From 7a7dbd883fcba26c43a16e80a5172acc8f7f3197 Mon Sep 17 00:00:00 2001 From: David <forenkram@gmx.de> Date: Wed, 10 Jun 2020 13:17:28 +0200 Subject: [PATCH] setup two mesh studies for TPR with parameter set to one --- ...-patch-mesh-study-all-params-one-but-g.py} | 322 ++++++----- .../TP-R-2-patch-mesh-study-all-params-one.py | 298 +++++----- .../TP-R-2-patch-mesh-study-new-gli-bak.py | 512 ------------------ .../mesh_studies/TP-R-2-patch-mesh-study.py | 10 +- 4 files changed, 380 insertions(+), 762 deletions(-) rename Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/{TP-R-2-patch-mesh-study-with-intrinsic-permeability.py => TP-R-2-patch-mesh-study-all-params-one-but-g.py} (62%) delete mode 100755 Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study-new-gli-bak.py diff --git a/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study-with-intrinsic-permeability.py b/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study-all-params-one-but-g.py similarity index 62% rename from Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study-with-intrinsic-permeability.py rename to Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study-all-params-one-but-g.py index a253874..f1d9073 100755 --- a/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study-with-intrinsic-permeability.py +++ b/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study-all-params-one-but-g.py @@ -1,71 +1,111 @@ #!/usr/bin/python3 +"""TPR 2 patch soil simulation. + +This program sets up an LDD simulation +""" + import dolfin as df -import mshr -import numpy as np import sympy as sym -import typing as tp -import domainPatch as dp -import LDDsimulation as ldd import functools as ft +import LDDsimulation as ldd import helpers as hlp import datetime import os import pandas as pd +# init sympy session +sym.init_printing() + +# PREREQUISITS ############################################################### +# check if output directory "./output" exists. This will be used in +# the generation of the output string. +if not os.path.exists('./output'): + os.mkdir('./output') + print("Directory ", './output', " created ") +else: + print("Directory ", './output', " already exists. Will use as output \ + directory") + date = datetime.datetime.now() datestr = date.strftime("%Y-%m-%d") -#import ufl as ufl -# init sympy session -sym.init_printing() +# Name of the usecase that will be printed during simulation. +use_case = "TPR-2-patch-all-params-one-but-g" +# The name of this very file. Needed for creating log output. +thisfile = "TP-R-2-patch-mesh-study-all-params-one-but-g.py" -use_case = "TPR-2-patch-realistic-with-intrinsic" -# solver_tol = 6E-7 +# GENERAL SOLVER CONFIG ###################################################### +# maximal iteration per timestep max_iter_num = 500 FEM_Lagrange_degree = 1 + +# GRID AND MESH STUDY SPECIFICATIONS ######################################### mesh_study = True -resolutions = { 1: 7e-7, - 2: 7e-7, - 4: 7e-7, - 8: 7e-7, - 16: 7e-7, - 32: 7e-7, - 64: 7e-7, - 128: 7e-7, - #256: 7e-7, +resolutions = { + 1: 1e-5, + 2: 1e-5, + 4: 1e-5, + 8: 1e-5, + 16: 1e-5, + 32: 1e-5, + 64: 1e-5, + 128: 1e-5, + # 256: 1e-6, } -############ GRID ####################### -# mesh_resolution = 20 +# starttimes gives a list of starttimes to run the simulation from. +# The list is looped over and a simulation is run with t_0 as initial time +# for each element t_0 in starttimes. +starttimes = [0.0] timestep_size = 0.001 number_of_timesteps = 800 -plot_timestep_every = 2 -# decide how many timesteps you want analysed. Analysed means, that we write out -# subsequent errors of the L-iteration within the timestep. -number_of_timesteps_to_analyse = 4 -starttimes = [0.0, 0.7] -Lw = 0.025 #/timestep_size -Lnw=Lw +# LDD scheme parameters ###################################################### +Lw1 = 0.25 #/timestep_size +Lnw1= 0.25 -lambda_w = 40 -lambda_nw = 40 +Lw2 = 0.25 #/timestep_size +Lnw2= 0.25 -include_gravity = False -debugflag = False -analyse_condition = True +lambda_w = 4.0 +lambda_nw = 4.0 -output_string = "./output/{}-{}_timesteps{}_P{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree) +include_gravity = True +debugflag = False +analyse_condition = False + +# I/O CONFIG ################################################################# +# when number_of_timesteps is high, it might take a long time to write all +# timesteps to disk. Therefore, you can choose to only write data of every +# plot_timestep_every timestep to disk. +plot_timestep_every = 3 +# Decide how many timesteps you want analysed. Analysed means, that +# subsequent errors of the L-iteration within the timestep are written out. +number_of_timesteps_to_analyse = 4 -# toggle what should be written to files +# fine grained control over data to be written to disk in the mesh study case +# as well as for a regular simuation for a fixed grid. if mesh_study: write_to_file = { + # output the relative errornorm (integration in space) w.r.t. an exact + # solution for each timestep into a csv file. 'space_errornorms': True, + # save the mesh and marker functions to disk 'meshes_and_markers': True, - 'L_iterations_per_timestep': True, + # save xdmf/h5 data for each LDD iteration for timesteps determined by + # number_of_timesteps_to_analyse. I/O intensive! + 'L_iterations_per_timestep': False, + # save solution to xdmf/h5. 'solutions': True, + # save absolute differences w.r.t an exact solution to xdmf/h5 file + # to monitor where on the domains errors happen 'absolute_differences': True, + # analyise condition numbers for timesteps determined by + # number_of_timesteps_to_analyse and save them over time to csv. 'condition_numbers': analyse_condition, + # output subsequent iteration errors measured in L^2 to csv for + # timesteps determined by number_of_timesteps_to_analyse. + # Usefull to monitor convergence of the acutal LDD solver. 'subsequent_errors': True } else: @@ -79,9 +119,20 @@ else: 'subsequent_errors': True } +# OUTPUT FILE STRING ######################################################### +if mesh_study: + output_string = "./output/{}-{}_timesteps{}_P{}".format( + datestr, use_case, number_of_timesteps, FEM_Lagrange_degree + ) +else: + for tol in resolutions.values(): + solver_tol = tol + output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format( + datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol + ) -##### Domain and Interface #### +# DOMAIN AND INTERFACE ####################################################### # global simulation domain domain sub_domain0_vertices = [df.Point(-1.0, -1.0), df.Point(1.0, -1.0), @@ -143,6 +194,8 @@ outer_boundary_def_points = { # adjacent_subdomains[i] contains the indices of the subdomains sharing the # interface i (i.e. given by interface_def_points[i]). adjacent_subdomains = [[1,2]] + +# MODEL CONFIGURATION ######################################################### isRichards = { 1: True, # 2: False @@ -151,47 +204,46 @@ isRichards = { viscosity = {# # subdom_num : viscosity - 1 : {'wetting' :1}, - #'nonwetting': 1}, # - 2 : {'wetting' :1, - 'nonwetting': 1/50} + 1: {'wetting' :1.0, + 'nonwetting': 1.0}, # + 2: {'wetting' :1.0, + 'nonwetting': 1.0} } porosity = {# # subdom_num : porosity - 1 : 0.22,# - 2 : 0.0022 + 1: 1.0, + 2: 1.0 } # Dict of the form: { subdom_num : density } densities = { - 1: {'wetting': 997}, - 2: {'wetting': 997, - 'nonwetting': 1.225}, -} - -intrinsic_permeability = { - 1: 10e-11, #laut wikipedia in der range of sand - 2: 10e-14, # layered clay achtung: auf wikipedia in cm^2 angegeb. hier m^2 + 1: {'wetting': 1.0, + 'nonwetting': 1.0}, + 2: {'wetting': 1.0, + 'nonwetting': 1.0} } gravity_acceleration = 9.81 L = {# # subdom_num : subdomain L for L-scheme - 1 : {'wetting' :Lw}, - # 'nonwetting': 0.25},# - 2 : {'wetting' :Lw, - 'nonwetting': Lnw} + 1 : {'wetting' :Lw1, + 'nonwetting': Lnw1},# + 2 : {'wetting' :Lw2, + 'nonwetting': Lnw2} } lambda_param = {# # subdom_num : lambda parameter for the L-scheme - 1 : {'wetting' :lambda_w, + 0 : {'wetting' :lambda_w, 'nonwetting': lambda_nw},# - 2 : {'wetting' :lambda_w, - 'nonwetting': lambda_nw} +} + +intrinsic_permeability = { + 1: 1.0, + 2: 1.0, } ## relative permeabilty functions on subdomain 1 @@ -199,23 +251,24 @@ def rel_perm1w(s): # relative permeabilty wetting on subdomain1 return intrinsic_permeability[1]*s**2 -# def rel_perm1nw(s): -# # relative permeabilty nonwetting on subdomain1 -# return (1-s)**2 +def rel_perm1nw(s): + # relative permeabilty nonwetting on subdomain1 + return intrinsic_permeability[1]*(1-s)**2 _rel_perm1w = ft.partial(rel_perm1w) -# _rel_perm1nw = ft.partial(rel_perm1nw) +_rel_perm1nw = ft.partial(rel_perm1nw) + subdomain1_rel_perm = { 'wetting': _rel_perm1w,# - # 'nonwetting': _rel_perm1nw + 'nonwetting': _rel_perm1nw } ## relative permeabilty functions on subdomain 2 def rel_perm2w(s): # relative permeabilty wetting on subdomain2 return intrinsic_permeability[2]*s**3 def rel_perm2nw(s): - # relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2 - return intrinsic_permeability[1]*(1-s)**3 + # relative permeabilty nonwetting on subdomain2 + return intrinsic_permeability[2]*(1-s)**3 _rel_perm2w = ft.partial(rel_perm2w) _rel_perm2nw = ft.partial(rel_perm2nw) @@ -236,30 +289,30 @@ relative_permeability = {# # relative permeabilty functions on subdomain 1 def rel_perm1w_prime(s): # relative permeabilty on subdomain1 - return 2*s + return intrinsic_permeability[1]*2*s -# def rel_perm1nw_prime(s): -# # relative permeabilty on subdomain1 -# return 2*(1-s) +def rel_perm1nw_prime(s): + # relative permeabilty on subdomain1 + return -1*intrinsic_permeability[1]*2*(1-s) # definition of the derivatives of the relative permeabilities # relative permeabilty functions on subdomain 1 def rel_perm2w_prime(s): - # relative permeabilty on subdomain1 - return 3*s**2 + # relative permeabilty on subdomain2 + return intrinsic_permeability[2]*3*s**2 def rel_perm2nw_prime(s): - # relative permeabilty on subdomain1 - return -3*(1-s)**2 + # relative permeabilty on subdomain2 + return -3*intrinsic_permeability[2]*(1-s)**2 _rel_perm1w_prime = ft.partial(rel_perm1w_prime) -# _rel_perm1nw_prime = ft.partial(rel_perm1nw_prime) +_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime) _rel_perm2w_prime = ft.partial(rel_perm2w_prime) _rel_perm2nw_prime = ft.partial(rel_perm2nw_prime) subdomain1_rel_perm_prime = { - 'wetting': _rel_perm1w_prime - # 'nonwetting': _rel_perm1nw_prime + 'wetting': _rel_perm1w_prime, + 'nonwetting': _rel_perm1nw_prime } @@ -365,16 +418,16 @@ sat_pressure_relationship = { } -############################################# +############################################################################### # Manufacture source expressions with sympy # -############################################# +############################################################################### x, y = sym.symbols('x[0], x[1]') # needed by UFL t = sym.symbols('t', positive=True) p_e_sym = { 1: {'wetting': (-6.0 - (1.0 + t*t)*(1.0 + x*x + y*y))}, #*(1-x)**2*(1+x)**2*(1-y)**2}, 2: {'wetting': (-6.0 - (1.0 + t*t)*(1.0 + x*x)), #*(1-x)**2*(1+x)**2*(1+y)**2, - 'nonwetting': (-1-t*(1.1+y + x**2))*y**2}, #*(1-x)**2*(1+x)**2*(1+y)**2}, + 'nonwetting': (-1.0-t*(1.1+y + x**2))*y**2}, #*(1-x)**2*(1+x)**2*(1+y)**2}, } #-y*y*(sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t)) - t*t*x*(0.5-y)*y*(1-x) @@ -425,9 +478,11 @@ dirichletBC = dict() # return the actual expression needed for the dirichlet condition for both # phases if present. + +# BOUNDARY CONDITIONS ######################################################### # subdomain index: {outer boudary part index: {phase: expression}} for subdomain in isRichards.keys(): - # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None + # subdomain can have no outer boundary if outer_boundary_def_points[subdomain] is None: dirichletBC.update({subdomain: None}) else: @@ -440,12 +495,15 @@ for subdomain in isRichards.keys(): ) -# def saturation(pressure, subdomain_index): -# # inverse capillary pressure-saturation-relationship -# return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1) -# -# sa +# LOG FILE OUTPUT ############################################################# +# read this file and print it to std out. This way the simulation can produce a +# log file with ./TP-R-layered_soil.py | tee simulation.log +f = open(thisfile, 'r') +print(f.read()) +f.close() + +# RUN ######################################################################### for starttime in starttimes: for mesh_resolution, solver_tol in resolutions.items(): # initialise LDD simulation class @@ -458,33 +516,34 @@ for starttime in starttimes: mesh_study=mesh_study ) - simulation.set_parameters(use_case=use_case, - output_dir=output_string, - subdomain_def_points=subdomain_def_points, - isRichards=isRichards, - interface_def_points=interface_def_points, - outer_boundary_def_points=outer_boundary_def_points, - adjacent_subdomains=adjacent_subdomains, - mesh_resolution=mesh_resolution, - viscosity=viscosity, - porosity=porosity, - L=L, - lambda_param=lambda_param, - relative_permeability=relative_permeability, - saturation=sat_pressure_relationship, - starttime=starttime, - number_of_timesteps=number_of_timesteps, - number_of_timesteps_to_analyse=number_of_timesteps_to_analyse, - plot_timestep_every=plot_timestep_every, - timestep_size=timestep_size, - sources=source_expression, - initial_conditions=initial_condition, - dirichletBC_expression_strings=dirichletBC, - exact_solution=exact_solution, - densities=densities, - include_gravity=include_gravity, - write2file=write_to_file, - ) + simulation.set_parameters( + use_case=use_case, + output_dir=output_string, + subdomain_def_points=subdomain_def_points, + isRichards=isRichards, + interface_def_points=interface_def_points, + outer_boundary_def_points=outer_boundary_def_points, + adjacent_subdomains=adjacent_subdomains, + mesh_resolution=mesh_resolution, + viscosity=viscosity, + porosity=porosity, + L=L, + lambda_param=lambda_param, + relative_permeability=relative_permeability, + saturation=sat_pressure_relationship, + starttime=starttime, + number_of_timesteps=number_of_timesteps, + number_of_timesteps_to_analyse=number_of_timesteps_to_analyse, + plot_timestep_every=plot_timestep_every, + timestep_size=timestep_size, + sources=source_expression, + initial_conditions=initial_condition, + dirichletBC_expression_strings=dirichletBC, + exact_solution=exact_solution, + densities=densities, + include_gravity=include_gravity, + write2file=write_to_file, + ) simulation.initialise() output_dir = simulation.output_dir @@ -492,26 +551,39 @@ for starttime in starttimes: output = simulation.run(analyse_condition=analyse_condition) for subdomain_index, subdomain_output in output.items(): mesh_h = subdomain_output['mesh_size'] - for phase, different_errornorms in subdomain_output['errornorm'].items(): - filename = output_dir + "subdomain{}-space-time-errornorm-{}-phase.csv".format(subdomain_index, phase) - # for errortype, errornorm in different_errornorms.items(): - - # eocfile = open("eoc_filename", "a") - # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" ) - # eocfile.close() - # if subdomain.isRichards:mesh_h + for phase, error_dict in subdomain_output['errornorm'].items(): + filename = output_dir \ + + "subdomain{}".format(subdomain_index)\ + + "-space-time-errornorm-{}-phase.csv".format(phase) + # for errortype, errornorm in error_dict.items(): + + # eocfile = open("eoc_filename", "a") + # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" ) + # eocfile.close() + # if subdomain.isRichards:mesh_h data_dict = { 'mesh_parameter': mesh_resolution, 'mesh_h': mesh_h, } - for error_type, errornorms in different_errornorms.items(): + for norm_type, errornorm in error_dict.items(): data_dict.update( - {error_type: errornorms} + {norm_type: errornorm} ) errors = pd.DataFrame(data_dict, index=[mesh_resolution]) # check if file exists - if os.path.isfile(filename) == True: + if os.path.isfile(filename) is True: with open(filename, 'a') as f: - errors.to_csv(f, header=False, sep='\t', encoding='utf-8', index=False) + errors.to_csv( + f, + header=False, + sep='\t', + encoding='utf-8', + index=False + ) else: - errors.to_csv(filename, sep='\t', encoding='utf-8', index=False) + errors.to_csv( + filename, + sep='\t', + encoding='utf-8', + index=False + ) diff --git a/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study-all-params-one.py b/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study-all-params-one.py index 62d507c..64512a6 100755 --- a/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study-all-params-one.py +++ b/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study-all-params-one.py @@ -1,77 +1,111 @@ #!/usr/bin/python3 +"""TPR 2 patch soil simulation. + +This program sets up an LDD simulation +""" + import dolfin as df -import mshr -import numpy as np import sympy as sym -import typing as tp -import domainPatch as dp -import LDDsimulation as ldd import functools as ft +import LDDsimulation as ldd import helpers as hlp import datetime import os import pandas as pd +# init sympy session +sym.init_printing() + +# PREREQUISITS ############################################################### +# check if output directory "./output" exists. This will be used in +# the generation of the output string. +if not os.path.exists('./output'): + os.mkdir('./output') + print("Directory ", './output', " created ") +else: + print("Directory ", './output', " already exists. Will use as output \ + directory") + date = datetime.datetime.now() datestr = date.strftime("%Y-%m-%d") -#import ufl as ufl -# init sympy session -sym.init_printing() +# Name of the usecase that will be printed during simulation. +use_case = "TPR-2-patch-all-params-one" +# The name of this very file. Needed for creating log output. +thisfile = "TP-R-2-patch-mesh-study-all-params-one.py" -use_case = "TPR-2-desities-scaled-down" -# solver_tol = 6E-7 -max_iter_num = 500 +# GENERAL SOLVER CONFIG ###################################################### +# maximal iteration per timestep +max_iter_num = 250 FEM_Lagrange_degree = 1 -mesh_study = False + +# GRID AND MESH STUDY SPECIFICATIONS ######################################### +mesh_study = True resolutions = { - # 1: 1e-6, - # 2: 1e-6, - # 4: 1e-6, - # 8: 1e-6, - # 16: 1e-6, - 32: 1e-6, - # 64: 1e-6, - # 128: 1e-6, + 1: 5e-6, + 2: 5e-6, + 4: 5e-6, + 8: 5e-6, + 16: 5e-6, + 32: 5e-6, + 64: 5e-6, + 128: 5e-6, # 256: 1e-6, } -############ GRID ####################### -# mesh_resolution = 20 -timestep_size = 0.001 -number_of_timesteps = 1000 -plot_timestep_every = 4 -# decide how many timesteps you want analysed. Analysed means, that we write out -# subsequent errors of the L-iteration within the timestep. -number_of_timesteps_to_analyse = 5 +# starttimes gives a list of starttimes to run the simulation from. +# The list is looped over and a simulation is run with t_0 as initial time +# for each element t_0 in starttimes. starttimes = [0.0] +timestep_size = 0.001 +number_of_timesteps = 800 -Lw = 0.025 #/timestep_size -Lnw= 0.025 +# LDD scheme parameters ###################################################### +Lw1 = 0.25 #/timestep_size +Lnw1= 0.25 -lambda_w = 40 -lambda_nw = 40 +Lw2 = 0.25 #/timestep_size +Lnw2= 0.25 + +lambda_w = 4.0 +lambda_nw = 4.0 include_gravity = True debugflag = False -analyse_condition = True - -if mesh_study: - output_string = "./output/{}-{}_timesteps{}_P{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree) -else: - for tol in resolutions.values(): - solver_tol = tol - output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol) - -# toggle what should be written to files +analyse_condition = False + +# I/O CONFIG ################################################################# +# when number_of_timesteps is high, it might take a long time to write all +# timesteps to disk. Therefore, you can choose to only write data of every +# plot_timestep_every timestep to disk. +plot_timestep_every = 3 +# Decide how many timesteps you want analysed. Analysed means, that +# subsequent errors of the L-iteration within the timestep are written out. +number_of_timesteps_to_analyse = 4 + +# fine grained control over data to be written to disk in the mesh study case +# as well as for a regular simuation for a fixed grid. if mesh_study: write_to_file = { + # output the relative errornorm (integration in space) w.r.t. an exact + # solution for each timestep into a csv file. 'space_errornorms': True, + # save the mesh and marker functions to disk 'meshes_and_markers': True, - 'L_iterations_per_timestep': True, + # save xdmf/h5 data for each LDD iteration for timesteps determined by + # number_of_timesteps_to_analyse. I/O intensive! + 'L_iterations_per_timestep': False, + # save solution to xdmf/h5. 'solutions': True, + # save absolute differences w.r.t an exact solution to xdmf/h5 file + # to monitor where on the domains errors happen 'absolute_differences': True, + # analyise condition numbers for timesteps determined by + # number_of_timesteps_to_analyse and save them over time to csv. 'condition_numbers': analyse_condition, + # output subsequent iteration errors measured in L^2 to csv for + # timesteps determined by number_of_timesteps_to_analyse. + # Usefull to monitor convergence of the acutal LDD solver. 'subsequent_errors': True } else: @@ -85,9 +119,20 @@ else: 'subsequent_errors': True } +# OUTPUT FILE STRING ######################################################### +if mesh_study: + output_string = "./output/{}-{}_timesteps{}_P{}".format( + datestr, use_case, number_of_timesteps, FEM_Lagrange_degree + ) +else: + for tol in resolutions.values(): + solver_tol = tol + output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format( + datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol + ) -##### Domain and Interface #### +# DOMAIN AND INTERFACE ####################################################### # global simulation domain domain sub_domain0_vertices = [df.Point(-1.0, -1.0), df.Point(1.0, -1.0), @@ -149,6 +194,8 @@ outer_boundary_def_points = { # adjacent_subdomains[i] contains the indices of the subdomains sharing the # interface i (i.e. given by interface_def_points[i]). adjacent_subdomains = [[1,2]] + +# MODEL CONFIGURATION ######################################################### isRichards = { 1: True, # 2: False @@ -157,55 +204,46 @@ isRichards = { viscosity = {# # subdom_num : viscosity - 1: {'wetting' :1, - 'nonwetting': 1/50}, # - 2: {'wetting' :1, - 'nonwetting': 1/50} + 1: {'wetting' :1.0, + 'nonwetting': 1.0}, # + 2: {'wetting' :1.0, + 'nonwetting': 1.0} } porosity = {# # subdom_num : porosity - 1: 0.22,# - 2: 0.0022 + 1: 1.0, + 2: 1.0 } # Dict of the form: { subdom_num : density } densities = { - 1: {'wetting': 9.97, - 'nonwetting': 00.12041}, - 2: {'wetting': 9.97, - 'nonwetting': 00.12041} + 1: {'wetting': 1.0, + 'nonwetting': 1.0}, + 2: {'wetting': 1.0, + 'nonwetting': 1.0} } -gravity_acceleration = 9.81 +gravity_acceleration = 1.0 L = {# # subdom_num : subdomain L for L-scheme - 1 : {'wetting' :Lw, - 'nonwetting': Lnw},# - 2 : {'wetting' :Lw, - 'nonwetting': Lnw} + 1 : {'wetting' :Lw1, + 'nonwetting': Lnw1},# + 2 : {'wetting' :Lw2, + 'nonwetting': Lnw2} } lambda_param = {# # subdom_num : lambda parameter for the L-scheme - 1 : {'wetting' :lambda_w, + 0 : {'wetting' :lambda_w, 'nonwetting': lambda_nw},# - 2 : {'wetting' :lambda_w, - 'nonwetting': lambda_nw} } -# intrinsic_permeability = { -# 1: {"wetting": 1, -# "nonwetting": 1}, -# 2: {"wetting": 1, -# "nonwetting": 1}, -# } - intrinsic_permeability = { - 1: 1, - 2: 1, + 1: 1.0, + 2: 1.0, } ## relative permeabilty functions on subdomain 1 @@ -229,7 +267,7 @@ def rel_perm2w(s): # relative permeabilty wetting on subdomain2 return intrinsic_permeability[2]*s**3 def rel_perm2nw(s): - # relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2 + # relative permeabilty nonwetting on subdomain2 return intrinsic_permeability[2]*(1-s)**3 _rel_perm2w = ft.partial(rel_perm2w) @@ -380,16 +418,16 @@ sat_pressure_relationship = { } -############################################# +############################################################################### # Manufacture source expressions with sympy # -############################################# +############################################################################### x, y = sym.symbols('x[0], x[1]') # needed by UFL t = sym.symbols('t', positive=True) p_e_sym = { 1: {'wetting': (-6.0 - (1.0 + t*t)*(1.0 + x*x + y*y))}, #*(1-x)**2*(1+x)**2*(1-y)**2}, 2: {'wetting': (-6.0 - (1.0 + t*t)*(1.0 + x*x)), #*(1-x)**2*(1+x)**2*(1+y)**2, - 'nonwetting': (-1-t*(1.1+y + x**2))*y**2}, #*(1-x)**2*(1+x)**2*(1+y)**2}, + 'nonwetting': (-1.0-t*(1.1+y + x**2))*y**2}, #*(1-x)**2*(1+x)**2*(1+y)**2}, } #-y*y*(sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t)) - t*t*x*(0.5-y)*y*(1-x) @@ -440,9 +478,11 @@ dirichletBC = dict() # return the actual expression needed for the dirichlet condition for both # phases if present. + +# BOUNDARY CONDITIONS ######################################################### # subdomain index: {outer boudary part index: {phase: expression}} for subdomain in isRichards.keys(): - # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None + # subdomain can have no outer boundary if outer_boundary_def_points[subdomain] is None: dirichletBC.update({subdomain: None}) else: @@ -455,17 +495,15 @@ for subdomain in isRichards.keys(): ) -# def saturation(pressure, subdomain_index): -# # inverse capillary pressure-saturation-relationship -# return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1) -# -# sa - -f = open('TP-R-2-patch-mesh-study.py', 'r') +# LOG FILE OUTPUT ############################################################# +# read this file and print it to std out. This way the simulation can produce a +# log file with ./TP-R-layered_soil.py | tee simulation.log +f = open(thisfile, 'r') print(f.read()) f.close() +# RUN ######################################################################### for starttime in starttimes: for mesh_resolution, solver_tol in resolutions.items(): # initialise LDD simulation class @@ -478,33 +516,34 @@ for starttime in starttimes: mesh_study=mesh_study ) - simulation.set_parameters(use_case=use_case, - output_dir=output_string, - subdomain_def_points=subdomain_def_points, - isRichards=isRichards, - interface_def_points=interface_def_points, - outer_boundary_def_points=outer_boundary_def_points, - adjacent_subdomains=adjacent_subdomains, - mesh_resolution=mesh_resolution, - viscosity=viscosity, - porosity=porosity, - L=L, - lambda_param=lambda_param, - relative_permeability=relative_permeability, - saturation=sat_pressure_relationship, - starttime=starttime, - number_of_timesteps=number_of_timesteps, - number_of_timesteps_to_analyse=number_of_timesteps_to_analyse, - plot_timestep_every=plot_timestep_every, - timestep_size=timestep_size, - sources=source_expression, - initial_conditions=initial_condition, - dirichletBC_expression_strings=dirichletBC, - exact_solution=exact_solution, - densities=densities, - include_gravity=include_gravity, - write2file=write_to_file, - ) + simulation.set_parameters( + use_case=use_case, + output_dir=output_string, + subdomain_def_points=subdomain_def_points, + isRichards=isRichards, + interface_def_points=interface_def_points, + outer_boundary_def_points=outer_boundary_def_points, + adjacent_subdomains=adjacent_subdomains, + mesh_resolution=mesh_resolution, + viscosity=viscosity, + porosity=porosity, + L=L, + lambda_param=lambda_param, + relative_permeability=relative_permeability, + saturation=sat_pressure_relationship, + starttime=starttime, + number_of_timesteps=number_of_timesteps, + number_of_timesteps_to_analyse=number_of_timesteps_to_analyse, + plot_timestep_every=plot_timestep_every, + timestep_size=timestep_size, + sources=source_expression, + initial_conditions=initial_condition, + dirichletBC_expression_strings=dirichletBC, + exact_solution=exact_solution, + densities=densities, + include_gravity=include_gravity, + write2file=write_to_file, + ) simulation.initialise() output_dir = simulation.output_dir @@ -512,26 +551,39 @@ for starttime in starttimes: output = simulation.run(analyse_condition=analyse_condition) for subdomain_index, subdomain_output in output.items(): mesh_h = subdomain_output['mesh_size'] - for phase, different_errornorms in subdomain_output['errornorm'].items(): - filename = output_dir + "subdomain{}-space-time-errornorm-{}-phase.csv".format(subdomain_index, phase) - # for errortype, errornorm in different_errornorms.items(): - - # eocfile = open("eoc_filename", "a") - # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" ) - # eocfile.close() - # if subdomain.isRichards:mesh_h + for phase, error_dict in subdomain_output['errornorm'].items(): + filename = output_dir \ + + "subdomain{}".format(subdomain_index)\ + + "-space-time-errornorm-{}-phase.csv".format(phase) + # for errortype, errornorm in error_dict.items(): + + # eocfile = open("eoc_filename", "a") + # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" ) + # eocfile.close() + # if subdomain.isRichards:mesh_h data_dict = { 'mesh_parameter': mesh_resolution, 'mesh_h': mesh_h, } - for error_type, errornorms in different_errornorms.items(): + for norm_type, errornorm in error_dict.items(): data_dict.update( - {error_type: errornorms} + {norm_type: errornorm} ) errors = pd.DataFrame(data_dict, index=[mesh_resolution]) # check if file exists - if os.path.isfile(filename) == True: + if os.path.isfile(filename) is True: with open(filename, 'a') as f: - errors.to_csv(f, header=False, sep='\t', encoding='utf-8', index=False) + errors.to_csv( + f, + header=False, + sep='\t', + encoding='utf-8', + index=False + ) else: - errors.to_csv(filename, sep='\t', encoding='utf-8', index=False) + errors.to_csv( + filename, + sep='\t', + encoding='utf-8', + index=False + ) diff --git a/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study-new-gli-bak.py b/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study-new-gli-bak.py deleted file mode 100755 index 23463c3..0000000 --- a/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study-new-gli-bak.py +++ /dev/null @@ -1,512 +0,0 @@ -#!/usr/bin/python3 -import dolfin as df -import mshr -import numpy as np -import sympy as sym -import typing as tp -import domainPatch as dp -import LDDsimulation as ldd -import functools as ft -import helpers as hlp -import datetime -import os -import pandas as pd - -date = datetime.datetime.now() -datestr = date.strftime("%Y-%m-%d") -#import ufl as ufl - -# init sympy session -sym.init_printing() - -use_case = "TP-R-2-patch-realistic-new-nw-gli" -# solver_tol = 6E-7 -max_iter_num = 1000 -FEM_Lagrange_degree = 1 -mesh_study = True -resolutions = { 1: 7e-7, - 2: 7e-7, - 4: 7e-7, - 8: 7e-7, - 16: 7e-7, - 32: 7e-7, - 64: 7e-7, - 128: 7e-7, - #256: 7e-7, - } - -############ GRID ####################### -# mesh_resolution = 20 -timestep_size = 0.001 -number_of_timesteps = 800 -plot_timestep_every = 2 -# decide how many timesteps you want analysed. Analysed means, that we write out -# subsequent errors of the L-iteration within the timestep. -number_of_timesteps_to_analyse = 4 -starttimes = [0.0, 0.7] - -Lw = 0.025 #/timestep_size -Lnw=Lw - -lambda_w = 40 -lambda_nw = 40 - -include_gravity = False -debugflag = False -analyse_condition = False - -output_string = "./output/{}-{}_timesteps{}_P{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree) - -# toggle what should be written to files -if mesh_study: - write_to_file = { - 'space_errornorms': True, - 'meshes_and_markers': True, - 'L_iterations_per_timestep': False, - 'solutions': False, - 'absolute_differences': False, - 'condition_numbers': analyse_condition, - 'subsequent_errors': False - } -else: - write_to_file = { - 'space_errornorms': True, - 'meshes_and_markers': True, - 'L_iterations_per_timestep': False, - 'solutions': True, - 'absolute_differences': True, - 'condition_numbers': analyse_condition, - 'subsequent_errors': True - } - - - -##### Domain and Interface #### -# global simulation domain domain -sub_domain0_vertices = [df.Point(-1.0, -1.0), - df.Point(1.0, -1.0), - df.Point(1.0, 1.0), - df.Point(-1.0, 1.0)] -# interface between subdomain1 and subdomain2 -interface12_vertices = [df.Point(-1.0, 0.0), - df.Point(1.0, 0.0) ] -# subdomain1. -sub_domain1_vertices = [interface12_vertices[0], - interface12_vertices[1], - sub_domain0_vertices[2], - sub_domain0_vertices[3]] - -# vertex coordinates of the outer boundaries. If it can not be specified as a -# polygon, use an entry per boundary polygon. This information is used for defining -# the Dirichlet boundary conditions. If a domain is completely internal, the -# dictionary entry should be 0: None -subdomain1_outer_boundary_verts = { - 0: [interface12_vertices[1], # - sub_domain0_vertices[2], - sub_domain0_vertices[3], # - interface12_vertices[0]] -} -# subdomain2 -sub_domain2_vertices = [sub_domain0_vertices[0], - sub_domain0_vertices[1], - interface12_vertices[1], - interface12_vertices[0] ] - -subdomain2_outer_boundary_verts = { - 0: [interface12_vertices[0], # - sub_domain0_vertices[0], - sub_domain0_vertices[1], - interface12_vertices[1]] -} - -# list of subdomains given by the boundary polygon vertices. -# Subdomains are given as a list of dolfin points forming -# a closed polygon, such that mshr.Polygon(subdomain_def_points[i]) can be used -# to create the subdomain. subdomain_def_points[0] contains the -# vertices of the global simulation domain and subdomain_def_points[i] contains the -# vertices of the subdomain i. -subdomain_def_points = [sub_domain0_vertices,# - sub_domain1_vertices,# - sub_domain2_vertices] -# in the below list, index 0 corresponds to the 12 interface which has index 1 -interface_def_points = [interface12_vertices] - -# if a subdomain has no outer boundary write None instead, i.e. -# i: None -# if i is the index of the inner subdomain. -outer_boundary_def_points = { - # subdomain number - 1 : subdomain1_outer_boundary_verts, - 2 : subdomain2_outer_boundary_verts -} - -# adjacent_subdomains[i] contains the indices of the subdomains sharing the -# interface i (i.e. given by interface_def_points[i]). -adjacent_subdomains = [[1,2]] -isRichards = { - 1: True, # - 2: False - } - - -viscosity = {# -# subdom_num : viscosity - 1 : {'wetting' :1}, - #'nonwetting': 1}, # - 2 : {'wetting' :1, - 'nonwetting': 1/50} -} - -porosity = {# -# subdom_num : porosity - 1 : 0.22,# - 2 : 0.0022 -} - -# Dict of the form: { subdom_num : density } -densities = { - 1: {'wetting': 997}, - 2: {'wetting': 997, - 'nonwetting': 1.225}, -} - -gravity_acceleration = 9.81 - -L = {# -# subdom_num : subdomain L for L-scheme - 1 : {'wetting' :Lw}, - # 'nonwetting': 0.25},# - 2 : {'wetting' :Lw, - 'nonwetting': Lnw} -} - - -lambda_param = {# -# subdom_num : lambda parameter for the L-scheme - 1 : {'wetting' :lambda_w, - 'nonwetting': lambda_nw},# - 2 : {'wetting' :lambda_w, - 'nonwetting': lambda_nw} -} - -## relative permeabilty functions on subdomain 1 -def rel_perm1w(s): - # relative permeabilty wetting on subdomain1 - return s**2 - -# def rel_perm1nw(s): -# # relative permeabilty nonwetting on subdomain1 -# return (1-s)**2 - -_rel_perm1w = ft.partial(rel_perm1w) -# _rel_perm1nw = ft.partial(rel_perm1nw) -subdomain1_rel_perm = { - 'wetting': _rel_perm1w,# - # 'nonwetting': _rel_perm1nw -} -## relative permeabilty functions on subdomain 2 -def rel_perm2w(s): - # relative permeabilty wetting on subdomain2 - return s**3 -def rel_perm2nw(s): - # relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2 - return (1-s)**3 - -_rel_perm2w = ft.partial(rel_perm2w) -_rel_perm2nw = ft.partial(rel_perm2nw) - -subdomain2_rel_perm = { - 'wetting': _rel_perm2w,# - 'nonwetting': _rel_perm2nw -} - -## dictionary of relative permeabilties on all domains. -relative_permeability = {# - 1: subdomain1_rel_perm, - 2: subdomain2_rel_perm -} - - -# definition of the derivatives of the relative permeabilities -# relative permeabilty functions on subdomain 1 -def rel_perm1w_prime(s): - # relative permeabilty on subdomain1 - return 2*s - -# def rel_perm1nw_prime(s): -# # relative permeabilty on subdomain1 -# return 2*(1-s) - -# definition of the derivatives of the relative permeabilities -# relative permeabilty functions on subdomain 1 -def rel_perm2w_prime(s): - # relative permeabilty on subdomain1 - return 3*s**2 - -def rel_perm2nw_prime(s): - # relative permeabilty on subdomain1 - return -3*(1-s)**2 - -_rel_perm1w_prime = ft.partial(rel_perm1w_prime) -# _rel_perm1nw_prime = ft.partial(rel_perm1nw_prime) -_rel_perm2w_prime = ft.partial(rel_perm2w_prime) -_rel_perm2nw_prime = ft.partial(rel_perm2nw_prime) - -subdomain1_rel_perm_prime = { - 'wetting': _rel_perm1w_prime - # 'nonwetting': _rel_perm1nw_prime -} - - -subdomain2_rel_perm_prime = { - 'wetting': _rel_perm2w_prime, - 'nonwetting': _rel_perm2nw_prime -} - -# dictionary of relative permeabilties on all domains. -ka_prime = { - 1: subdomain1_rel_perm_prime, - 2: subdomain2_rel_perm_prime, -} - - -# def saturation1(pc, subdomain_index): -# # inverse capillary pressure-saturation-relationship -# return df.conditional(pc > 0, 1/((1 + pc)**(1/(subdomain_index + 1))), 1) -# -# def saturation2(pc, n_index, alpha): -# # inverse capillary pressure-saturation-relationship -# return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1) -# -# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where -# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw -# def saturation1_sym(pc, subdomain_index): -# # inverse capillary pressure-saturation-relationship -# return 1/((1 + pc)**(1/(subdomain_index + 1))) -# -# -# def saturation2_sym(pc, n_index, alpha): -# # inverse capillary pressure-saturation-relationship -# #df.conditional(pc > 0, -# return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)) -# -# -# # derivative of S-pc relationship with respect to pc. This is needed for the -# # construction of a analytic solution. -# def saturation1_sym_prime(pc, subdomain_index): -# # inverse capillary pressure-saturation-relationship -# return -(1/(subdomain_index + 1))*(1 + pc)**((-subdomain_index - 2)/(subdomain_index + 1)) -# -# -# def saturation2_sym_prime(pc, n_index, alpha): -# # inverse capillary pressure-saturation-relationship -# return -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1)) / ( (1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index) ) -# -# # note that the conditional definition of S-pc in the nonsymbolic part will be -# # incorporated in the construction of the exact solution below. -# S_pc_sym = { -# 1: ft.partial(saturation1_sym, subdomain_index = 1), -# 2: ft.partial(saturation2_sym, n_index=3, alpha=0.001), -# } -# -# S_pc_sym_prime = { -# 1: ft.partial(saturation1_sym_prime, subdomain_index = 1), -# 2: ft.partial(saturation2_sym_prime, n_index=3, alpha=0.001), -# } -# -# sat_pressure_relationship = { -# 1: ft.partial(saturation1, subdomain_index = 1),#, -# 2: ft.partial(saturation2, n_index=3, alpha=0.001), -# } - -def saturation(pc, index): - # inverse capillary pressure-saturation-relationship - return df.conditional(pc > 0, 1/((1 + pc)**(1/(index + 1))), 1) - - -def saturation_sym(pc, index): - # inverse capillary pressure-saturation-relationship - return 1/((1 + pc)**(1/(index + 1))) - - -# derivative of S-pc relationship with respect to pc. This is needed for the -# construction of a analytic solution. -def saturation_sym_prime(pc, index): - # inverse capillary pressure-saturation-relationship - return -1/((index+1)*(1 + pc)**((index+2)/(index+1))) - - -# note that the conditional definition of S-pc in the nonsymbolic part will be -# incorporated in the construction of the exact solution below. -S_pc_sym = { - 1: ft.partial(saturation_sym, index=1), - 2: ft.partial(saturation_sym, index=2), - # 3: ft.partial(saturation_sym, index=2), - # 4: ft.partial(saturation_sym, index=1) -} - -S_pc_sym_prime = { - 1: ft.partial(saturation_sym_prime, index=1), - 2: ft.partial(saturation_sym_prime, index=2), - # 3: ft.partial(saturation_sym_prime, index=2), - # 4: ft.partial(saturation_sym_prime, index=1) -} - -sat_pressure_relationship = { - 1: ft.partial(saturation, index=1), - 2: ft.partial(saturation, index=2), - # 3: ft.partial(saturation, index=2), - # 4: ft.partial(saturation, index=1) -} - - -############################################# -# Manufacture source expressions with sympy # -############################################# -x, y = sym.symbols('x[0], x[1]') # needed by UFL -t = sym.symbols('t', positive=True) - -p_e_sym = { - 1: {'wetting': (-5.0 - (1.0 + t*t)*(1.0 + x*x + y*y))}, #*(1-x)**2*(1+x)**2*(1-y)**2}, - 2: {'wetting': (-5.0 - (1.0 + t*t)*(1.0 + x*x)), #*(1-x)**2*(1+x)**2*(1+y)**2, - 'nonwetting': (-1-t*(1.1+y + x**2))*y**3}, #*(1-x)**2*(1+x)**2*(1+y)**2}, -} #-y*y*(sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t)) - t*t*x*(0.5-y)*y*(1-x) - - -pc_e_sym = dict() -for subdomain, isR in isRichards.items(): - if isR: - pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting'].copy()}) - else: - pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'].copy() - - p_e_sym[subdomain]['wetting'].copy()}) - - -symbols = {"x": x, - "y": y, - "t": t} -# turn above symbolic code into exact solution for dolphin and -# construct the rhs that matches the above exact solution. -exact_solution_example = hlp.generate_exact_solution_expressions( - symbols=symbols, - isRichards=isRichards, - symbolic_pressure=p_e_sym, - symbolic_capillary_pressure=pc_e_sym, - saturation_pressure_relationship=S_pc_sym, - saturation_pressure_relationship_prime=S_pc_sym_prime, - viscosity=viscosity, - porosity=porosity, - relative_permeability=relative_permeability, - relative_permeability_prime=ka_prime, - densities=densities, - gravity_acceleration=gravity_acceleration, - include_gravity=include_gravity, - ) -source_expression = exact_solution_example['source'] -exact_solution = exact_solution_example['exact_solution'] -initial_condition = exact_solution_example['initial_condition'] - -# Dictionary of dirichlet boundary conditions. -dirichletBC = dict() -# similarly to the outer boundary dictionary, if a patch has no outer boundary -# None should be written instead of an expression. -# This is a bit of a brainfuck: -# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind. -# Since a domain patch can have several disjoint outer boundary parts, the -# expressions need to get an enumaration index which starts at 0. -# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of -# subdomain ind and boundary part j. -# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting'] -# return the actual expression needed for the dirichlet condition for both -# phases if present. - -# subdomain index: {outer boudary part index: {phase: expression}} -for subdomain in isRichards.keys(): - # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None - if outer_boundary_def_points[subdomain] is None: - dirichletBC.update({subdomain: None}) - else: - dirichletBC.update({subdomain: dict()}) - # set the dirichlet conditions to be the same code as exact solution on - # the subdomain. - for outer_boundary_ind in outer_boundary_def_points[subdomain].keys(): - dirichletBC[subdomain].update( - {outer_boundary_ind: exact_solution[subdomain]} - ) - - -# def saturation(pressure, subdomain_index): -# # inverse capillary pressure-saturation-relationship -# return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1) -# -# sa - -for starttime in starttimes: - for mesh_resolution, solver_tol in resolutions.items(): - # initialise LDD simulation class - simulation = ldd.LDDsimulation( - tol=1E-14, - LDDsolver_tol=solver_tol, - debug=debugflag, - max_iter_num=max_iter_num, - FEM_Lagrange_degree=FEM_Lagrange_degree, - mesh_study=mesh_study - ) - - simulation.set_parameters(use_case=use_case, - output_dir=output_string, - subdomain_def_points=subdomain_def_points, - isRichards=isRichards, - interface_def_points=interface_def_points, - outer_boundary_def_points=outer_boundary_def_points, - adjacent_subdomains=adjacent_subdomains, - mesh_resolution=mesh_resolution, - viscosity=viscosity, - porosity=porosity, - L=L, - lambda_param=lambda_param, - relative_permeability=relative_permeability, - saturation=sat_pressure_relationship, - starttime=starttime, - number_of_timesteps=number_of_timesteps, - number_of_timesteps_to_analyse=number_of_timesteps_to_analyse, - plot_timestep_every=plot_timestep_every, - timestep_size=timestep_size, - sources=source_expression, - initial_conditions=initial_condition, - dirichletBC_expression_strings=dirichletBC, - exact_solution=exact_solution, - densities=densities, - include_gravity=include_gravity, - write2file=write_to_file, - ) - - simulation.initialise() - output_dir = simulation.output_dir - # simulation.write_exact_solution_to_xdmf() - output = simulation.run(analyse_condition=analyse_condition) - for subdomain_index, subdomain_output in output.items(): - mesh_h = subdomain_output['mesh_size'] - for phase, different_errornorms in subdomain_output['errornorm'].items(): - filename = output_dir + "subdomain{}-space-time-errornorm-{}-phase.csv".format(subdomain_index, phase) - # for errortype, errornorm in different_errornorms.items(): - - # eocfile = open("eoc_filename", "a") - # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" ) - # eocfile.close() - # if subdomain.isRichards:mesh_h - data_dict = { - 'mesh_parameter': mesh_resolution, - 'mesh_h': mesh_h, - } - for error_type, errornorms in different_errornorms.items(): - data_dict.update( - {error_type: errornorms} - ) - errors = pd.DataFrame(data_dict, index=[mesh_resolution]) - # check if file exists - if os.path.isfile(filename) == True: - with open(filename, 'a') as f: - errors.to_csv(f, header=False, sep='\t', encoding='utf-8', index=False) - else: - errors.to_csv(filename, sep='\t', encoding='utf-8', index=False) diff --git a/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study.py b/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study.py index 6afe2dc..fd1b6c0 100755 --- a/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study.py +++ b/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study.py @@ -194,6 +194,8 @@ outer_boundary_def_points = { # adjacent_subdomains[i] contains the indices of the subdomains sharing the # interface i (i.e. given by interface_def_points[i]). adjacent_subdomains = [[1,2]] + +# MODEL CONFIGURATION ######################################################### isRichards = { 1: True, # 2: False @@ -416,9 +418,9 @@ sat_pressure_relationship = { } -############################################# +############################################################################### # Manufacture source expressions with sympy # -############################################# +############################################################################### x, y = sym.symbols('x[0], x[1]') # needed by UFL t = sym.symbols('t', positive=True) @@ -476,6 +478,8 @@ dirichletBC = dict() # return the actual expression needed for the dirichlet condition for both # phases if present. + +# BOUNDARY CONDITIONS ######################################################### # subdomain index: {outer boudary part index: {phase: expression}} for subdomain in isRichards.keys(): # subdomain can have no outer boundary @@ -491,6 +495,7 @@ for subdomain in isRichards.keys(): ) +# LOG FILE OUTPUT ############################################################# # read this file and print it to std out. This way the simulation can produce a # log file with ./TP-R-layered_soil.py | tee simulation.log f = open(thisfile, 'r') @@ -498,6 +503,7 @@ print(f.read()) f.close() +# RUN ######################################################################### for starttime in starttimes: for mesh_resolution, solver_tol in resolutions.items(): # initialise LDD simulation class -- GitLab