From 83d6d57aeb158aba0d3b4a54e82b9bd8aa6dd809 Mon Sep 17 00:00:00 2001 From: David Seus <david.seus@ians.uni-stuttgart.de> Date: Sat, 10 Aug 2019 16:35:18 +0200 Subject: [PATCH] run several new examples --- LDDsimulation/LDDsimulation.py | 4 +- LDDsimulation/helpers.py | 19 +- TP-R-two-patch-test-case/TP-R-2-patch-test.py | 29 +- .../TP-TP-2-patch-pure-dd.py | 47 +- .../TP-TP-layered_soil_with_inner_patch.py | 427 +++++++++--------- TP-TP-layered-soil-case/TP-TP-layered_soil.py | 174 +++---- ...h-with-gravity-same-wetting-phase-as-RR.py | 38 +- .../TP-one-patch-linear-koefficients.py | 44 +- TP-one-patch/TP-one-patch.py | 18 +- 9 files changed, 404 insertions(+), 396 deletions(-) diff --git a/LDDsimulation/LDDsimulation.py b/LDDsimulation/LDDsimulation.py index e75dccb..310f1b8 100644 --- a/LDDsimulation/LDDsimulation.py +++ b/LDDsimulation/LDDsimulation.py @@ -106,7 +106,7 @@ class LDDsimulation(object): ## Private variables # maximal number of L-iterations that the LDD solver uses. - self._max_iter_num = 500 + self._max_iter_num = 1000 # TODO rewrite this with regard to the mesh sizes # self.calc_tol = self.tol # list of timesteps that get analyed. Gets initiated by self._init_analyse_timesteps @@ -470,7 +470,7 @@ class LDDsimulation(object): subsequent_error_filename = self.output_dir\ +self.output_filename_parameter_part[sd_index]\ +"subsequent_iteration_errors" +"_at_time"+\ - "{number:.{digits}f}".format(number=time, digits=4) +".csv" + "{number}".format(number=self.timestep_num) +".csv" #"{number:.{digits}f}".format(number=time, digits=4) self.write_subsequent_errors_to_csv( filename = subsequent_error_filename, # subdomain_index = sd_index, diff --git a/LDDsimulation/helpers.py b/LDDsimulation/helpers.py index 0665caa..803031f 100644 --- a/LDDsimulation/helpers.py +++ b/LDDsimulation/helpers.py @@ -31,8 +31,10 @@ def generate_exact_solution_expressions( porosity: tp.Dict[int, tp.Dict[str, float]],# relative_permeability: tp.Dict[int, tp.Dict[str, tp.Callable[...,None]] ],# relative_permeability_prime: tp.Dict[int, tp.Dict[str, tp.Callable[...,None]] ], - saturation_pressure_relationship: tp.Dict[int, tp.Callable[...,None]],# - saturation_pressure_relationship_prime: tp.Dict[int, tp.Callable[...,None]],# + saturation_pressure_relationship: tp.Dict[int, tp.Callable[...,None]] = None,# + saturation_pressure_relationship_prime: tp.Dict[int, tp.Callable[...,None]] = None,# + symbolic_S_pc_relationship: tp.Dict[int, tp.Callable[...,None]] = None,# + symbolic_S_pc_relationship_prime: tp.Dict[int, tp.Callable[...,None]] = None,# densities: tp.Dict[int, tp.Dict[str, float]] = None,# gravity_acceleration: float = 9.81, include_gravity: bool = False, @@ -51,8 +53,9 @@ def generate_exact_solution_expressions( # construct the rhs that matches the above exact solution. dtS = dict() div_flux = dict() - S_pc_sym = saturation_pressure_relationship - S_pc_sym_prime = saturation_pressure_relationship_prime + if saturation_pressure_relationship is not None: + S_pc_sym = saturation_pressure_relationship + S_pc_sym_prime = saturation_pressure_relationship_prime for subdomain, isR in isRichards.items(): dtS.update({subdomain: dict()}) div_flux.update({subdomain: dict()}) @@ -69,8 +72,12 @@ def generate_exact_solution_expressions( dtpc = sym.diff(pc, t, 1) dxpc = sym.diff(pc, x, 1) dypc = sym.diff(pc, y, 1) - S = sym.Piecewise((S_pc_sym[subdomain](pc), pc > 0), (1, True)) - dS = sym.Piecewise((S_pc_sym_prime[subdomain](pc), pc > 0), (0, True)) + if saturation_pressure_relationship is not None: + S = sym.Piecewise((S_pc_sym[subdomain](pc), pc > 0), (1, True)) + dS = sym.Piecewise((S_pc_sym_prime[subdomain](pc), pc > 0), (0, True)) + else: + S = symbolic_S_pc_relationship[subdomain] + dS = symbolic_S_pc_relationship_prime[subdomain] for phase in subdomain_has_phases: # Turn above symbolic expression for exact solution into c code output['exact_solution'][subdomain].update( diff --git a/TP-R-two-patch-test-case/TP-R-2-patch-test.py b/TP-R-two-patch-test-case/TP-R-2-patch-test.py index 9924115..ad5199e 100755 --- a/TP-R-two-patch-test-case/TP-R-2-patch-test.py +++ b/TP-R-two-patch-test-case/TP-R-2-patch-test.py @@ -13,23 +13,28 @@ import helpers as hlp # init sympy session sym.init_printing() -solver_tol = 5e-7 -######################## GRID ####################### -mesh_resolution = 30 +solver_tol = 1E-7 + +############ GRID #######################ü +mesh_resolution = 40 timestep_size = 0.0001 -number_of_timesteps = 50 +number_of_timesteps = 10 # decide how many timesteps you want analysed. Analysed means, that we write out # subsequent errors of the L-iteration within the timestep. number_of_timesteps_to_analyse = 10 starttime = 0 -Lw = 1/timestep_size +Lw = 4 #/timestep_size Lnw=Lw -l_param_w = 40 -l_param_nw = l_param_w +l_param_w = 60 +l_param_nw = 60 include_gravity = True +debugflag = True +analyse_condition = False + +output_string = "./output/nondirichlet_number_of_timesteps{}_".format(number_of_timesteps) ##### Domain and Interface #### # global simulation domain domain @@ -317,9 +322,9 @@ x, y = sym.symbols('x[0], x[1]') # needed by UFL t = sym.symbols('t', positive=True) p_e_sym = { - 1: {'wetting': (1.0 - (1.0 + t*t)*(1.0 + x*x + y*y))*(1-x)**2*(1+x)**2*(1-y)**2}, - 2: {'wetting': (1.0 - (1.0 + t*t)*(1.0 + x*x))*(1-x)**2*(1+x)**2*(1+y)**2, - 'nonwetting': (-t**2*(1+y + x**2)**2 - sym.sqrt(2+t**4))*y**2*(1-x)**2*(1+x)**2*(1+y)**2}, + 1: {'wetting': (-3.0 - (1.0 + t*t)*(1.0 + x*x + y*y))}, #*(1-x)**2*(1+x)**2*(1-y)**2}, + 2: {'wetting': (-3.0 - (1.0 + t*t)*(1.0 + x*x)), #*(1-x)**2*(1+x)**2*(1+y)**2, + 'nonwetting': (-t**2*(1+y + x**2)**2 - sym.sqrt(2+t**4))*y**2}, #*(1-x)**2*(1+x)**2*(1+y)**2}, } #-y*y*(sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t)) - t*t*x*(0.5-y)*y*(1-x) @@ -399,7 +404,7 @@ write_to_file = { # initialise LDD simulation class simulation = ldd.LDDsimulation(tol = 1E-14, LDDsolver_tol=solver_tol, debug=True) -simulation.set_parameters(output_dir = "./output/",# +simulation.set_parameters(output_dir = output_string,# subdomain_def_points = subdomain_def_points,# isRichards = isRichards,# interface_def_points = interface_def_points,# @@ -427,4 +432,4 @@ simulation.set_parameters(output_dir = "./output/",# simulation.initialise() # simulation.write_exact_solution_to_xdmf() -simulation.run() +simulation.run(analyse_condition=analyse_condition) diff --git a/TP-TP-2-patch-pure-dd/TP-TP-2-patch-pure-dd.py b/TP-TP-2-patch-pure-dd/TP-TP-2-patch-pure-dd.py index a2f841a..c9b8d4a 100755 --- a/TP-TP-2-patch-pure-dd/TP-TP-2-patch-pure-dd.py +++ b/TP-TP-2-patch-pure-dd/TP-TP-2-patch-pure-dd.py @@ -13,23 +13,28 @@ import helpers as hlp # init sympy session sym.init_printing() -solver_tol = 1E-6 +solver_tol = 5E-7 ############ GRID #######################ü -mesh_resolution = 31 -timestep_size = 0.001 -number_of_timesteps = 15 +mesh_resolution = 50 +timestep_size = 0.0001 +number_of_timesteps = 1000 # decide how many timesteps you want analysed. Analysed means, that we write out # subsequent errors of the L-iteration within the timestep. -number_of_timesteps_to_analyse = 11 +number_of_timesteps_to_analyse = 10 starttime = 0 +Lw = 1 #/timestep_size +Lnw=Lw + +l_param_w = 40 +l_param_nw = 40 + include_gravity = True -Lw = 10/timestep_size -Lnw = Lw +debugflag = False +analyse_condition = True -l_param_w = 50 -l_param_nw = l_param_w +output_string = "./output/nondirichlet_number_of_timesteps{}_".format(number_of_timesteps) ##### Domain and Interface #### # global simulation domain domain @@ -412,20 +417,22 @@ Spc = { 2: sym.Piecewise((pc_saturation_sym[2](sat_sym[2]), sat_sym[2] > 0), (pc_saturation_sym[2](sat_sym[2]), 2>=sat_sym[2]), (0, True)) } -p1w = (-1 - (1+t*t)*(1 + x*x + y*y))*cutoff +p1w = (-1 - (1+t*t)*(1 + x*x + y*y))#*cutoff p2w = p1w p_e_sym = { 1: {'wetting': p1w, - 'nonwetting': (p1w + Spc[1])*cutoff}, + 'nonwetting': (p1w + Spc[1])}, #*cutoff}, 2: {'wetting': p2w, - 'nonwetting': (p2w + Spc[2])*cutoff}, -} - -pc_e_sym = { - 1: p_e_sym[1]['nonwetting'] - p_e_sym[1]['wetting'], - 2: p_e_sym[2]['nonwetting'] - p_e_sym[2]['wetting'], + 'nonwetting': (p2w + Spc[2])}, #*cutoff}, } +pc_e_sym = dict() +for subdomain, isR in isRichards.items(): + if isR: + pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']}) + else: + pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'] + - p_e_sym[subdomain]['wetting']}) # pc_e_sym = { # 1: -1*p_e_sym[1]['wetting'], @@ -493,8 +500,8 @@ write_to_file = { # initialise LDD simulation class -simulation = ldd.LDDsimulation(tol = 1E-14, LDDsolver_tol=solver_tol, debug = True) -simulation.set_parameters(output_dir = "./output/with_dirichlet_zero",# +simulation = ldd.LDDsimulation(tol=1E-14, LDDsolver_tol=solver_tol, debug=debugflag) +simulation.set_parameters(output_dir = output_string,# subdomain_def_points = subdomain_def_points,# isRichards = isRichards,# interface_def_points = interface_def_points,# @@ -522,4 +529,4 @@ simulation.set_parameters(output_dir = "./output/with_dirichlet_zero",# simulation.initialise() # simulation.write_exact_solution_to_xdmf() -simulation.run() +simulation.run(analyse_condition=analyse_condition) diff --git a/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch.py b/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch.py index 868fd4f..b1a38f8 100755 --- a/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch.py +++ b/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch.py @@ -16,57 +16,59 @@ import typing as tp import functools as ft import domainPatch as dp import LDDsimulation as ldd +import helpers as hlp # init sympy session sym.init_printing() -# ----------------------------------------------------------------------------# -# ------------------- MESH ---------------------------------------------------# -# ----------------------------------------------------------------------------# -mesh_resolution = 50 -# ----------------------------------------:-----------------------------------# -# ------------------- TIME ---------------------------------------------------# -# ----------------------------------------------------------------------------# -timestep_size = 0.0001 -number_of_timesteps = 50 -# decide how many timesteps you want analysed. Analysed means, that we write -# out subsequent errors of the L-iteration within the timestep. -number_of_timesteps_to_analyse = 4 +solver_tol = 5E-7 + +############ GRID #######################ü +mesh_resolution = 40 +timestep_size = 0.0005 +number_of_timesteps = 1000 +# decide how many timesteps you want analysed. Analysed means, that we write out +# subsequent errors of the L-iteration within the timestep. +number_of_timesteps_to_analyse = 5 starttime = 0 -Lw = 10000 -Lnw = 10000 +Lw = 0.25 #/timestep_size +Lnw=Lw -l_param_w = 30 +l_param_w = 40 l_param_nw = 40 + +include_gravity = True +debugflag = False +analyse_condition = True + +output_string = "./output/nondirichlet_number_of_timesteps{}_".format(number_of_timesteps) + # global domain -subdomain0_vertices = [df.Point(0.0,0.0), # - df.Point(13.0,0.0),# - df.Point(13.0,8.0),# - df.Point(0.0,8.0)] +subdomain0_vertices = [df.Point(-1.0,-1.0), # + df.Point(1.0,-1.0),# + df.Point(1.0,1.0),# + df.Point(-1.0,1.0)] -interface12_vertices = [df.Point(0.0, 7.0), - df.Point(9.0, 7.0), - df.Point(10.5, 7.5), - df.Point(12.0, 7.0), - df.Point(13.0, 6.5)] +interface12_vertices = [df.Point(-1.0, 0.8), + df.Point(0.3, 0.8), + df.Point(0.5, 0.9), + df.Point(0.8, 0.7), + df.Point(1.0, 0.65)] -# interface23 -interface23_vertices = [df.Point(0.0, 5.0), - df.Point(3.0, 5.0), + # interface23 +interface23_vertices = [df.Point(-1.0, 0.0), + df.Point(-0.35, 0.0), # df.Point(6.5, 4.5), - df.Point(6.5, 5.0)] + df.Point(0.0, 0.0)] -interface24_vertices = [df.Point(6.5, 5.0), - df.Point(9.5, 5.0), - # df.Point(11.5, 3.5), - # df.Point(13.0, 3) - df.Point(11.5, 5.0) +interface24_vertices = [interface23_vertices[2], + df.Point(0.6, 0.0), ] -interface25_vertices = [df.Point(11.5, 5.0), - df.Point(13.0, 5.0) +interface25_vertices = [interface24_vertices[1], + df.Point(1.0, 0.0) ] @@ -74,26 +76,72 @@ interface32_vertices = [interface23_vertices[2], interface23_vertices[1], interface23_vertices[0]] -interface34_vertices = [df.Point(4.0, 2.0), - df.Point(4.7, 3.0), - interface23_vertices[2]] -# interface36 -interface36_vertices = [df.Point(0.0, 2.0), - df.Point(4.0, 2.0)] + +interface36_vertices = [df.Point(-1.0, -0.6), + df.Point(-0.6, -0.45)] -interface46_vertices = [df.Point(4.0, 2.0), - df.Point(9.0, 2.5)] +interface46_vertices = [interface36_vertices[1], + df.Point(0.3, -0.25)] + +interface56_vertices = [interface46_vertices[1], + df.Point(0.65, -0.6), + df.Point(1.0, -0.7)] + + + + +interface34_vertices = [interface36_vertices[1], + interface23_vertices[2]] +# interface36 -interface45_vertices = [df.Point(9.0, 2.5), - df.Point(10.0, 3.0), +interface45_vertices = [interface56_vertices[0], + df.Point(0.7, -0.2), interface25_vertices[0] ] -interface56_vertices = [df.Point(9.0, 2.5), - df.Point(10.5, 2.0), - df.Point(13.0, 1.5)] +# # subdomain1. +# subdomain1_vertices = [interface12_vertices[0], +# interface12_vertices[1], +# interface12_vertices[2], +# interface12_vertices[3], +# interface12_vertices[4], # southern boundary, 12 interface +# subdomain0_vertices[2], # eastern boundary, outer boundary +# subdomain0_vertices[3]] # northern boundary, outer on_boundary +# +# # vertex coordinates of the outer boundaries. If it can not be specified as a +# # polygon, use an entry per boundary polygon. This information is used for defining +# # the Dirichlet boundary conditions. If a domain is completely internal, the +# # dictionary entry should be 0: None +# subdomain1_outer_boundary_verts = { +# 0: [interface12_vertices[4], # +# subdomain0_vertices[2], # eastern boundary, outer boundary +# subdomain0_vertices[3], +# interface12_vertices[0]] +# } +# + +# #subdomain1 +# subdomain2_vertices = [interface23_vertices[0], +# interface23_vertices[1], +# interface23_vertices[2], +# interface23_vertices[3], +# interface23_vertices[4], +# interface23_vertices[5], # southern boundary, 23 interface +# subdomain1_vertices[4], # eastern boundary, outer boundary +# subdomain1_vertices[3], +# subdomain1_vertices[2], +# subdomain1_vertices[1], +# subdomain1_vertices[0] ] # northern boundary, 12 interface +# +# subdomain2_outer_boundary_verts = { +# 0: [interface23_vertices[5], +# subdomain1_vertices[4]], +# 1: [subdomain1_vertices[0], +# interface23_vertices[0]] +# } +# # interface_vertices introduces a global numbering of interfaces. interface_def_points = [interface12_vertices, @@ -131,10 +179,10 @@ subdomain1_vertices = [interface12_vertices[0], # the Dirichlet boundary conditions. If a domain is completely internal, the # dictionary entry should be 0: None subdomain1_outer_boundary_verts = { - 0: [interface12_vertices[4], # - subdomain0_vertices[2], # eastern boundary, outer boundary - subdomain0_vertices[3], - interface12_vertices[0]] + 0: [subdomain1_vertices[4], # + subdomain1_vertices[5], # eastern boundary, outer boundary + subdomain1_vertices[6], + subdomain1_vertices[0]] } #subdomain1 @@ -142,7 +190,6 @@ subdomain2_vertices = [interface23_vertices[0], interface23_vertices[1], interface23_vertices[2], interface24_vertices[1], - interface24_vertices[2], interface25_vertices[1], # southern boundary, 23 interface subdomain1_vertices[4], # eastern boundary, outer boundary subdomain1_vertices[3], @@ -151,10 +198,10 @@ subdomain2_vertices = [interface23_vertices[0], subdomain1_vertices[0] ] # northern boundary, 12 interface subdomain2_outer_boundary_verts = { - 0: [interface25_vertices[1], - subdomain1_vertices[4]], - 1: [subdomain1_vertices[0], - interface23_vertices[0]] + 0: [subdomain2_vertices[9], + subdomain2_vertices[0]], + 1: [subdomain2_vertices[4], + subdomain2_vertices[5]] } @@ -162,14 +209,13 @@ subdomain3_vertices = [interface36_vertices[0], interface36_vertices[1], # interface34_vertices[0], interface34_vertices[1], - interface34_vertices[2], # interface32_vertices[0], interface32_vertices[1], interface32_vertices[2] ] subdomain3_outer_boundary_verts = { - 0: [subdomain2_vertices[0], + 0: [subdomain3_vertices[4], subdomain3_vertices[0]] } @@ -177,8 +223,7 @@ subdomain3_outer_boundary_verts = { # subdomain3 subdomain4_vertices = [interface46_vertices[0], interface46_vertices[1], - df.Point(10.0, 3.0), - interface24_vertices[2], + interface45_vertices[1], interface24_vertices[1], interface24_vertices[0], interface34_vertices[1] @@ -212,10 +257,10 @@ subdomain6_vertices = [subdomain0_vertices[0], ] subdomain6_outer_boundary_verts = { - 0: [subdomain4_vertices[6], - subdomain4_vertices[0], - subdomain4_vertices[1], - subdomain4_vertices[2]] + 0: [subdomain6_vertices[6], + subdomain6_vertices[0], + subdomain6_vertices[1], + subdomain6_vertices[2]] } @@ -242,24 +287,25 @@ outer_boundary_def_points = { 6: subdomain6_outer_boundary_verts } -# isRichards = { -# 1: False, -# 2: False, -# 3: False, -# 4: False, -# 5: False, -# 6: False -# } isRichards = { - 1: True, - 2: True, - 3: True, - 4: True, - 5: True, - 6: True + 1: False, + 2: False, + 3: False, + 4: False, + 5: False, + 6: False } +# isRichards = { +# 1: True, +# 2: True, +# 3: True, +# 4: True, +# 5: True, +# 6: True +# } + # Dict of the form: { subdom_num : viscosity } viscosity = { 1: {'wetting' :1, @@ -349,31 +395,31 @@ def rel_perm1nw(s): return (1-s)**2 -# ## relative permeabilty functions on subdomain 2 -# def rel_perm2w(s): -# # relative permeabilty wetting on subdomain2 -# return s**3 -# -# -# def rel_perm2nw(s): -# # relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2 -# return (1-s)**2 +## relative permeabilty functions on subdomain 2 +def rel_perm2w(s): + # relative permeabilty wetting on subdomain2 + return s**3 + + +def rel_perm2nw(s): + # relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2 + return (1-s)**3 _rel_perm1w = ft.partial(rel_perm1w) _rel_perm1nw = ft.partial(rel_perm1nw) -# _rel_perm2w = ft.partial(rel_perm2w) -# _rel_perm2nw = ft.partial(rel_perm2nw) +_rel_perm2w = ft.partial(rel_perm2w) +_rel_perm2nw = ft.partial(rel_perm2nw) subdomain1_rel_perm = { 'wetting': _rel_perm1w,# 'nonwetting': _rel_perm1nw } -# subdomain2_rel_perm = { -# 'wetting': _rel_perm2w,# -# 'nonwetting': _rel_perm2nw -# } +subdomain2_rel_perm = { + 'wetting': _rel_perm2w,# + 'nonwetting': _rel_perm2nw +} # _rel_perm3 = ft.partial(rel_perm2) # subdomain3_rel_perm = subdomain2_rel_perm.copy() @@ -385,10 +431,10 @@ subdomain1_rel_perm = { relative_permeability = { 1: subdomain1_rel_perm, 2: subdomain1_rel_perm, - 3: subdomain1_rel_perm, - 4: subdomain1_rel_perm, - 5: subdomain1_rel_perm, - 6: subdomain1_rel_perm, + 3: subdomain2_rel_perm, + 4: subdomain2_rel_perm, + 5: subdomain2_rel_perm, + 6: subdomain2_rel_perm, } # definition of the derivatives of the relative permeabilities @@ -399,22 +445,22 @@ def rel_perm1w_prime(s): def rel_perm1nw_prime(s): # relative permeabilty on subdomain1 - return 2*(1-s) + return -2*(1-s) -# # definition of the derivatives of the relative permeabilities -# # relative permeabilty functions on subdomain 1 -# def rel_perm2w_prime(s): -# # relative permeabilty on subdomain1 -# return 3*s**2 -# -# def rel_perm2nw_prime(s): -# # relative permeabilty on subdomain1 -# return 2*(l_param_w1-s) +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 1 +def rel_perm2w_prime(s): + # relative permeabilty on subdomain1 + return 3*s**2 + +def rel_perm2nw_prime(s): + # relative permeabilty on subdomain1 + return -3*(1-s)**2 _rel_perm1w_prime = ft.partial(rel_perm1w_prime) _rel_perm1nw_prime = ft.partial(rel_perm1nw_prime) -# _rel_perm2w_prime = ft.partial(rel_perm2w_prime) -# _rel_perm2nw_prime = ft.partial(rel_perm2nw_prime) +_rel_perm2w_prime = ft.partial(rel_perm2w_prime) +_rel_perm2nw_prime = ft.partial(rel_perm2nw_prime) subdomain1_rel_perm_prime = { 'wetting': _rel_perm1w_prime, @@ -422,19 +468,19 @@ subdomain1_rel_perm_prime = { } -# subdomain2_rel_perm_prime = { -# 'wetting': _rel_perm2w_prime, -# 'nonwetting': _rel_perm2nw_prime -# } +subdomain2_rel_perm_prime = { + 'wetting': _rel_perm2w_prime, + 'nonwetting': _rel_perm2nw_prime +} # dictionary of relative permeabilties on all domains. ka_prime = { 1: subdomain1_rel_perm_prime, 2: subdomain1_rel_perm_prime, - 3: subdomain1_rel_perm_prime, - 4: subdomain1_rel_perm_prime, - 5: subdomain1_rel_perm_prime, - 6: subdomain1_rel_perm_prime, + 3: subdomain2_rel_perm_prime, + 4: subdomain2_rel_perm_prime, + 5: subdomain2_rel_perm_prime, + 6: subdomain2_rel_perm_prime, } @@ -546,19 +592,20 @@ sat_pressure_relationship = { x, y = sym.symbols('x[0], x[1]') # needed by UFL t = sym.symbols('t', positive=True) + p_e_sym = { - 1: {'wetting': 1.0 - (1.0 + t*t)*(1.0 + (x-6.5)*(x-6.5) + (y-5.0)*(y-5.0)), - 'nonwetting': - 2 - t*(1 + (y-5.0) + x**2)**2 -sym.sqrt(2+t**2)*(1 + (y-5.0)) }, - 2: {'wetting': 1.0 - (1.0 + t*t)*(1.0 + (x-6.5)*(x-6.5) + (y-5.0)*(y-5.0)), - 'nonwetting': - 2 - t*(1 + (y-5.0) + x**2)**2 -sym.sqrt(2+t**2)*(1 + (y-5.0)) }, - 3: {'wetting': 1.0 - (1.0 + t*t)*(1.0 + (x-6.5)*(x-6.5)), - 'nonwetting': - 2 - t*(1 + (y-5.0) + x**2)**2 -sym.sqrt(2+t**2)*(1 + (y-5.0)) }, - 4: {'wetting': 1.0 - (1.0 + t*t)*(1.0 + (x-6.5)*(x-6.5)), - 'nonwetting': - 2 - t*(1 + (y-5.0) + x**2)**2 -sym.sqrt(2+t**2)*(1 + (y-5.0)) }, - 5: {'wetting': 1.0 - (1.0 + t*t)*(1.0 + (x-6.5)*(x-6.5)), - 'nonwetting': - 2 - t*(1 + (y-5.0) + x**2)**2 -sym.sqrt(2+t**2)*(1 + (y-5.0)) }, - 6: {'wetting': 1.0 - (1.0 + t*t)*(1.0 + (x-6.5)*(x-6.5)), - 'nonwetting': - 2 - t*(1 + (y-5.0) + x**2)**2 -sym.sqrt(2+t**2)*(1 + (y-5.0)) }, + 1: {'wetting': -3.0 - (1.0 + t*t)*(1.0 + x*x + y*y), + 'nonwetting': (-1 -t*(1-y - x**2)**2) }, + 2: {'wetting': -3.0 - (1.0 + t*t)*(1.0 + x*x + y*y), + 'nonwetting': (-1 -t*(1-y - x**2)**2) }, + 3: {'wetting': (-3.0 - (1.0 + t*t)*(1.0 + x*x)), + 'nonwetting': (-1 -t*(1- x**2)**2 - sym.sqrt(2+t**2)*(1+y)*y**2) }, + 4: {'wetting': (-3.0 - (1.0 + t*t)*(1.0 + x*x)), + 'nonwetting': (-1 -t*(1- x**2)**2 - sym.sqrt(2+t**2)*(1+y)*y**2) }, + 5: {'wetting': (-3.0 - (1.0 + t*t)*(1.0 + x*x)), + 'nonwetting': (-1 -t*(1- x**2)**2 - sym.sqrt(2+t**2)*(1+y)*y**2) }, + 6: {'wetting': (-3.0 - (1.0 + t*t)*(1.0 + x*x)), + 'nonwetting': (-1 -t*(1- x**2)**2 - sym.sqrt(2+t**2)*(1+y)*y**2) }, # 2: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-5.0)*(y-5.0)), # 'nonwetting': - 2 - t*(1 + (y-5.0) + x**2)**2 -sym.sqrt(2+t**2)*(1 + (y-5.0))}, # 3: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-5.0)*(y-5.0)*3*sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t)), @@ -576,86 +623,48 @@ p_e_sym = { # 6: p_e_sym[5]['nonwetting'] - p_e_sym[6]['wetting'] # } -pc_e_sym = { - 1: -p_e_sym[1]['wetting'], - 2: -p_e_sym[2]['wetting'], - 3: -p_e_sym[3]['wetting'], - 4: -p_e_sym[4]['wetting'], - 5: -p_e_sym[5]['wetting'], - 6: -p_e_sym[6]['wetting'] -} +# pc_e_sym = { +# 1: -p_e_sym[1]['wetting'], +# 2: -p_e_sym[2]['wetting'], +# 3: -p_e_sym[3]['wetting'], +# 4: -p_e_sym[4]['wetting'], +# 5: -p_e_sym[5]['wetting'], +# 6: -p_e_sym[6]['wetting'] +# } -# turn above symbolic code into exact solution for dolphin and -# construct the rhs that matches the above exact solution. -dtS = dict() -div_flux = dict() -source_expression = dict() -exact_solution = dict() -initial_condition = dict() +pc_e_sym = dict() for subdomain, isR in isRichards.items(): - dtS.update({subdomain: dict()}) - div_flux.update({subdomain: dict()}) - source_expression.update({subdomain: dict()}) - exact_solution.update({subdomain: dict()}) - initial_condition.update({subdomain: dict()}) if isR: - subdomain_has_phases = ["wetting"] + pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']}) else: - subdomain_has_phases = ["wetting", "nonwetting"] - - # conditional for S_pc_prime - pc = pc_e_sym[subdomain] - dtpc = sym.diff(pc, t, 1) - dxpc = sym.diff(pc, x, 1) - dypc = sym.diff(pc, y, 1) - S = sym.Piecewise((S_pc_sym[subdomain](pc), pc > 0), (1, True)) - dS = sym.Piecewise((S_pc_sym_prime[subdomain](pc), pc > 0), (0, True)) - for phase in subdomain_has_phases: - # Turn above symbolic expression for exact solution into c code - exact_solution[subdomain].update( - {phase: sym.printing.ccode(p_e_sym[subdomain][phase])} - ) - # save the c code for initial conditions - initial_condition[subdomain].update( - {phase: sym.printing.ccode(p_e_sym[subdomain][phase].subs(t, 0))} - ) - if phase == "nonwetting": - dtS[subdomain].update( - {phase: -porosity[subdomain]*dS*dtpc} - ) - else: - dtS[subdomain].update( - {phase: porosity[subdomain]*dS*dtpc} - ) - pa = p_e_sym[subdomain][phase] - dxpa = sym.diff(pa, x, 1) - dxdxpa = sym.diff(pa, x, 2) - dypa = sym.diff(pa, y, 1) - dydypa = sym.diff(pa, y, 2) - mu = viscosity[subdomain][phase] - ka = relative_permeability[subdomain][phase] - dka = ka_prime[subdomain][phase] - rho = densities[subdomain][phase] - g = gravity_acceleration - - if phase == "nonwetting": - # x part of div(flux) for nonwetting - dxdxflux = -1/mu*dka(1-S)*dS*dxpc*dxpa + 1/mu*dxdxpa*ka(1-S) - # y part of div(flux) for nonwetting - dydyflux = -1/mu*dka(1-S)*dS*dypc*(dypa - rho*g) \ - + 1/mu*dydypa*ka(1-S) - else: - # x part of div(flux) for wetting - dxdxflux = 1/mu*dka(S)*dS*dxpc*dxpa + 1/mu*dxdxpa*ka(S) - # y part of div(flux) for wetting - dydyflux = 1/mu*dka(S)*dS*dypc*(dypa - rho*g) + 1/mu*dydypa*ka(S) - div_flux[subdomain].update({phase: dxdxflux + dydyflux}) - contructed_rhs = dtS[subdomain][phase] - div_flux[subdomain][phase] - source_expression[subdomain].update( - {phase: sym.printing.ccode(contructed_rhs)} - ) - # print(f"source_expression[{subdomain}][{phase}] =", source_expression[subdomain][phase]) + pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'] + - p_e_sym[subdomain]['wetting']}) + + +symbols = {"x": x, + "y": y, + "t": t} +# turn above symbolic code into exact solution for dolphin and +# construct the rhs that matches the above exact solution. +exact_solution_example = hlp.generate_exact_solution_expressions( + symbols=symbols, + isRichards=isRichards, + symbolic_pressure=p_e_sym, + symbolic_capillary_pressure=pc_e_sym, + saturation_pressure_relationship=S_pc_sym, + saturation_pressure_relationship_prime=S_pc_sym_prime, + viscosity=viscosity, + porosity=porosity, + relative_permeability=relative_permeability, + relative_permeability_prime=ka_prime, + densities=densities, + gravity_acceleration=gravity_acceleration, + include_gravity=include_gravity, + ) +source_expression = exact_solution_example['source'] +exact_solution = exact_solution_example['exact_solution'] +initial_condition = exact_solution_example['initial_condition'] # Dictionary of dirichlet boundary conditions. dirichletBC = dict() @@ -691,8 +700,8 @@ write_to_file = { } # initialise LDD simulation class -simulation = ldd.LDDsimulation(tol=1E-14, debug=True, LDDsolver_tol=1E-6) -simulation.set_parameters(output_dir="./output/", +simulation = ldd.LDDsimulation(tol=1E-14, debug=debugflag, LDDsolver_tol=solver_tol) +simulation.set_parameters(output_dir=output_string, subdomain_def_points=subdomain_def_points, isRichards=isRichards, interface_def_points=interface_def_points, @@ -714,12 +723,12 @@ simulation.set_parameters(output_dir="./output/", dirichletBC_expression_strings=dirichletBC, exact_solution=exact_solution, densities=densities, - include_gravity=True, + include_gravity=include_gravity, write2file=write_to_file, ) simulation.initialise() # print(simulation.__dict__) -simulation.run() +simulation.run(analyse_condition=analyse_condition) # simulation.LDDsolver(time=0, debug=True, analyse_timestep=True) # df.info(parameters, True) diff --git a/TP-TP-layered-soil-case/TP-TP-layered_soil.py b/TP-TP-layered-soil-case/TP-TP-layered_soil.py index 68d799f..65b24d7 100755 --- a/TP-TP-layered-soil-case/TP-TP-layered_soil.py +++ b/TP-TP-layered-soil-case/TP-TP-layered_soil.py @@ -16,26 +16,33 @@ import typing as tp import functools as ft import domainPatch as dp import LDDsimulation as ldd +import helpers as hlp # init sympy session sym.init_printing() -# ----------------------------------------------------------------------------# -# ------------------- MESH ---------------------------------------------------# -# ----------------------------------------------------------------------------# -mesh_resolution = 19 -# ----------------------------------------:-------------------------------------# -# ------------------- TIME ---------------------------------------------------# -# ----------------------------------------------------------------------------# -timestep_size = 0.001 -number_of_timesteps = 1000 -# decide how many timesteps you want analysed. Analysed means, that we write -# out subsequent errors of the L-iteration within the timestep. -number_of_timesteps_to_analyse = 10 +solver_tol = 5E-7 + +############ GRID #######################ü +mesh_resolution = 40 +timestep_size = 0.0005 +number_of_timesteps = 2000 +# decide how many timesteps you want analysed. Analysed means, that we write out +# subsequent errors of the L-iteration within the timestep. +number_of_timesteps_to_analyse = 5 starttime = 0 -l_param_w = 40 -l_param_nw = 40 +Lw = 0.25 #/timestep_size +Lnw=Lw + +l_param_w = 60 +l_param_nw = 60 + +include_gravity = True +debugflag = False +analyse_condition = True + +output_string = "./output/nondirichlet_number_of_timesteps{}_".format(number_of_timesteps) # global domain subdomain0_vertices = [df.Point(-1.0,-1.0), # @@ -220,14 +227,14 @@ porosity = { # subdom_num : subdomain L for L-scheme L = { - 1: {'wetting' :0.25, - 'nonwetting': 0.25}, - 2: {'wetting' :0.25, - 'nonwetting': 0.25}, - 3: {'wetting' :0.25, - 'nonwetting': 0.25}, - 4: {'wetting' :0.25, - 'nonwetting': 0.25} + 1: {'wetting' :Lw, + 'nonwetting': Lnw}, + 2: {'wetting' :Lw, + 'nonwetting': Lnw}, + 3: {'wetting' :Lw, + 'nonwetting': Lnw}, + 4: {'wetting' :Lw, + 'nonwetting': Lnw} } # subdom_num : lambda parameter for the L-scheme @@ -302,7 +309,7 @@ def rel_perm1w_prime(s): def rel_perm1nw_prime(s): # relative permeabilty on subdomain1 - return 2*(1-s) + return -2*(1-s) # definition of the derivatives of the relative permeabilities # relative permeabilty functions on subdomain 1 @@ -312,7 +319,7 @@ def rel_perm2w_prime(s): def rel_perm2nw_prime(s): # relative permeabilty on subdomain1 - return 2*(1-s) + return -2*(1-s) _rel_perm1w_prime = ft.partial(rel_perm1w_prime) _rel_perm1nw_prime = ft.partial(rel_perm1nw_prime) @@ -398,10 +405,10 @@ x, y = sym.symbols('x[0], x[1]') # needed by UFL t = sym.symbols('t', positive=True) p_e_sym_2patch = { - 1: {'wetting': -1 - (1+t*t)*(1 + x*x + y*y), - 'nonwetting': -t*(1-y - x**2)**2 - sym.sqrt(2+t**2)*(1-y)}, - 2: {'wetting': -1.0 - (1.0 + t*t)*(1.0 + x*x), - 'nonwetting': -t*(1- x**2)**2 - sym.sqrt(2+t**2)*(1-y)}, + 1: {'wetting': -3 - (1+t*t)*(1 + x*x + y*y), + 'nonwetting': -1-t*(1-y - x**2)**2 - sym.sqrt(2+t**2)*(1-y)**2}, + 2: {'wetting': -3.0 - (1.0 + t*t)*(1.0 + x*x), + 'nonwetting': -1-t*(1- x**2)**2 - sym.sqrt(2+t**2)*(1-y)**2}, } p_e_sym = { @@ -427,83 +434,38 @@ p_e_sym = { # 'nonwetting': - 2 - t*(1 + x**2)**2 -sym.sqrt(2+t**2)} # } -pc_e_sym = { - 1: p_e_sym[1]['nonwetting'] - p_e_sym[1]['wetting'], - 2: p_e_sym[2]['nonwetting'] - p_e_sym[2]['wetting'], - 3: p_e_sym[3]['nonwetting'] - p_e_sym[3]['wetting'], - 4: p_e_sym[4]['nonwetting'] - p_e_sym[4]['wetting'] -} - -# turn above symbolic code into exact solution for dolphin and -# construct the rhs that matches the above exact solution. -dtS = dict() -div_flux = dict() -source_expression = dict() -exact_solution = dict() -initial_condition = dict() +pc_e_sym = dict() for subdomain, isR in isRichards.items(): - dtS.update({subdomain: dict()}) - div_flux.update({subdomain: dict()}) - source_expression.update({subdomain: dict()}) - exact_solution.update({subdomain: dict()}) - initial_condition.update({subdomain: dict()}) if isR: - subdomain_has_phases = ["wetting"] + pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']}) else: - subdomain_has_phases = ["wetting", "nonwetting"] - - # conditional for S_pc_prime - pc = pc_e_sym[subdomain] - dtpc = sym.diff(pc, t, 1) - dxpc = sym.diff(pc, x, 1) - dypc = sym.diff(pc, y, 1) - S = sym.Piecewise((S_pc_sym[subdomain](pc), pc > 0), (1, True)) - dS = sym.Piecewise((S_pc_sym_prime[subdomain](pc), pc > 0), (0, True)) - for phase in subdomain_has_phases: - # Turn above symbolic expression for exact solution into c code - exact_solution[subdomain].update( - {phase: sym.printing.ccode(p_e_sym[subdomain][phase])} - ) - # save the c code for initial conditions - initial_condition[subdomain].update( - {phase: sym.printing.ccode(p_e_sym[subdomain][phase].subs(t, 0))} - ) - if phase == "nonwetting": - dtS[subdomain].update( - {phase: -porosity[subdomain]*dS*dtpc} - ) - else: - dtS[subdomain].update( - {phase: porosity[subdomain]*dS*dtpc} - ) - pa = p_e_sym[subdomain][phase] - dxpa = sym.diff(pa, x, 1) - dxdxpa = sym.diff(pa, x, 2) - dypa = sym.diff(pa, y, 1) - dydypa = sym.diff(pa, y, 2) - mu = viscosity[subdomain][phase] - ka = relative_permeability[subdomain][phase] - dka = ka_prime[subdomain][phase] - rho = densities[subdomain][phase] - g = gravity_acceleration - - if phase == "nonwetting": - # x part of div(flux) for nonwetting - dxdxflux = -1/mu*dka(1-S)*dS*dxpc*dxpa + 1/mu*dxdxpa*ka(1-S) - # y part of div(flux) for nonwetting - dydyflux = -1/mu*dka(1-S)*dS*dypc*(dypa - rho*g) \ - + 1/mu*dydypa*ka(1-S) - else: - # x part of div(flux) for wetting - dxdxflux = 1/mu*dka(S)*dS*dxpc*dxpa + 1/mu*dxdxpa*ka(S) - # y part of div(flux) for wetting - dydyflux = 1/mu*dka(S)*dS*dypc*(dypa - rho*g) + 1/mu*dydypa*ka(S) - div_flux[subdomain].update({phase: dxdxflux + dydyflux}) - contructed_rhs = dtS[subdomain][phase] - div_flux[subdomain][phase] - source_expression[subdomain].update( - {phase: sym.printing.ccode(contructed_rhs)} - ) - # print(f"source_expression[{subdomain}][{phase}] =", source_expression[subdomain][phase]) + pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'] + - p_e_sym[subdomain]['wetting']}) + + +symbols = {"x": x, + "y": y, + "t": t} +# turn above symbolic code into exact solution for dolphin and +# construct the rhs that matches the above exact solution. +exact_solution_example = hlp.generate_exact_solution_expressions( + symbols=symbols, + isRichards=isRichards, + symbolic_pressure=p_e_sym, + symbolic_capillary_pressure=pc_e_sym, + saturation_pressure_relationship=S_pc_sym, + saturation_pressure_relationship_prime=S_pc_sym_prime, + viscosity=viscosity, + porosity=porosity, + relative_permeability=relative_permeability, + relative_permeability_prime=ka_prime, + densities=densities, + gravity_acceleration=gravity_acceleration, + include_gravity=include_gravity, + ) +source_expression = exact_solution_example['source'] +exact_solution = exact_solution_example['exact_solution'] +initial_condition = exact_solution_example['initial_condition'] # Dictionary of dirichlet boundary conditions. dirichletBC = dict() @@ -539,8 +501,8 @@ write_to_file = { } # initialise LDD simulation class -simulation = ldd.LDDsimulation(tol=1E-14, debug=True, LDDsolver_tol=1E-7) -simulation.set_parameters(output_dir="./output/", +simulation = ldd.LDDsimulation(tol=1E-14, debug=debugflag, LDDsolver_tol=solver_tol) +simulation.set_parameters(output_dir=output_string, subdomain_def_points=subdomain_def_points, isRichards=isRichards, interface_def_points=interface_def_points, @@ -562,12 +524,12 @@ simulation.set_parameters(output_dir="./output/", dirichletBC_expression_strings=dirichletBC, exact_solution=exact_solution, densities=densities, - include_gravity=True, + include_gravity=include_gravity, write2file=write_to_file, ) simulation.initialise() # print(simulation.__dict__) -simulation.run() +simulation.run(analyse_condition=analyse_condition) # simulation.LDDsolver(time=0, debug=True, analyse_timestep=True) # df.info(parameters, True) diff --git a/TP-multi-patch-plus-gravity-with-same-wetting-phase-as-RR/TP-multi-patch-with-gravity-same-wetting-phase-as-RR.py b/TP-multi-patch-plus-gravity-with-same-wetting-phase-as-RR/TP-multi-patch-with-gravity-same-wetting-phase-as-RR.py index 3510d8a..9c526f8 100755 --- a/TP-multi-patch-plus-gravity-with-same-wetting-phase-as-RR/TP-multi-patch-with-gravity-same-wetting-phase-as-RR.py +++ b/TP-multi-patch-plus-gravity-with-same-wetting-phase-as-RR/TP-multi-patch-with-gravity-same-wetting-phase-as-RR.py @@ -13,28 +13,28 @@ import helpers as hlp # init sympy session sym.init_printing() -# ----------------------------------------------------------------------------# -# ------------------- MESH ---------------------------------------------------# -# ----------------------------------------------------------------------------# -mesh_resolution = 50 -# ----------------------------------------:-------------------------------------# -# ------------------- TIME ---------------------------------------------------# -# ----------------------------------------------------------------------------# +solver_tol = 5E-7 + +############ GRID #######################ü +mesh_resolution = 30 timestep_size = 0.001 -number_of_timesteps = 1500 -# decide how many timesteps you want analysed. Analysed means, that we write -# out subsequent errors of the L-iteration within the timestep. +number_of_timesteps = 1000 +# decide how many timesteps you want analysed. Analysed means, that we write out +# subsequent errors of the L-iteration within the timestep. number_of_timesteps_to_analyse = 10 starttime = 0 -Lw = 1/timestep_size -Lnw = Lw +Lw = 1 #/timestep_size +Lnw=Lw l_param_w = 40 l_param_nw = 40 -solver_tol = 5e-8 include_gravity = True +debugflag = False +analyse_condition = True + +output_string = "./output/like_RR_number_of_timesteps{}_".format(number_of_timesteps) # ----------------------------------------------------------------------------# # ------------------- Domain and Interface -----------------------------------# @@ -378,10 +378,10 @@ p_e_sym = { pc_e_sym = dict() for subdomain, isR in isRichards.items(): if isR: - pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting'].copy()}) + pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']}) else: - pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'].copy() - - p_e_sym[subdomain]['wetting'].copy()}) + pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'] + - p_e_sym[subdomain]['wetting']}) symbols = {"x": x, "y": y, @@ -443,10 +443,8 @@ write_to_file = { 'L_iterations': True } -output_string = "./output/like_RR_number_of_timesteps{}_".format(number_of_timesteps) - # initialise LDD simulation class -simulation = ldd.LDDsimulation(tol=1E-14, LDDsolver_tol=solver_tol, debug=False) +simulation = ldd.LDDsimulation(tol=1E-14, LDDsolver_tol=solver_tol, debug=debugflag) simulation.set_parameters(output_dir=output_string, subdomain_def_points=subdomain_def_points, isRichards=isRichards, @@ -475,6 +473,6 @@ simulation.set_parameters(output_dir=output_string, simulation.initialise() # print(simulation.__dict__) -simulation.run() +simulation.run(analyse_condition=analyse_condition) # simulation.LDDsolver(time=0, debug=True, analyse_timestep=True) # df.info(parameters, True) diff --git a/TP-one-patch/TP-one-patch-linear-koefficients.py b/TP-one-patch/TP-one-patch-linear-koefficients.py index 64cf3df..d181f8d 100755 --- a/TP-one-patch/TP-one-patch-linear-koefficients.py +++ b/TP-one-patch/TP-one-patch-linear-koefficients.py @@ -14,12 +14,12 @@ import helpers as hlp sym.init_printing() -solver_tol = 1E-7 +solver_tol = 1E-12 ############ GRID #######################ü -mesh_resolution = 30 -timestep_size = 0.0001 -number_of_timesteps = 100 +mesh_resolution = 60 +timestep_size = 0.01 +number_of_timesteps = 140 # decide how many timesteps you want analysed. Analysed means, that we write out # subsequent errors of the L-iteration within the timestep. number_of_timesteps_to_analyse = 10 @@ -31,8 +31,8 @@ Lnw=Lw l_param_w = 40 l_param_nw = 40 -include_gravity = False -debugflag = True +include_gravity = True +debugflag = False analyse_condition = True output_string = "./output/linear_coefficients_number_of_timesteps{}_".format(number_of_timesteps) @@ -191,11 +191,11 @@ def saturation_sym_prime(pc, index): # note that the conditional definition of S-pc in the nonsymbolic part will be # incorporated in the construction of the exact solution below. -S_pc_sym = { +S_pc_sym_handle = { 0: ft.partial(saturation_sym, index=1), } -S_pc_sym_prime = { +S_pc_sym_prime_handle = { 0: ft.partial(saturation_sym_prime, index=1), } @@ -226,6 +226,7 @@ pw_sym_x = sym.Piecewise( (mollifier_handle(x), x**2 < epsilon_x_outer**2), (0, True) ) + pw_sym_y = sym.Piecewise( (mollifier_handle(y), y**2 < epsilon_y_outer**2), (0, True) @@ -293,8 +294,8 @@ cutoff = gaussian/(gaussian + zero_on_shrinking) # } p_e_sym = { - 0: {'wetting': -(sym.cos(2*t-x - 2*y)*sym.sin(3*(1+y)/2*sym.pi)*sym.sin(5*(1+x)/2*sym.pi))**2, - 'nonwetting': -6*(sym.cos(t-x -y)*sym.sin(3*(1+y)/2*sym.pi)*sym.sin(5*(1+x)/2*sym.pi))**2}, + 0: {'wetting': -3 -(sym.cos(2*t-x - 2*y)*sym.sin(3*(1+y)/2*sym.pi)*sym.sin(5*(1+x)/2*sym.pi))**2, + 'nonwetting': -1 -(sym.cos(t-x -y)*sym.sin(3*(1+y)/2*sym.pi)*sym.sin(5*(1+x)/2*sym.pi))**2}, } @@ -319,9 +320,28 @@ for subdomain, isR in isRichards.items(): pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'].copy() - p_e_sym[subdomain]['wetting'].copy()}) + + +S_pc_sym = { + 0: sym.Piecewise( + (1, pc_e_sym[0]<= 0), + (S_pc_sym_handle[0](pc_e_sym[0]), ((0<pc_e_sym[0])& (pc_e_sym[0] < 1))), + (0, True) + ) +} + +S_pc_sym_prime = { + 0: sym.Piecewise( + (S_pc_sym_prime_handle[0](pc_e_sym[0]), ((pc_e_sym[0] > 0)& (pc_e_sym[0] < 1))), + (0, True) + ) +} + symbols = {"x": x, "y": y, "t": t} + + # turn above symbolic code into exact solution for dolphin and # construct the rhs that matches the above exact solution. exact_solution_example = hlp.generate_exact_solution_expressions( @@ -329,8 +349,8 @@ exact_solution_example = hlp.generate_exact_solution_expressions( isRichards=isRichards, symbolic_pressure=p_e_sym, symbolic_capillary_pressure=pc_e_sym, - saturation_pressure_relationship=S_pc_sym, - saturation_pressure_relationship_prime=S_pc_sym_prime, + symbolic_S_pc_relationship=S_pc_sym, + symbolic_S_pc_relationship_prime=S_pc_sym_prime, viscosity=viscosity, porosity=porosity, relative_permeability=relative_permeability, diff --git a/TP-one-patch/TP-one-patch.py b/TP-one-patch/TP-one-patch.py index 4df57fc..dbf4cf3 100755 --- a/TP-one-patch/TP-one-patch.py +++ b/TP-one-patch/TP-one-patch.py @@ -14,26 +14,26 @@ import helpers as hlp sym.init_printing() -solver_tol = 1E-7 +solver_tol = 5E-6 ############ GRID #######################ü -mesh_resolution = 20 -timestep_size = 0.0001 -number_of_timesteps = 20 +mesh_resolution = 30 +timestep_size = 0.0005 +number_of_timesteps = 2500 # decide how many timesteps you want analysed. Analysed means, that we write out # subsequent errors of the L-iteration within the timestep. -number_of_timesteps_to_analyse = 10 +number_of_timesteps_to_analyse = 5 starttime = 0 -Lw = 1 #/timestep_size +Lw = 0.25 #/timestep_size Lnw=Lw l_param_w = 40 l_param_nw = 40 -include_gravity = False -debugflag = True -analyse_condition = False +include_gravity = True +debugflag = False +analyse_condition = True output_string = "./output/nondirichlet_number_of_timesteps{}_".format(number_of_timesteps) -- GitLab