteps you want analysed. Analysed means, that we write out
-# subsequent errors of the L-iteration within the timestep.
-number_of_timesteps_to_analyse = 11
-starttime = 0
-
-Lw = 100/timestep_size
-Lnw=Lw
-
 viscosity = {#
 # subdom_num : viscosity
     1 : {'wetting' :1,
@@ -134,14 +179,12 @@ L = {#
          'nonwetting': Lnw}
 }
 
-l_param_w = 25
-l_param_nw = 25
 lambda_param = {#
 # subdom_num : lambda parameter for the L-scheme
-    1 : {'wetting' :l_param_w,
-         'nonwetting': l_param_nw},#
-    2 : {'wetting' :l_param_w,
-         'nonwetting': l_param_nw}
+    1 : {'wetting' :lambda_w,
+         'nonwetting': lambda_nw},#
+    2 : {'wetting' :lambda_w,
+         'nonwetting': lambda_nw}
 }
 
 ## relative permeabilty functions on subdomain 1
@@ -191,7 +234,7 @@ def rel_perm1w_prime(s):
 
 def rel_perm1nw_prime(s):
     # relative permeabilty on subdomain1
-    return 2*(1-s)
+    return -2*(1-s)
 
 # # definition of the derivatives of the relative permeabilities
 # # relative permeabilty functions on subdomain 1
@@ -201,7 +244,7 @@ def rel_perm2w_prime(s):
 
 def rel_perm2nw_prime(s):
     # relative permeabilty on subdomain1
-    return 3*(1-s)**2
+    return -3*(1-s)**2
 
 _rel_perm1w_prime = ft.partial(rel_perm1w_prime)
 _rel_perm1nw_prime = ft.partial(rel_perm1nw_prime)
@@ -324,93 +367,44 @@ x, y = sym.symbols('x[0], x[1]')  # needed by UFL
 t = sym.symbols('t', positive=True)
 
 p_e_sym = {
-    1: {'wetting': -5 - (1+t*t)*(1 + x*x + y*y),
-        'nonwetting': -2 -t*(1-y + x**2)**2},
-    2: {'wetting': -5.0 - (1.0 + t*t)*(1.0 + x*x),
+    1: {'wetting': -7 - (1+t*t)*(1 + x*x + y*y),
+        'nonwetting': -2 -t*(1 + y + x**2)},
+    2: {'wetting': -7.0 - (1.0 + t*t)*(1.0 + x*x),
         'nonwetting': -2 -t*(1 + x**2)**2 - sym.sqrt(2+t**2)*(1+y)**2*x**2*y**2},
 }
 
-pc_e_sym = {
-    1: p_e_sym[1]['nonwetting'] - p_e_sym[1]['wetting'],
-    2: p_e_sym[2]['nonwetting'] - p_e_sym[2]['wetting'],
-}
-
+pc_e_sym = dict()
+for subdomain, isR in isRichards.items():
+    if isR:
+        pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting'].copy()})
+    else:
+        pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'].copy()
+                                        - p_e_sym[subdomain]['wetting'].copy()})
 
-# pc_e_sym = {
-#     1: -1*p_e_sym[1]['wetting'],
-#     2: -1*p_e_sym[2]['wetting'],
-# }
 
+symbols = {"x": x,
+           "y": y,
+           "t": t}
 # turn above symbolic code into exact solution for dolphin and
 # construct the rhs that matches the above exact solution.
-dtS = dict()
-div_flux = dict()
-source_expression = dict()
-exact_solution = dict()
-initial_condition = dict()
-for subdomain, isR in isRichards.items():
-    dtS.update({subdomain: dict()})
-    div_flux.update({subdomain: dict()})
-    source_expression.update({subdomain: dict()})
-    exact_solution.update({subdomain: dict()})
-    initial_condition.update({subdomain: dict()})
-    if isR:
-        subdomain_has_phases = ["wetting"]
-    else:
-        subdomain_has_phases = ["wetting", "nonwetting"]
-
-    # conditional for S_pc_prime
-    pc = pc_e_sym[subdomain]
-    dtpc = sym.diff(pc, t, 1)
-    dxpc = sym.diff(pc, x, 1)
-    dypc = sym.diff(pc, y, 1)
-    S = sym.Piecewise((S_pc_sym[subdomain](pc), pc > 0), (1, True))
-    dS = sym.Piecewise((S_pc_sym_prime[subdomain](pc), pc > 0), (0, True))
-    for phase in subdomain_has_phases:
-        # Turn above symbolic expression for exact solution into c code
-        exact_solution[subdomain].update(
-            {phase: sym.printing.ccode(p_e_sym[subdomain][phase])}
-            )
-        # save the c code for initial conditions
-        initial_condition[subdomain].update(
-            {phase: sym.printing.ccode(p_e_sym[subdomain][phase].subs(t, 0))}
-            )
-        if phase == "nonwetting":
-            dtS[subdomain].update(
-                {phase: -porosity[subdomain]*dS*dtpc}
-                )
-        else:
-            dtS[subdomain].update(
-                {phase: porosity[subdomain]*dS*dtpc}
-                )
-        pa = p_e_sym[subdomain][phase]
-        dxpa = sym.diff(pa, x, 1)
-        dxdxpa = sym.diff(pa, x, 2)
-        dypa = sym.diff(pa, y, 1)
-        dydypa = sym.diff(pa, y, 2)
-        mu = viscosity[subdomain][phase]
-        ka = relative_permeability[subdomain][phase]
-        dka = ka_prime[subdomain][phase]
-        rho = densities[subdomain][phase]
-        g = gravity_acceleration
-
-        if phase == "nonwetting":
-            # x part of div(flux) for nonwetting
-            dxdxflux = -1/mu*dka(1-S)*dS*dxpc*dxpa + 1/mu*dxdxpa*ka(1-S)
-            # y part of div(flux) for nonwetting
-            dydyflux = -1/mu*dka(1-S)*dS*dypc*(dypa - rho*g) \
-                + 1/mu*dydypa*ka(1-S)
-        else:
-            # x part of div(flux) for wetting
-            dxdxflux = 1/mu*dka(S)*dS*dxpc*dxpa + 1/mu*dxdxpa*ka(S)
-            # y part of div(flux) for wetting
-            dydyflux = 1/mu*dka(S)*dS*dypc*(dypa - rho*g) + 1/mu*dydypa*ka(S)
-        div_flux[subdomain].update({phase: dxdxflux + dydyflux})
-        contructed_rhs = dtS[subdomain][phase] - div_flux[subdomain][phase]
-        source_expression[subdomain].update(
-            {phase: sym.printing.ccode(contructed_rhs)}
-            )
-        # print(f"source_expression[{subdomain}][{phase}] =", source_expression[subdomain][phase])
+exact_solution_example = hlp.generate_exact_solution_expressions(
+                        symbols=symbols,
+                        isRichards=isRichards,
+                        symbolic_pressure=p_e_sym,
+                        symbolic_capillary_pressure=pc_e_sym,
+                        saturation_pressure_relationship=S_pc_sym,
+                        saturation_pressure_relationship_prime=S_pc_sym_prime,
+                        viscosity=viscosity,
+                        porosity=porosity,
+                        relative_permeability=relative_permeability,
+                        relative_permeability_prime=ka_prime,
+                        densities=densities,
+                        gravity_acceleration=gravity_acceleration,
+                        include_gravity=include_gravity,
+                        )
+source_expression = exact_solution_example['source']
+exact_solution = exact_solution_example['exact_solution']
+initial_condition = exact_solution_example['initial_condition']
 
 # Dictionary of dirichlet boundary conditions.
 dirichletBC = dict()
@@ -447,40 +441,71 @@ for subdomain in isRichards.keys():
 #
 # sa
 
-write_to_file = {
-    'meshes_and_markers': True,
-    'L_iterations': True
-}
-
-
-# initialise LDD simulation class
-simulation = ldd.LDDsimulation(tol = 1E-14, LDDsolver_tol = solver_tol, debug = True)
-simulation.set_parameters(output_dir = "./output/alternative_example/",#
-    subdomain_def_points = subdomain_def_points,#
-    isRichards = isRichards,#
-    interface_def_points = interface_def_points,#
-    outer_boundary_def_points = outer_boundary_def_points,#
-    adjacent_subdomains = adjacent_subdomains,#
-    mesh_resolution = mesh_resolution,#
-    viscosity = viscosity,#
-    porosity = porosity,#
-    L = L,#
-    lambda_param = lambda_param,#
-    relative_permeability = relative_permeability,#
-    saturation = sat_pressure_relationship,#
-    starttime = starttime,#
-    number_of_timesteps = number_of_timesteps,
-    number_of_timesteps_to_analyse = number_of_timesteps_to_analyse,
-    timestep_size = timestep_size,#
-    sources = source_expression,#
-    initial_conditions = initial_condition,#
-    dirichletBC_expression_strings = dirichletBC,#
-    exact_solution = exact_solution,#
-    densities=densities,
-    include_gravity=True,
-    write2file = write_to_file,#
-    )
-
-simulation.initialise()
-# simulation.write_exact_solution_to_xdmf()
-simulation.run()
+for mesh_resolution in resolutions:
+    # initialise LDD simulation class
+    simulation = ldd.LDDsimulation(
+        tol=1E-14,
+        LDDsolver_tol=solver_tol,
+        debug=debugflag,
+        max_iter_num=max_iter_num,
+        FEM_Lagrange_degree=FEM_Lagrange_degree,
+        mesh_study=mesh_study
+        )
+
+    simulation.set_parameters(use_case=use_case,
+                              output_dir=output_string,
+                              subdomain_def_points=subdomain_def_points,
+                              isRichards=isRichards,
+                              interface_def_points=interface_def_points,
+                              outer_boundary_def_points=outer_boundary_def_points,
+                              adjacent_subdomains=adjacent_subdomains,
+                              mesh_resolution=mesh_resolution,
+                              viscosity=viscosity,
+                              porosity=porosity,
+                              L=L,
+                              lambda_param=lambda_param,
+                              relative_permeability=relative_permeability,
+                              saturation=sat_pressure_relationship,
+                              starttime=starttime,
+                              number_of_timesteps=number_of_timesteps,
+                              number_of_timesteps_to_analyse=number_of_timesteps_to_analyse,
+                              plot_timestep_every=plot_timestep_every,
+                              timestep_size=timestep_size,
+                              sources=source_expression,
+                              initial_conditions=initial_condition,
+                              dirichletBC_expression_strings=dirichletBC,
+                              exact_solution=exact_solution,
+                              densities=densities,
+                              include_gravity=include_gravity,
+                              write2file=write_to_file,
+                              )
+
+    simulation.initialise()
+    output_dir = simulation.output_dir
+    # simulation.write_exact_solution_to_xdmf()
+    output = simulation.run(analyse_condition=analyse_condition)
+    for subdomain_index, subdomain_output in output.items():
+        mesh_h = subdomain_output['mesh_size']
+        for phase, different_errornorms in subdomain_output['errornorm'].items():
+            filename = output_dir + "subdomain{}-space-time-errornorm-{}-phase.csv".format(subdomain_index, phase)
+            # for errortype, errornorm in different_errornorms.items():
+
+                # eocfile = open("eoc_filename", "a")
+                # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" )
+                # eocfile.close()
+                # if subdomain.isRichards:mesh_h
+            data_dict = {
+                'mesh_parameter': mesh_resolution,
+                'mesh_h': mesh_h,
+            }
+            for error_type, errornorms in different_errornorms.items():
+                data_dict.update(
+                    {error_type: errornorms}
+                )
+            errors = pd.DataFrame(data_dict, index=[mesh_resolution])
+            # check if file exists
+            if os.path.isfile(filename) == True:
+                with open(filename, 'a') as f:
+                    errors.to_csv(f, header=False, sep='\t', encoding='utf-8', index=False)
+            else:
+                errors.to_csv(filename, sep='\t', encoding='utf-8', index=False)
diff --git a/TP-TP-2-patch-test-case/TP-TP-2-patch-test.py b/TP-TP-2-patch-test-case/TP-TP-2-patch-test.py
index 3855efc..b878bc6 100755
--- a/TP-TP-2-patch-test-case/TP-TP-2-patch-test.py
+++ b/TP-TP-2-patch-test-case/TP-TP-2-patch-test.py
@@ -8,34 +8,67 @@ import domainPatch as dp
 import LDDsimulation as ldd
 import functools as ft
 import helpers as hlp
+import datetime
+import os
+import pandas as pd
+
+date = datetime.datetime.now()
+datestr = date.strftime("%Y-%m-%d")
 #import ufl as ufl
 
 # init sympy session
 sym.init_printing()
 
-use_case = "TP-TP-two-patch"
-solver_tol = 6E-6
-
-############ GRID #######################ü
-mesh_resolution = 20
-timestep_size = 0.0005
-number_of_timesteps = 600
+use_case = "TP-TP-2-patch"
+solver_tol = 5E-7
+max_iter_num = 1000
+FEM_Lagrange_degree = 1
+mesh_study = False
+resolutions = [20]
+
+############ GRID #######################
+# mesh_resolution = 20
+timestep_size = 0.0001
+number_of_timesteps = 5000
+plot_timestep_every = 10
 # decide how many timesteps you want analysed. Analysed means, that we write out
 # subsequent errors of the L-iteration within the timestep.
-number_of_timesteps_to_analyse = 0
-starttime = 0
+number_of_timesteps_to_analyse = 10
+starttime = 0.0
 
-Lw = 1 #/timestep_size
+Lw = 0.25 #/timestep_size
 Lnw=Lw
 
-lambda_w = 4
-lambda_nw = 4
+lambda_w = 40
+lambda_nw = 40
 
-include_gravity = True
+include_gravity = False
 debugflag = False
 analyse_condition = True
 
-output_string = "./output/2019-08-23-number_of_timesteps{}_".format(number_of_timesteps)
+output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}_".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol)
+
+# toggle what should be written to files
+if mesh_study:
+    write_to_file = {
+        'space_errornorms': True,
+        'meshes_and_markers': True,
+        'L_iterations_per_timestep': False,
+        'solutions': False,
+        'absolute_differences': False,
+        'condition_numbers': analyse_condition,
+        'subsequent_errors': False
+    }
+else:
+    write_to_file = {
+        'space_errornorms': True,
+        'meshes_and_markers': True,
+        'L_iterations_per_timestep': False,
+        'solutions': True,
+        'absolute_differences': True,
+        'condition_numbers': analyse_condition,
+        'subsequent_errors': True
+    }
 
 ##### Domain and Interface ####
 # global simulation domain domain
@@ -335,9 +368,9 @@ t = sym.symbols('t', positive=True)
 
 p_e_sym = {
     1: {'wetting': (-6 - (1+t*t)*(1 + x*x + y*y)),  #*cutoff,
-        'nonwetting': (-1 -t*(1.1+ y + x**2))},  #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2},
+        'nonwetting': (-1 -t*(1.1+ y*y))},  #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2},
     2: {'wetting': (-6.0 - (1.0 + t*t)*(1.0 + x*x)),  #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2,
-        'nonwetting': (-1 -t*(1.1 + x**2) - sym.sqrt(2+t**2)*(1.1+y)**2*y**2)},  #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2},
+        'nonwetting': (-1 -t*(1.1 + y*y) - sym.sqrt(2+t**2)*(1.1+y)**2*y**2)},  #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2},
 }
 
 
@@ -409,41 +442,71 @@ for subdomain in isRichards.keys():
 #
 # sa
 
-write_to_file = {
-    'meshes_and_markers': True,
-    'L_iterations': True
-}
-
-
-# initialise LDD simulation class
-simulation = ldd.LDDsimulation(tol = 1E-14, LDDsolver_tol = solver_tol, debug = debugflag)
-simulation.set_parameters(use_case=use_case,
-    output_dir = output_string,#
-    subdomain_def_points = subdomain_def_points,#
-    isRichards = isRichards,#
-    interface_def_points = interface_def_points,#
-    outer_boundary_def_points = outer_boundary_def_points,#
-    adjacent_subdomains = adjacent_subdomains,#
-    mesh_resolution = mesh_resolution,#
-    viscosity = viscosity,#
-    porosity = porosity,#
-    L = L,#
-    lambda_param = lambda_param,#
-    relative_permeability = relative_permeability,#
-    saturation = sat_pressure_relationship,#
-    starttime = starttime,#
-    number_of_timesteps = number_of_timesteps,
-    number_of_timesteps_to_analyse = number_of_timesteps_to_analyse,
-    timestep_size = timestep_size,#
-    sources = source_expression,#
-    initial_conditions = initial_condition,#
-    dirichletBC_expression_strings = dirichletBC,#
-    exact_solution = exact_solution,#
-    densities=densities,
-    include_gravity=include_gravity,
-    write2file = write_to_file,#
-    )
-
-simulation.initialise()
-# simulation.write_exact_solution_to_xdmf()
-simulation.run(analyse_condition=analyse_condition)
+for mesh_resolution in resolutions:
+    # initialise LDD simulation class
+    simulation = ldd.LDDsimulation(
+        tol=1E-14,
+        LDDsolver_tol=solver_tol,
+        debug=debugflag,
+        max_iter_num=max_iter_num,
+        FEM_Lagrange_degree=FEM_Lagrange_degree,
+        mesh_study=mesh_study
+        )
+
+    simulation.set_parameters(use_case=use_case,
+                              output_dir=output_string,
+                              subdomain_def_points=subdomain_def_points,
+                              isRichards=isRichards,
+                              interface_def_points=interface_def_points,
+                              outer_boundary_def_points=outer_boundary_def_points,
+                              adjacent_subdomains=adjacent_subdomains,
+                              mesh_resolution=mesh_resolution,
+                              viscosity=viscosity,
+                              porosity=porosity,
+                              L=L,
+                              lambda_param=lambda_param,
+                              relative_permeability=relative_permeability,
+                              saturation=sat_pressure_relationship,
+                              starttime=starttime,
+                              number_of_timesteps=number_of_timesteps,
+                              number_of_timesteps_to_analyse=number_of_timesteps_to_analyse,
+                              plot_timestep_every=plot_timestep_every,
+                              timestep_size=timestep_size,
+                              sources=source_expression,
+                              initial_conditions=initial_condition,
+                              dirichletBC_expression_strings=dirichletBC,
+                              exact_solution=exact_solution,
+                              densities=densities,
+                              include_gravity=include_gravity,
+                              write2file=write_to_file,
+                              )
+
+    simulation.initialise()
+    output_dir = simulation.output_dir
+    # simulation.write_exact_solution_to_xdmf()
+    output = simulation.run(analyse_condition=analyse_condition)
+    for subdomain_index, subdomain_output in output.items():
+        mesh_h = subdomain_output['mesh_size']
+        for phase, different_errornorms in subdomain_output['errornorm'].items():
+            filename = output_dir + "subdomain{}-space-time-errornorm-{}-phase.csv".format(subdomain_index, phase)
+            # for errortype, errornorm in different_errornorms.items():
+
+                # eocfile = open("eoc_filename", "a")
+                # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" )
+                # eocfile.close()
+                # if subdomain.isRichards:mesh_h
+            data_dict = {
+                'mesh_parameter': mesh_resolution,
+                'mesh_h': mesh_h,
+            }
+            for error_type, errornorms in different_errornorms.items():
+                data_dict.update(
+                    {error_type: errornorms}
+                )
+            errors = pd.DataFrame(data_dict, index=[mesh_resolution])
+            # check if file exists
+            if os.path.isfile(filename) == True:
+                with open(filename, 'a') as f:
+                    errors.to_csv(f, header=False, sep='\t', encoding='utf-8', index=False)
+            else:
+                errors.to_csv(filename, sep='\t', encoding='utf-8', index=False)
-- 
GitLab