From 7de6e4b74bf090378ede8df09fd56cebb32c999f Mon Sep 17 00:00:00 2001 From: David Seus <david.seus@ians.uni-stuttgart.de> Date: Tue, 1 Oct 2019 11:23:58 +0200 Subject: [PATCH] add pure dd multipatch TP example --- ...soil_with_inner_patch-realistic-pure-dd.py | 821 ++++++++++++++++++ 1 file changed, 821 insertions(+) create mode 100755 Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch-realistic-pure-dd.py diff --git a/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch-realistic-pure-dd.py b/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch-realistic-pure-dd.py new file mode 100755 index 0000000..3116fbf --- /dev/null +++ b/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch-realistic-pure-dd.py @@ -0,0 +1,821 @@ +#!/usr/bin/python3 +"""This program sets up a domain together with a decomposition into subdomains +modelling layered soil. This is used for our LDD article with tp-tp and tp-r +coupling. + +Along with the subdomains and the mesh domain markers are set upself. +The resulting mesh is saved into files for later use. +""" + +#!/usr/bin/python3 +import dolfin as df +import mshr +import numpy as np +import sympy as sym +import typing as tp +import functools as ft +import domainPatch as dp +import LDDsimulation as ldd +import helpers as hlp +import datetime +import os +import pandas as pd + +date = datetime.datetime.now() +datestr = date.strftime("%Y-%m-%d") + +# init sympy session +sym.init_printing() +# solver_tol = 6E-7 +use_case = "TP-TP-layered-soil-realistic-pure-DD" +max_iter_num = 1000 +FEM_Lagrange_degree = 1 +mesh_study = False +resolutions = { + # 1: 1e-7, # h=2 + # 2: 2e-5, # h=1.1180 + # 4: 1e-6, # h=0.5590 + # 8: 1e-6, # h=0.2814 + # 16: 5e-7, # h=0.1412 + # 32: 4e-7, # h=0.0706 + 64: 1e-6, + # 128: 5e-7 + } + +############ GRID ####################### +# mesh_resolution = 20 +timestep_size = 0.001 +number_of_timesteps = 1100 +plot_timestep_every = 5 +# decide how many timesteps you want analysed. Analysed means, that we write out +# subsequent errors of the L-iteration within the timestep. +number_of_timesteps_to_analyse = 10 +starttime = 0.0 + +Lw = 0.025 #/timestep_size +Lnw=Lw + +lambda_w = 20 +lambda_nw = 20 + +include_gravity = False +debugflag = True +analyse_condition = True + +if mesh_study: + output_string = "./output/{}-{}_timesteps{}_P{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree) +else: + for tol in resolutions.values(): + solver_tol = tol + output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol) + +# toggle what should be written to files +if mesh_study: + write_to_file = { + 'space_errornorms': True, + 'meshes_and_markers': True, + 'L_iterations_per_timestep': False, + 'solutions': False, + 'absolute_differences': False, + 'condition_numbers': analyse_condition, + 'subsequent_errors': False + } +else: + write_to_file = { + 'space_errornorms': True, + 'meshes_and_markers': True, + 'L_iterations_per_timestep': False, + 'solutions': True, + 'absolute_differences': True, + 'condition_numbers': analyse_condition, + 'subsequent_errors': True + } + +# global domain +subdomain0_vertices = [df.Point(-1.0,-1.0), # + df.Point(1.0,-1.0),# + df.Point(1.0,1.0),# + df.Point(-1.0,1.0)] + +interface12_vertices = [df.Point(-1.0, 0.8), + df.Point(0.3, 0.8), + df.Point(0.5, 0.9), + df.Point(0.8, 0.7), + df.Point(1.0, 0.65)] + + + # interface23 +interface23_vertices = [df.Point(-1.0, 0.0), + df.Point(-0.35, 0.0), + # df.Point(6.5, 4.5), + df.Point(0.0, 0.0)] + +interface24_vertices = [interface23_vertices[2], + df.Point(0.6, 0.0), + ] + +interface25_vertices = [interface24_vertices[1], + df.Point(1.0, 0.0) + ] + + +interface32_vertices = [interface23_vertices[2], + interface23_vertices[1], + interface23_vertices[0]] + + +interface36_vertices = [df.Point(-1.0, -0.6), + df.Point(-0.6, -0.45)] + + +interface46_vertices = [interface36_vertices[1], + df.Point(0.3, -0.25)] + +interface56_vertices = [interface46_vertices[1], + df.Point(0.65, -0.6), + df.Point(1.0, -0.7)] + + + + +interface34_vertices = [interface36_vertices[1], + interface23_vertices[2]] +# interface36 + + +interface45_vertices_a = [interface56_vertices[0], + df.Point(0.7, -0.2),#df.Point(0.7, -0.2), + ] +interface45_vertices_b = [df.Point(0.7, -0.2),#df.Point(0.7, -0.2), + interface25_vertices[0] + ] + + +# # subdomain1. +# subdomain1_vertices = [interface12_vertices[0], +# interface12_vertices[1], +# interface12_vertices[2], +# interface12_vertices[3], +# interface12_vertices[4], # southern boundary, 12 interface +# subdomain0_vertices[2], # eastern boundary, outer boundary +# subdomain0_vertices[3]] # northern boundary, outer on_boundary +# +# # vertex coordinates of the outer boundaries. If it can not be specified as a +# # polygon, use an entry per boundary polygon. This information is used for defining +# # the Dirichlet boundary conditions. If a domain is completely internal, the +# # dictionary entry should be 0: None +# subdomain1_outer_boundary_verts = { +# 0: [interface12_vertices[4], # +# subdomain0_vertices[2], # eastern boundary, outer boundary +# subdomain0_vertices[3], +# interface12_vertices[0]] +# } +# + + +# #subdomain1 +# subdomain2_vertices = [interface23_vertices[0], +# interface23_vertices[1], +# interface23_vertices[2], +# interface23_vertices[3], +# interface23_vertices[4], +# interface23_vertices[5], # southern boundary, 23 interface +# subdomain1_vertices[4], # eastern boundary, outer boundary +# subdomain1_vertices[3], +# subdomain1_vertices[2], +# subdomain1_vertices[1], +# subdomain1_vertices[0] ] # northern boundary, 12 interface +# +# subdomain2_outer_boundary_verts = { +# 0: [interface23_vertices[5], +# subdomain1_vertices[4]], +# 1: [subdomain1_vertices[0], +# interface23_vertices[0]] +# } +# + +# interface_vertices introduces a global numbering of interfaces. +interface_def_points = [interface12_vertices, + interface23_vertices, + interface24_vertices, + interface25_vertices, + interface34_vertices, + interface36_vertices, + # interface45_vertices, + interface45_vertices_a, + interface45_vertices_b, + interface46_vertices, + interface56_vertices, + ] +adjacent_subdomains = [[1,2], + [2,3], + [2,4], + [2,5], + [3,4], + [3,6], + [4,5], + [4,5], + [4,6], + [5,6] + ] + +# subdomain1. +subdomain1_vertices = [interface12_vertices[0], + interface12_vertices[1], + interface12_vertices[2], + interface12_vertices[3], + interface12_vertices[4], # southern boundary, 12 interface + subdomain0_vertices[2], # eastern boundary, outer boundary + subdomain0_vertices[3]] # northern boundary, outer on_boundary + +# vertex coordinates of the outer boundaries. If it can not be specified as a +# polygon, use an entry per boundary polygon. This information is used for defining +# the Dirichlet boundary conditions. If a domain is completely internal, the +# dictionary entry should be 0: None +subdomain1_outer_boundary_verts = { + 0: [subdomain1_vertices[4], # + subdomain1_vertices[5], # eastern boundary, outer boundary + subdomain1_vertices[6], + subdomain1_vertices[0]] +} + +#subdomain1 +subdomain2_vertices = [interface23_vertices[0], + interface23_vertices[1], + interface23_vertices[2], + interface24_vertices[1], + interface25_vertices[1], # southern boundary, 23 interface + subdomain1_vertices[4], # eastern boundary, outer boundary + subdomain1_vertices[3], + subdomain1_vertices[2], + subdomain1_vertices[1], + subdomain1_vertices[0] ] # northern boundary, 12 interface + +subdomain2_outer_boundary_verts = { + 0: [subdomain2_vertices[9], + subdomain2_vertices[0]], + 1: [subdomain2_vertices[4], + subdomain2_vertices[5]] +} + + +subdomain3_vertices = [interface36_vertices[0], + interface36_vertices[1], + # interface34_vertices[0], + interface34_vertices[1], + # interface32_vertices[0], + interface32_vertices[1], + interface32_vertices[2] + ] + +subdomain3_outer_boundary_verts = { + 0: [subdomain3_vertices[4], + subdomain3_vertices[0]] +} + + +# subdomain3 +subdomain4_vertices = [interface46_vertices[0], + interface46_vertices[1], + # interface45_vertices[1], + interface45_vertices_a[1], + interface24_vertices[1], + interface24_vertices[0], + interface34_vertices[1] + ] + +subdomain4_outer_boundary_verts = None + +subdomain5_vertices = [interface56_vertices[0], + interface56_vertices[1], + interface56_vertices[2], + interface25_vertices[1], + interface25_vertices[0], + interface45_vertices_b[1], + interface45_vertices_b[0] +] + + +subdomain5_outer_boundary_verts = { + 0: [subdomain5_vertices[2], + subdomain5_vertices[3]] +} + + + +subdomain6_vertices = [subdomain0_vertices[0], + subdomain0_vertices[1], # southern boundary, outer boundary + interface56_vertices[2], + interface56_vertices[1], + interface56_vertices[0], + interface36_vertices[1], + interface36_vertices[0] + ] + +subdomain6_outer_boundary_verts = { + 0: [subdomain6_vertices[6], + subdomain6_vertices[0], + subdomain6_vertices[1], + subdomain6_vertices[2]] +} + + +subdomain_def_points = [subdomain0_vertices,# + subdomain1_vertices,# + subdomain2_vertices,# + subdomain3_vertices,# + subdomain4_vertices, + subdomain5_vertices, + subdomain6_vertices + ] + + +# if a subdomain has no outer boundary write None instead, i.e. +# i: None +# if i is the index of the inner subdomain. +outer_boundary_def_points = { + # subdomain number + 1: subdomain1_outer_boundary_verts, + 2: subdomain2_outer_boundary_verts, + 3: subdomain3_outer_boundary_verts, + 4: subdomain4_outer_boundary_verts, + 5: subdomain5_outer_boundary_verts, + 6: subdomain6_outer_boundary_verts +} + + +isRichards = { + 1: False, + 2: False, + 3: False, + 4: False, + 5: False, + 6: False + } + +# isRichards = { +# 1: True, +# 2: True, +# 3: True, +# 4: True, +# 5: True, +# 6: True +# } + +# Dict of the form: { subdom_num : viscosity } +viscosity = { + 1: {'wetting' :1, + 'nonwetting': 1/50}, + 2: {'wetting' :1, + 'nonwetting': 1/50}, + 3: {'wetting' :1, + 'nonwetting': 1/50}, + 4: {'wetting' :1, + 'nonwetting': 1/50}, + 5: {'wetting' :1, + 'nonwetting': 1/50}, + 6: {'wetting' :1, + 'nonwetting': 1/50}, +} + +# Dict of the form: { subdom_num : density } +densities = { + 1: {'wetting': 997, #997 + 'nonwetting': 1.225}, #1}, #1.225}, + 2: {'wetting': 997, #997 + 'nonwetting': 1.225}, #1.225}, + 3: {'wetting': 997, #997 + 'nonwetting': 1.225}, #1.225}, + 4: {'wetting': 997, #997 + 'nonwetting': 1.225}, #1.225} + 5: {'wetting': 997, #997 + 'nonwetting': 1.225}, #1.225}, + 6: {'wetting': 997, #997 + 'nonwetting': 1.225} #1.225} +} + +gravity_acceleration = 9.81 +# porosities taken from +# https://www.geotechdata.info/parameter/soil-porosity.html +# Dict of the form: { subdom_num : porosity } +porosity = { + 1: 0.22, #0.2, # Clayey gravels, clayey sandy gravels + 2: 0.22, #0.22, # Silty gravels, silty sandy gravels + 3: 0.22, #0.37, # Clayey sands + 4: 0.22, #0.2 # Silty or sandy clay + 5: 0.22, # + 6: 0.22, # +} + +# subdom_num : subdomain L for L-scheme +L = { + 1: {'wetting' :Lw, + 'nonwetting': Lnw}, + 2: {'wetting' :Lw, + 'nonwetting': Lnw}, + 3: {'wetting' :Lw, + 'nonwetting': Lnw}, + 4: {'wetting' :Lw, + 'nonwetting': Lnw}, + 5: {'wetting' :Lw, + 'nonwetting': Lnw}, + 6: {'wetting' :Lw, + 'nonwetting': Lnw} +} + +# subdom_num : lambda parameter for the L-scheme +lambda_param = { + 1: {'wetting': lambda_w, + 'nonwetting': lambda_nw},# + 2: {'wetting': lambda_w, + 'nonwetting': lambda_nw},# + 3: {'wetting': lambda_w, + 'nonwetting': lambda_nw},# + 4: {'wetting': lambda_w, + 'nonwetting': lambda_nw},# + 5: {'wetting': lambda_w, + 'nonwetting': lambda_nw},# + 6: {'wetting': lambda_w, + 'nonwetting': lambda_nw},# +} + + +## relative permeabilty functions on subdomain 1 +def rel_perm1w(s): + # relative permeabilty wetting on subdomain1 + return s**2 + + +def rel_perm1nw(s): + # relative permeabilty nonwetting on subdomain1 + return (1-s)**2 + + +## relative permeabilty functions on subdomain 2 +def rel_perm2w(s): + # relative permeabilty wetting on subdomain2 + return s**2 + + +def rel_perm2nw(s): + # relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2 + return (1-s)**2 + + +_rel_perm1w = ft.partial(rel_perm1w) +_rel_perm1nw = ft.partial(rel_perm1nw) +_rel_perm2w = ft.partial(rel_perm2w) +_rel_perm2nw = ft.partial(rel_perm2nw) + +subdomain1_rel_perm = { + 'wetting': _rel_perm1w,# + 'nonwetting': _rel_perm1nw +} + +subdomain2_rel_perm = { + 'wetting': _rel_perm2w,# + 'nonwetting': _rel_perm2nw +} + +# _rel_perm3 = ft.partial(rel_perm2) +# subdomain3_rel_perm = subdomain2_rel_perm.copy() +# +# _rel_perm4 = ft.partial(rel_perm1) +# subdomain4_rel_perm = subdomain1_rel_perm.copy() + +# dictionary of relative permeabilties on all domains. +relative_permeability = { + 1: subdomain1_rel_perm, + 2: subdomain1_rel_perm, + 3: subdomain2_rel_perm, + 4: subdomain2_rel_perm, + 5: subdomain2_rel_perm, + 6: subdomain2_rel_perm, +} + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 1 +def rel_perm1w_prime(s): + # relative permeabilty on subdomain1 + return 2*s + +def rel_perm1nw_prime(s): + # relative permeabilty on subdomain1 + return -2*(1-s) + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 1 +def rel_perm2w_prime(s): + # relative permeabilty on subdomain1 + return 2*s + +def rel_perm2nw_prime(s): + # relative permeabilty on subdomain1 + return -2*(1-s) + +_rel_perm1w_prime = ft.partial(rel_perm1w_prime) +_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime) +_rel_perm2w_prime = ft.partial(rel_perm2w_prime) +_rel_perm2nw_prime = ft.partial(rel_perm2nw_prime) + +subdomain1_rel_perm_prime = { + 'wetting': _rel_perm1w_prime, + 'nonwetting': _rel_perm1nw_prime +} + + +subdomain2_rel_perm_prime = { + 'wetting': _rel_perm2w_prime, + 'nonwetting': _rel_perm2nw_prime +} + +# dictionary of relative permeabilties on all domains. +ka_prime = { + 1: subdomain1_rel_perm_prime, + 2: subdomain1_rel_perm_prime, + 3: subdomain2_rel_perm_prime, + 4: subdomain2_rel_perm_prime, + 5: subdomain2_rel_perm_prime, + 6: subdomain2_rel_perm_prime, +} + + + +# S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where +# we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw +# this function needs to be monotonically decreasing in the capillary pressure pc. +# since in the richards case pc=-pw, this becomes as a function of pw a mono +# tonically INCREASING function like in our Richards-Richards paper. However +# since we unify the treatment in the code for Richards and two-phase, we need +# the same requierment +# for both cases, two-phase and Richards. +# def saturation(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1) +# +# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where +# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw +# def saturation_sym(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# #df.conditional(pc > 0, +# return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)) +# +# +# # derivative of S-pc relationship with respect to pc. This is needed for the +# # construction of a analytic solution. +# def saturation_sym_prime(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# return -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1)) / ( (1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index) ) +# +# derivative of S-pc relationship with respect to pc. This is needed for the +# construction of a analytic solution. + +# +# # note that the conditional definition of S-pc in the nonsymbolic part will be +# # incorporated in the construction of the exact solution below. +# S_pc_sym = { +# 1: ft.partial(saturation_sym, n_index=3, alpha=0.001), +# 2: ft.partial(saturation_sym, n_index=3, alpha=0.001), +# 3: ft.partial(saturation_sym, n_index=3, alpha=0.001), +# 4: ft.partial(saturation_sym, n_index=3, alpha=0.001), +# 5: ft.partial(saturation_sym, n_index=3, alpha=0.001), +# 6: ft.partial(saturation_sym, n_index=3, alpha=0.001) +# } +# +# S_pc_sym_prime = { +# 1: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), +# 2: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), +# 3: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), +# 4: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), +# 5: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), +# 6: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001) +# } +# +# sat_pressure_relationship = { +# 1: ft.partial(saturation, n_index=3, alpha=0.001), +# 2: ft.partial(saturation, n_index=3, alpha=0.001), +# 3: ft.partial(saturation, n_index=3, alpha=0.001), +# 4: ft.partial(saturation, n_index=3, alpha=0.001), +# 5: ft.partial(saturation, n_index=3, alpha=0.001), +# 6: ft.partial(saturation, n_index=3, alpha=0.001) +# } + +def saturation(pc, n_index): + # inverse capillary pressure-saturation-relationship + return df.conditional(pc > 0, 1/((1 + pc)**(1/(n_index + 1))), 1) + + +def saturation_sym(pc, n_index): + # inverse capillary pressure-saturation-relationship + return 1/((1 + pc)**(1/(n_index + 1))) + +def saturation_sym_prime(pc, n_index): + # inverse capillary pressure-saturation-relationship + return -1/((n_index+1)*(1 + pc)**((n_index+2)/(n_index+1))) + + +S_pc_sym = { + 1: ft.partial(saturation_sym, n_index=2), + 2: ft.partial(saturation_sym, n_index=2), + 3: ft.partial(saturation_sym, n_index=2), + 4: ft.partial(saturation_sym, n_index=2), + 5: ft.partial(saturation_sym, n_index=2), + 6: ft.partial(saturation_sym, n_index=2) +} + +S_pc_sym_prime = { + 1: ft.partial(saturation_sym_prime, n_index=2), + 2: ft.partial(saturation_sym_prime, n_index=2), + 3: ft.partial(saturation_sym_prime, n_index=2), + 4: ft.partial(saturation_sym_prime, n_index=2), + 5: ft.partial(saturation_sym_prime, n_index=2), + 6: ft.partial(saturation_sym_prime, n_index=2) +} + +sat_pressure_relationship = { + 1: ft.partial(saturation, n_index=2), + 2: ft.partial(saturation, n_index=2), + 3: ft.partial(saturation, n_index=2), + 4: ft.partial(saturation, n_index=2), + 5: ft.partial(saturation, n_index=2), + 6: ft.partial(saturation, n_index=2) +} + + +############################################# +# Manufacture source expressions with sympy # +############################################# +x, y = sym.symbols('x[0], x[1]') # needed by UFL +t = sym.symbols('t', positive=True) + + +p_e_sym = { + 1: {'wetting': -5.0 - (1.0 + t*t)*(1.0 + x*x + y*y), + 'nonwetting': (-1 -t*(1.1 + y + x**2)) }, + 2: {'wetting': -5.0 - (1.0 + t*t)*(1.0 + x*x + y*y), + 'nonwetting': (-1 -t*(1.1 + y + x**2)) }, + 3: {'wetting': -5.0 - (1.0 + t*t)*(1.0 + x*x + y*y), + 'nonwetting': (-1 -t*(1.1 + y + x**2)) }, + 4: {'wetting': -5.0 - (1.0 + t*t)*(1.0 + x*x + y*y), + 'nonwetting': (-1 -t*(1.1 + y + x**2)) }, + 5: {'wetting': -5.0 - (1.0 + t*t)*(1.0 + x*x + y*y), + 'nonwetting': (-1 -t*(1.1 + y + x**2)) }, + 6: {'wetting': -5.0 - (1.0 + t*t)*(1.0 + x*x + y*y), + 'nonwetting': (-1 -t*(1.1 + y + x**2))}, + # 2: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-5.0)*(y-5.0)), + # 'nonwetting': - 2 - t*(1 + (y-5.0) + x**2)**2 -sym.sqrt(2+t**2)*(1 + (y-5.0))}, + # 3: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-5.0)*(y-5.0)*3*sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t)), + # 'nonwetting': - 2 - t*(1 + x**2)**2 -sym.sqrt(2+t**2)}, + # 4: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-5.0)*(y-5.0)*3*sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t)), + # 'nonwetting': - 2 - t*(1 + x**2)**2 -sym.sqrt(2+t**2)} +} + +# pc_e_sym = { +# 1: p_e_sym[1]['nonwetting'] - p_e_sym[1]['wetting'], +# 2: p_e_sym[2]['nonwetting'] - p_e_sym[2]['wetting'], +# 3: p_e_sym[3]['nonwetting'] - p_e_sym[3]['wetting'], +# 4: p_e_sym[4]['nonwetting'] - p_e_sym[4]['wetting'], +# 5: p_e_sym[5]['nonwetting'] - p_e_sym[5]['wetting'], +# 6: p_e_sym[5]['nonwetting'] - p_e_sym[6]['wetting'] +# } + +# pc_e_sym = { +# 1: -p_e_sym[1]['wetting'], +# 2: -p_e_sym[2]['wetting'], +# 3: -p_e_sym[3]['wetting'], +# 4: -p_e_sym[4]['wetting'], +# 5: -p_e_sym[5]['wetting'], +# 6: -p_e_sym[6]['wetting'] +# } + + +pc_e_sym = dict() +for subdomain, isR in isRichards.items(): + if isR: + pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']}) + else: + pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'] + - p_e_sym[subdomain]['wetting']}) + + +symbols = {"x": x, + "y": y, + "t": t} +# turn above symbolic code into exact solution for dolphin and +# construct the rhs that matches the above exact solution. +exact_solution_example = hlp.generate_exact_solution_expressions( + symbols=symbols, + isRichards=isRichards, + symbolic_pressure=p_e_sym, + symbolic_capillary_pressure=pc_e_sym, + saturation_pressure_relationship=S_pc_sym, + saturation_pressure_relationship_prime=S_pc_sym_prime, + viscosity=viscosity, + porosity=porosity, + relative_permeability=relative_permeability, + relative_permeability_prime=ka_prime, + densities=densities, + gravity_acceleration=gravity_acceleration, + include_gravity=include_gravity, + ) +source_expression = exact_solution_example['source'] +exact_solution = exact_solution_example['exact_solution'] +initial_condition = exact_solution_example['initial_condition'] + +# Dictionary of dirichlet boundary conditions. +dirichletBC = dict() +# similarly to the outer boundary dictionary, if a patch has no outer boundary +# None should be written instead of an expression. +# This is a bit of a brainfuck: +# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind. +# Since a domain patch can have several disjoint outer boundary parts, the +# expressions need to get an enumaration index which starts at 0. +# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of +# subdomain ind and boundary part j. +# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting'] +# return the actual expression needed for the dirichlet condition for both +# phases if present. + +# subdomain index: {outer boudary part index: {phase: expression}} +for subdomain in isRichards.keys(): + # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None + if outer_boundary_def_points[subdomain] is None: + dirichletBC.update({subdomain: None}) + else: + dirichletBC.update({subdomain: dict()}) + # set the dirichlet conditions to be the same code as exact solution on + # the subdomain. + for outer_boundary_ind in outer_boundary_def_points[subdomain].keys(): + dirichletBC[subdomain].update( + {outer_boundary_ind: exact_solution[subdomain]} + ) + + +for mesh_resolution, solver_tol in resolutions.items(): + # initialise LDD simulation class + simulation = ldd.LDDsimulation( + tol=1E-14, + LDDsolver_tol=solver_tol, + debug=debugflag, + max_iter_num=max_iter_num, + FEM_Lagrange_degree=FEM_Lagrange_degree, + mesh_study=mesh_study + ) + + simulation.set_parameters(use_case=use_case, + output_dir=output_string, + subdomain_def_points=subdomain_def_points, + isRichards=isRichards, + interface_def_points=interface_def_points, + outer_boundary_def_points=outer_boundary_def_points, + adjacent_subdomains=adjacent_subdomains, + mesh_resolution=mesh_resolution, + viscosity=viscosity, + porosity=porosity, + L=L, + lambda_param=lambda_param, + relative_permeability=relative_permeability, + saturation=sat_pressure_relationship, + starttime=starttime, + number_of_timesteps=number_of_timesteps, + number_of_timesteps_to_analyse=number_of_timesteps_to_analyse, + plot_timestep_every=plot_timestep_every, + timestep_size=timestep_size, + sources=source_expression, + initial_conditions=initial_condition, + dirichletBC_expression_strings=dirichletBC, + exact_solution=exact_solution, + densities=densities, + include_gravity=include_gravity, + write2file=write_to_file, + ) + + simulation.initialise() + output_dir = simulation.output_dir + # simulation.write_exact_solution_to_xdmf() + output = simulation.run(analyse_condition=analyse_condition) + for subdomain_index, subdomain_output in output.items(): + mesh_h = subdomain_output['mesh_size'] + for phase, different_errornorms in subdomain_output['errornorm'].items(): + filename = output_dir + "subdomain{}-space-time-errornorm-{}-phase.csv".format(subdomain_index, phase) + # for errortype, errornorm in different_errornorms.items(): + + # eocfile = open("eoc_filename", "a") + # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" ) + # eocfile.close() + # if subdomain.isRichards:mesh_h + data_dict = { + 'mesh_parameter': mesh_resolution, + 'mesh_h': mesh_h, + } + for error_type, errornorms in different_errornorms.items(): + data_dict.update( + {error_type: errornorms} + ) + errors = pd.DataFrame(data_dict, index=[mesh_resolution]) + # check if file exists + if os.path.isfile(filename) == True: + with open(filename, 'a') as f: + errors.to_csv(f, header=False, sep='\t', encoding='utf-8', index=False) + else: + errors.to_csv(filename, sep='\t', encoding='utf-8', index=False) -- GitLab