diff --git a/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study-with-intrinsic-permeability.py b/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study-all-params-one-but-g.py
similarity index 62%
rename from Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study-with-intrinsic-permeability.py
rename to Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study-all-params-one-but-g.py
index a253874797ad0e428c1badbc02ffef67d9341d5f..f1d907335e882ad4a7402ed5daff17dddde05b93 100755
--- a/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study-with-intrinsic-permeability.py
+++ b/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study-all-params-one-but-g.py
@@ -1,71 +1,111 @@
 #!/usr/bin/python3
+"""TPR 2 patch soil simulation.
+
+This program sets up an LDD simulation
+"""
+
 import dolfin as df
-import mshr
-import numpy as np
 import sympy as sym
-import typing as tp
-import domainPatch as dp
-import LDDsimulation as ldd
 import functools as ft
+import LDDsimulation as ldd
 import helpers as hlp
 import datetime
 import os
 import pandas as pd
 
+# init sympy session
+sym.init_printing()
+
+# PREREQUISITS  ###############################################################
+# check if output directory "./output" exists. This will be used in
+# the generation of the output string.
+if not os.path.exists('./output'):
+    os.mkdir('./output')
+    print("Directory ", './output',  " created ")
+else:
+    print("Directory ", './output',  " already exists. Will use as output \
+    directory")
+
 date = datetime.datetime.now()
 datestr = date.strftime("%Y-%m-%d")
-#import ufl as ufl
 
-# init sympy session
-sym.init_printing()
+# Name of the usecase that will be printed during simulation.
+use_case = "TPR-2-patch-all-params-one-but-g"
+# The name of this very file. Needed for creating log output.
+thisfile = "TP-R-2-patch-mesh-study-all-params-one-but-g.py"
 
-use_case = "TPR-2-patch-realistic-with-intrinsic"
-# solver_tol = 6E-7
+# GENERAL SOLVER CONFIG  ######################################################
+# maximal iteration per timestep
 max_iter_num = 500
 FEM_Lagrange_degree = 1
+
+# GRID AND MESH STUDY SPECIFICATIONS  #########################################
 mesh_study = True
-resolutions = { 1: 7e-7,
-                2: 7e-7,
-                4: 7e-7,
-                8: 7e-7,
-                16: 7e-7,
-                32: 7e-7,
-                64: 7e-7,
-                128: 7e-7,
-                #256: 7e-7,
+resolutions = {
+                1: 1e-5,
+                2: 1e-5,
+                4: 1e-5,
+                8: 1e-5,
+                16: 1e-5,
+                32: 1e-5,
+                64: 1e-5,
+                128: 1e-5,
+                # 256: 1e-6,
                 }
 
-############ GRID #######################
-# mesh_resolution = 20
+# starttimes gives a list of starttimes to run the simulation from.
+# The list is looped over and a simulation is run with t_0 as initial time
+#  for each element t_0 in starttimes.
+starttimes = [0.0]
 timestep_size = 0.001
 number_of_timesteps = 800
-plot_timestep_every = 2
-# decide how many timesteps you want analysed. Analysed means, that we write out
-# subsequent errors of the L-iteration within the timestep.
-number_of_timesteps_to_analyse = 4
-starttimes = [0.0, 0.7]
 
-Lw = 0.025 #/timestep_size
-Lnw=Lw
+# LDD scheme parameters  ######################################################
+Lw1 = 0.25 #/timestep_size
+Lnw1= 0.25
 
-lambda_w = 40
-lambda_nw = 40
+Lw2 = 0.25 #/timestep_size
+Lnw2= 0.25
 
-include_gravity = False
-debugflag = False
-analyse_condition = True
+lambda_w = 4.0
+lambda_nw = 4.0
 
-output_string = "./output/{}-{}_timesteps{}_P{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree)
+include_gravity = True
+debugflag = False
+analyse_condition = False
+
+# I/O CONFIG  #################################################################
+# when number_of_timesteps is high, it might take a long time to write all
+# timesteps to disk. Therefore, you can choose to only write data of every
+# plot_timestep_every timestep to disk.
+plot_timestep_every = 3
+# Decide how many timesteps you want analysed. Analysed means, that
+# subsequent errors of the L-iteration within the timestep are written out.
+number_of_timesteps_to_analyse = 4
 
-# toggle what should be written to files
+# fine grained control over data to be written to disk in the mesh study case
+# as well as for a regular simuation for a fixed grid.
 if mesh_study:
     write_to_file = {
+        # output the relative errornorm (integration in space) w.r.t. an exact
+        # solution for each timestep into a csv file.
         'space_errornorms': True,
+        # save the mesh and marker functions to disk
         'meshes_and_markers': True,
-        'L_iterations_per_timestep': True,
+        # save xdmf/h5 data for each LDD iteration for timesteps determined by
+        # number_of_timesteps_to_analyse. I/O intensive!
+        'L_iterations_per_timestep': False,
+        # save solution to xdmf/h5.
         'solutions': True,
+        # save absolute differences w.r.t an exact solution to xdmf/h5 file
+        # to monitor where on the domains errors happen
         'absolute_differences': True,
+        # analyise condition numbers for timesteps determined by
+        # number_of_timesteps_to_analyse and save them over time to csv.
         'condition_numbers': analyse_condition,
+        # output subsequent iteration errors measured in L^2  to csv for
+        # timesteps determined by number_of_timesteps_to_analyse.
+        # Usefull to monitor convergence of the acutal LDD solver.
         'subsequent_errors': True
     }
 else:
@@ -79,9 +119,20 @@ else:
         'subsequent_errors': True
     }
 
+# OUTPUT FILE STRING  #########################################################
+if mesh_study:
+    output_string = "./output/{}-{}_timesteps{}_P{}".format(
+        datestr, use_case, number_of_timesteps, FEM_Lagrange_degree
+        )
+else:
+    for tol in resolutions.values():
+        solver_tol = tol
+    output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format(
+        datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol
+        )
 
 
-##### Domain and Interface ####
+# DOMAIN AND INTERFACE  #######################################################
 # global simulation domain domain
 sub_domain0_vertices = [df.Point(-1.0, -1.0),
                         df.Point(1.0, -1.0),
@@ -143,6 +194,8 @@ outer_boundary_def_points = {
 # adjacent_subdomains[i] contains the indices of the subdomains sharing the
 # interface i (i.e. given by interface_def_points[i]).
 adjacent_subdomains = [[1,2]]
+
+# MODEL CONFIGURATION #########################################################
 isRichards = {
     1: True, #
     2: False
@@ -151,47 +204,46 @@ isRichards = {
 
 viscosity = {#
 # subdom_num : viscosity
-    1 : {'wetting' :1},
-         #'nonwetting': 1}, #
-    2 : {'wetting' :1,
-         'nonwetting': 1/50}
+    1: {'wetting' :1.0,
+         'nonwetting': 1.0}, #
+    2: {'wetting' :1.0,
+         'nonwetting': 1.0}
 }
 
 porosity = {#
 # subdom_num : porosity
-    1 : 0.22,#
-    2 : 0.0022
+    1: 1.0,
+    2: 1.0
 }
 
 # Dict of the form: { subdom_num : density }
 densities = {
-    1: {'wetting': 997},
-    2: {'wetting': 997,
-        'nonwetting': 1.225},
-}
-
-intrinsic_permeability = {
-    1: 10e-11, #laut wikipedia in der range of sand
-    2: 10e-14, # layered clay achtung: auf wikipedia in cm^2 angegeb. hier m^2
+    1: {'wetting': 1.0,
+        'nonwetting': 1.0},
+    2: {'wetting': 1.0,
+        'nonwetting': 1.0}
 }
 
 gravity_acceleration = 9.81
 
 L = {#
 # subdom_num : subdomain L for L-scheme
-    1 : {'wetting' :Lw},
-         # 'nonwetting': 0.25},#
-    2 : {'wetting' :Lw,
-         'nonwetting': Lnw}
+    1 : {'wetting' :Lw1,
+         'nonwetting': Lnw1},#
+    2 : {'wetting' :Lw2,
+         'nonwetting': Lnw2}
 }
 
 
 lambda_param = {#
 # subdom_num : lambda parameter for the L-scheme
-    1 : {'wetting' :lambda_w,
+    0 : {'wetting' :lambda_w,
          'nonwetting': lambda_nw},#
-    2 : {'wetting' :lambda_w,
-         'nonwetting': lambda_nw}
+}
+
+intrinsic_permeability = {
+    1: 1.0,
+    2: 1.0,
 }
 
 ## relative permeabilty functions on subdomain 1
@@ -199,23 +251,24 @@ def rel_perm1w(s):
     # relative permeabilty wetting on subdomain1
     return intrinsic_permeability[1]*s**2
 
-# def rel_perm1nw(s):
-#     # relative permeabilty nonwetting on subdomain1
-#     return (1-s)**2
+def rel_perm1nw(s):
+    # relative permeabilty nonwetting on subdomain1
+    return intrinsic_permeability[1]*(1-s)**2
 
 _rel_perm1w = ft.partial(rel_perm1w)
-# _rel_perm1nw = ft.partial(rel_perm1nw)
+_rel_perm1nw = ft.partial(rel_perm1nw)
+
 subdomain1_rel_perm = {
     'wetting': _rel_perm1w,#
-    # 'nonwetting': _rel_perm1nw
+    'nonwetting': _rel_perm1nw
 }
 ## relative permeabilty functions on subdomain 2
 def rel_perm2w(s):
     # relative permeabilty wetting on subdomain2
     return intrinsic_permeability[2]*s**3
 def rel_perm2nw(s):
-    # relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2
-    return intrinsic_permeability[1]*(1-s)**3
+    # relative permeabilty nonwetting on subdomain2
+    return intrinsic_permeability[2]*(1-s)**3
 
 _rel_perm2w = ft.partial(rel_perm2w)
 _rel_perm2nw = ft.partial(rel_perm2nw)
@@ -236,30 +289,30 @@ relative_permeability = {#
 # relative permeabilty functions on subdomain 1
 def rel_perm1w_prime(s):
     # relative permeabilty on subdomain1
-    return 2*s
+    return intrinsic_permeability[1]*2*s
 
-# def rel_perm1nw_prime(s):
-#     # relative permeabilty on subdomain1
-#     return 2*(1-s)
+def rel_perm1nw_prime(s):
+    # relative permeabilty on subdomain1
+    return -1*intrinsic_permeability[1]*2*(1-s)
 
 # definition of the derivatives of the relative permeabilities
 # relative permeabilty functions on subdomain 1
 def rel_perm2w_prime(s):
-    # relative permeabilty on subdomain1
-    return 3*s**2
+    # relative permeabilty on subdomain2
+    return intrinsic_permeability[2]*3*s**2
 
 def rel_perm2nw_prime(s):
-    # relative permeabilty on subdomain1
-    return -3*(1-s)**2
+    # relative permeabilty on subdomain2
+    return -3*intrinsic_permeability[2]*(1-s)**2
 
 _rel_perm1w_prime = ft.partial(rel_perm1w_prime)
-# _rel_perm1nw_prime = ft.partial(rel_perm1nw_prime)
+_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime)
 _rel_perm2w_prime = ft.partial(rel_perm2w_prime)
 _rel_perm2nw_prime = ft.partial(rel_perm2nw_prime)
 
 subdomain1_rel_perm_prime = {
-    'wetting': _rel_perm1w_prime
-    # 'nonwetting': _rel_perm1nw_prime
+    'wetting': _rel_perm1w_prime,
+    'nonwetting': _rel_perm1nw_prime
 }
 
 
@@ -365,16 +418,16 @@ sat_pressure_relationship = {
 }
 
 
-#############################################
+###############################################################################
 # Manufacture source expressions with sympy #
-#############################################
+###############################################################################
 x, y = sym.symbols('x[0], x[1]')  # needed by UFL
 t = sym.symbols('t', positive=True)
 
 p_e_sym = {
     1: {'wetting': (-6.0 - (1.0 + t*t)*(1.0 + x*x + y*y))}, #*(1-x)**2*(1+x)**2*(1-y)**2},
     2: {'wetting': (-6.0 - (1.0 + t*t)*(1.0 + x*x)), #*(1-x)**2*(1+x)**2*(1+y)**2,
-        'nonwetting': (-1-t*(1.1+y + x**2))*y**2}, #*(1-x)**2*(1+x)**2*(1+y)**2},
+        'nonwetting': (-1.0-t*(1.1+y + x**2))*y**2}, #*(1-x)**2*(1+x)**2*(1+y)**2},
 } #-y*y*(sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t)) - t*t*x*(0.5-y)*y*(1-x)
 
 
@@ -425,9 +478,11 @@ dirichletBC = dict()
 # return the actual expression needed for the dirichlet condition for both
 # phases if present.
 
+
+# BOUNDARY CONDITIONS #########################################################
 # subdomain index: {outer boudary part index: {phase: expression}}
 for subdomain in isRichards.keys():
-    # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None
+    # subdomain can have no outer boundary
     if outer_boundary_def_points[subdomain] is None:
         dirichletBC.update({subdomain: None})
     else:
@@ -440,12 +495,15 @@ for subdomain in isRichards.keys():
                 )
 
 
-# def saturation(pressure, subdomain_index):
-#     # inverse capillary pressure-saturation-relationship
-#     return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1)
-#
-# sa
+# LOG FILE OUTPUT #############################################################
+# read this file and print it to std out. This way the simulation can produce a
+# log file with ./TP-R-layered_soil.py | tee simulation.log
+f = open(thisfile, 'r')
+print(f.read())
+f.close()
+
 
+# RUN #########################################################################
 for starttime in starttimes:
     for mesh_resolution, solver_tol in resolutions.items():
         # initialise LDD simulation class
@@ -458,33 +516,34 @@ for starttime in starttimes:
             mesh_study=mesh_study
             )
 
-        simulation.set_parameters(use_case=use_case,
-                                  output_dir=output_string,
-                                  subdomain_def_points=subdomain_def_points,
-                                  isRichards=isRichards,
-                                  interface_def_points=interface_def_points,
-                                  outer_boundary_def_points=outer_boundary_def_points,
-                                  adjacent_subdomains=adjacent_subdomains,
-                                  mesh_resolution=mesh_resolution,
-                                  viscosity=viscosity,
-                                  porosity=porosity,
-                                  L=L,
-                                  lambda_param=lambda_param,
-                                  relative_permeability=relative_permeability,
-                                  saturation=sat_pressure_relationship,
-                                  starttime=starttime,
-                                  number_of_timesteps=number_of_timesteps,
-                                  number_of_timesteps_to_analyse=number_of_timesteps_to_analyse,
-                                  plot_timestep_every=plot_timestep_every,
-                                  timestep_size=timestep_size,
-                                  sources=source_expression,
-                                  initial_conditions=initial_condition,
-                                  dirichletBC_expression_strings=dirichletBC,
-                                  exact_solution=exact_solution,
-                                  densities=densities,
-                                  include_gravity=include_gravity,
-                                  write2file=write_to_file,
-                                  )
+        simulation.set_parameters(
+            use_case=use_case,
+            output_dir=output_string,
+            subdomain_def_points=subdomain_def_points,
+            isRichards=isRichards,
+            interface_def_points=interface_def_points,
+            outer_boundary_def_points=outer_boundary_def_points,
+            adjacent_subdomains=adjacent_subdomains,
+            mesh_resolution=mesh_resolution,
+            viscosity=viscosity,
+            porosity=porosity,
+            L=L,
+            lambda_param=lambda_param,
+            relative_permeability=relative_permeability,
+            saturation=sat_pressure_relationship,
+            starttime=starttime,
+            number_of_timesteps=number_of_timesteps,
+            number_of_timesteps_to_analyse=number_of_timesteps_to_analyse,
+            plot_timestep_every=plot_timestep_every,
+            timestep_size=timestep_size,
+            sources=source_expression,
+            initial_conditions=initial_condition,
+            dirichletBC_expression_strings=dirichletBC,
+            exact_solution=exact_solution,
+            densities=densities,
+            include_gravity=include_gravity,
+            write2file=write_to_file,
+            )
 
         simulation.initialise()
         output_dir = simulation.output_dir
@@ -492,26 +551,39 @@ for starttime in starttimes:
         output = simulation.run(analyse_condition=analyse_condition)
         for subdomain_index, subdomain_output in output.items():
             mesh_h = subdomain_output['mesh_size']
-            for phase, different_errornorms in subdomain_output['errornorm'].items():
-                filename = output_dir + "subdomain{}-space-time-errornorm-{}-phase.csv".format(subdomain_index, phase)
-                # for errortype, errornorm in different_errornorms.items():
-
-                    # eocfile = open("eoc_filename", "a")
-                    # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" )
-                    # eocfile.close()
-                    # if subdomain.isRichards:mesh_h
+            for phase, error_dict in subdomain_output['errornorm'].items():
+                filename = output_dir \
+                    + "subdomain{}".format(subdomain_index)\
+                    + "-space-time-errornorm-{}-phase.csv".format(phase)
+                # for errortype, errornorm in error_dict.items():
+
+                # eocfile = open("eoc_filename", "a")
+                # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" )
+                # eocfile.close()
+                # if subdomain.isRichards:mesh_h
                 data_dict = {
                     'mesh_parameter': mesh_resolution,
                     'mesh_h': mesh_h,
                 }
-                for error_type, errornorms in different_errornorms.items():
+                for norm_type, errornorm in error_dict.items():
                     data_dict.update(
-                        {error_type: errornorms}
+                        {norm_type: errornorm}
                     )
                 errors = pd.DataFrame(data_dict, index=[mesh_resolution])
                 # check if file exists
-                if os.path.isfile(filename) == True:
+                if os.path.isfile(filename) is True:
                     with open(filename, 'a') as f:
-                        errors.to_csv(f, header=False, sep='\t', encoding='utf-8', index=False)
+                        errors.to_csv(
+                            f,
+                            header=False,
+                            sep='\t',
+                            encoding='utf-8',
+                            index=False
+                            )
                 else:
-                    errors.to_csv(filename, sep='\t', encoding='utf-8', index=False)
+                    errors.to_csv(
+                        filename,
+                        sep='\t',
+                        encoding='utf-8',
+                        index=False
+                        )
diff --git a/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study-all-params-one.py b/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study-all-params-one.py
index 62d507cb57193a3ee9e0e5182560a0a43c6f3615..64512a6ecbe845f7ae045e748387842de3ede0a0 100755
--- a/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study-all-params-one.py
+++ b/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study-all-params-one.py
@@ -1,77 +1,111 @@
 #!/usr/bin/python3
+"""TPR 2 patch soil simulation.
+
+This program sets up an LDD simulation
+"""
+
 import dolfin as df
-import mshr
-import numpy as np
 import sympy as sym
-import typing as tp
-import domainPatch as dp
-import LDDsimulation as ldd
 import functools as ft
+import LDDsimulation as ldd
 import helpers as hlp
 import datetime
 import os
 import pandas as pd
 
+# init sympy session
+sym.init_printing()
+
+# PREREQUISITS  ###############################################################
+# check if output directory "./output" exists. This will be used in
+# the generation of the output string.
+if not os.path.exists('./output'):
+    os.mkdir('./output')
+    print("Directory ", './output',  " created ")
+else:
+    print("Directory ", './output',  " already exists. Will use as output \
+    directory")
+
 date = datetime.datetime.now()
 datestr = date.strftime("%Y-%m-%d")
-#import ufl as ufl
 
-# init sympy session
-sym.init_printing()
+# Name of the usecase that will be printed during simulation.
+use_case = "TPR-2-patch-all-params-one"
+# The name of this very file. Needed for creating log output.
+thisfile = "TP-R-2-patch-mesh-study-all-params-one.py"
 
-use_case = "TPR-2-desities-scaled-down"
-# solver_tol = 6E-7
-max_iter_num = 500
+# GENERAL SOLVER CONFIG  ######################################################
+# maximal iteration per timestep
+max_iter_num = 250
 FEM_Lagrange_degree = 1
-mesh_study = False
+
+# GRID AND MESH STUDY SPECIFICATIONS  #########################################
+mesh_study = True
 resolutions = {
-                # 1: 1e-6,
-                # 2: 1e-6,
-                # 4: 1e-6,
-                # 8: 1e-6,
-                # 16: 1e-6,
-                32: 1e-6,
-                # 64: 1e-6,
-                # 128: 1e-6,
+                1: 5e-6,
+                2: 5e-6,
+                4: 5e-6,
+                8: 5e-6,
+                16: 5e-6,
+                32: 5e-6,
+                64: 5e-6,
+                128: 5e-6,
                 # 256: 1e-6,
                 }
 
-############ GRID #######################
-# mesh_resolution = 20
-timestep_size = 0.001
-number_of_timesteps = 1000
-plot_timestep_every = 4
-# decide how many timesteps you want analysed. Analysed means, that we write out
-# subsequent errors of the L-iteration within the timestep.
-number_of_timesteps_to_analyse = 5
+# starttimes gives a list of starttimes to run the simulation from.
+# The list is looped over and a simulation is run with t_0 as initial time
+#  for each element t_0 in starttimes.
 starttimes = [0.0]
+timestep_size = 0.001
+number_of_timesteps = 800
 
-Lw = 0.025 #/timestep_size
-Lnw= 0.025
+# LDD scheme parameters  ######################################################
+Lw1 = 0.25 #/timestep_size
+Lnw1= 0.25
 
-lambda_w = 40
-lambda_nw = 40
+Lw2 = 0.25 #/timestep_size
+Lnw2= 0.25
+
+lambda_w = 4.0
+lambda_nw = 4.0
 
 include_gravity = True
 debugflag = False
-analyse_condition = True
-
-if mesh_study:
-    output_string = "./output/{}-{}_timesteps{}_P{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree)
-else:
-    for tol in resolutions.values():
-        solver_tol = tol
-    output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol)
-
-# toggle what should be written to files
+analyse_condition = False
+
+# I/O CONFIG  #################################################################
+# when number_of_timesteps is high, it might take a long time to write all
+# timesteps to disk. Therefore, you can choose to only write data of every
+# plot_timestep_every timestep to disk.
+plot_timestep_every = 3
+# Decide how many timesteps you want analysed. Analysed means, that
+# subsequent errors of the L-iteration within the timestep are written out.
+number_of_timesteps_to_analyse = 4
+
+# fine grained control over data to be written to disk in the mesh study case
+# as well as for a regular simuation for a fixed grid.
 if mesh_study:
     write_to_file = {
+        # output the relative errornorm (integration in space) w.r.t. an exact
+        # solution for each timestep into a csv file.
         'space_errornorms': True,
+        # save the mesh and marker functions to disk
         'meshes_and_markers': True,
-        'L_iterations_per_timestep': True,
+        # save xdmf/h5 data for each LDD iteration for timesteps determined by
+        # number_of_timesteps_to_analyse. I/O intensive!
+        'L_iterations_per_timestep': False,
+        # save solution to xdmf/h5.
         'solutions': True,
+        # save absolute differences w.r.t an exact solution to xdmf/h5 file
+        # to monitor where on the domains errors happen
         'absolute_differences': True,
+        # analyise condition numbers for timesteps determined by
+        # number_of_timesteps_to_analyse and save them over time to csv.
         'condition_numbers': analyse_condition,
+        # output subsequent iteration errors measured in L^2  to csv for
+        # timesteps determined by number_of_timesteps_to_analyse.
+        # Usefull to monitor convergence of the acutal LDD solver.
         'subsequent_errors': True
     }
 else:
@@ -85,9 +119,20 @@ else:
         'subsequent_errors': True
     }
 
+# OUTPUT FILE STRING  #########################################################
+if mesh_study:
+    output_string = "./output/{}-{}_timesteps{}_P{}".format(
+        datestr, use_case, number_of_timesteps, FEM_Lagrange_degree
+        )
+else:
+    for tol in resolutions.values():
+        solver_tol = tol
+    output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format(
+        datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol
+        )
 
 
-##### Domain and Interface ####
+# DOMAIN AND INTERFACE  #######################################################
 # global simulation domain domain
 sub_domain0_vertices = [df.Point(-1.0, -1.0),
                         df.Point(1.0, -1.0),
@@ -149,6 +194,8 @@ outer_boundary_def_points = {
 # adjacent_subdomains[i] contains the indices of the subdomains sharing the
 # interface i (i.e. given by interface_def_points[i]).
 adjacent_subdomains = [[1,2]]
+
+# MODEL CONFIGURATION #########################################################
 isRichards = {
     1: True, #
     2: False
@@ -157,55 +204,46 @@ isRichards = {
 
 viscosity = {#
 # subdom_num : viscosity
-    1: {'wetting' :1,
-         'nonwetting': 1/50}, #
-    2: {'wetting' :1,
-         'nonwetting': 1/50}
+    1: {'wetting' :1.0,
+         'nonwetting': 1.0}, #
+    2: {'wetting' :1.0,
+         'nonwetting': 1.0}
 }
 
 porosity = {#
 # subdom_num : porosity
-    1: 0.22,#
-    2: 0.0022
+    1: 1.0,
+    2: 1.0
 }
 
 # Dict of the form: { subdom_num : density }
 densities = {
-    1: {'wetting': 9.97,
-        'nonwetting': 00.12041},
-    2: {'wetting': 9.97,
-        'nonwetting': 00.12041}
+    1: {'wetting': 1.0,
+        'nonwetting': 1.0},
+    2: {'wetting': 1.0,
+        'nonwetting': 1.0}
 }
 
-gravity_acceleration = 9.81
+gravity_acceleration = 1.0
 
 L = {#
 # subdom_num : subdomain L for L-scheme
-    1 : {'wetting' :Lw,
-         'nonwetting': Lnw},#
-    2 : {'wetting' :Lw,
-         'nonwetting': Lnw}
+    1 : {'wetting' :Lw1,
+         'nonwetting': Lnw1},#
+    2 : {'wetting' :Lw2,
+         'nonwetting': Lnw2}
 }
 
 
 lambda_param = {#
 # subdom_num : lambda parameter for the L-scheme
-    1 : {'wetting' :lambda_w,
+    0 : {'wetting' :lambda_w,
          'nonwetting': lambda_nw},#
-    2 : {'wetting' :lambda_w,
-         'nonwetting': lambda_nw}
 }
 
-# intrinsic_permeability = {
-#     1: {"wetting": 1,
-#         "nonwetting": 1},
-#     2: {"wetting": 1,
-#         "nonwetting": 1},
-# }
-
 intrinsic_permeability = {
-    1: 1,
-    2: 1,
+    1: 1.0,
+    2: 1.0,
 }
 
 ## relative permeabilty functions on subdomain 1
@@ -229,7 +267,7 @@ def rel_perm2w(s):
     # relative permeabilty wetting on subdomain2
     return intrinsic_permeability[2]*s**3
 def rel_perm2nw(s):
-    # relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2
+    # relative permeabilty nonwetting on subdomain2
     return intrinsic_permeability[2]*(1-s)**3
 
 _rel_perm2w = ft.partial(rel_perm2w)
@@ -380,16 +418,16 @@ sat_pressure_relationship = {
 }
 
 
-#############################################
+###############################################################################
 # Manufacture source expressions with sympy #
-#############################################
+###############################################################################
 x, y = sym.symbols('x[0], x[1]')  # needed by UFL
 t = sym.symbols('t', positive=True)
 
 p_e_sym = {
     1: {'wetting': (-6.0 - (1.0 + t*t)*(1.0 + x*x + y*y))}, #*(1-x)**2*(1+x)**2*(1-y)**2},
     2: {'wetting': (-6.0 - (1.0 + t*t)*(1.0 + x*x)), #*(1-x)**2*(1+x)**2*(1+y)**2,
-        'nonwetting': (-1-t*(1.1+y + x**2))*y**2}, #*(1-x)**2*(1+x)**2*(1+y)**2},
+        'nonwetting': (-1.0-t*(1.1+y + x**2))*y**2}, #*(1-x)**2*(1+x)**2*(1+y)**2},
 } #-y*y*(sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t)) - t*t*x*(0.5-y)*y*(1-x)
 
 
@@ -440,9 +478,11 @@ dirichletBC = dict()
 # return the actual expression needed for the dirichlet condition for both
 # phases if present.
 
+
+# BOUNDARY CONDITIONS #########################################################
 # subdomain index: {outer boudary part index: {phase: expression}}
 for subdomain in isRichards.keys():
-    # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None
+    # subdomain can have no outer boundary
     if outer_boundary_def_points[subdomain] is None:
         dirichletBC.update({subdomain: None})
     else:
@@ -455,17 +495,15 @@ for subdomain in isRichards.keys():
                 )
 
 
-# def saturation(pressure, subdomain_index):
-#     # inverse capillary pressure-saturation-relationship
-#     return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1)
-#
-# sa
-
-f = open('TP-R-2-patch-mesh-study.py', 'r')
+# LOG FILE OUTPUT #############################################################
+# read this file and print it to std out. This way the simulation can produce a
+# log file with ./TP-R-layered_soil.py | tee simulation.log
+f = open(thisfile, 'r')
 print(f.read())
 f.close()
 
 
+# RUN #########################################################################
 for starttime in starttimes:
     for mesh_resolution, solver_tol in resolutions.items():
         # initialise LDD simulation class
@@ -478,33 +516,34 @@ for starttime in starttimes:
             mesh_study=mesh_study
             )
 
-        simulation.set_parameters(use_case=use_case,
-                                  output_dir=output_string,
-                                  subdomain_def_points=subdomain_def_points,
-                                  isRichards=isRichards,
-                                  interface_def_points=interface_def_points,
-                                  outer_boundary_def_points=outer_boundary_def_points,
-                                  adjacent_subdomains=adjacent_subdomains,
-                                  mesh_resolution=mesh_resolution,
-                                  viscosity=viscosity,
-                                  porosity=porosity,
-                                  L=L,
-                                  lambda_param=lambda_param,
-                                  relative_permeability=relative_permeability,
-                                  saturation=sat_pressure_relationship,
-                                  starttime=starttime,
-                                  number_of_timesteps=number_of_timesteps,
-                                  number_of_timesteps_to_analyse=number_of_timesteps_to_analyse,
-                                  plot_timestep_every=plot_timestep_every,
-                                  timestep_size=timestep_size,
-                                  sources=source_expression,
-                                  initial_conditions=initial_condition,
-                                  dirichletBC_expression_strings=dirichletBC,
-                                  exact_solution=exact_solution,
-                                  densities=densities,
-                                  include_gravity=include_gravity,
-                                  write2file=write_to_file,
-                                  )
+        simulation.set_parameters(
+            use_case=use_case,
+            output_dir=output_string,
+            subdomain_def_points=subdomain_def_points,
+            isRichards=isRichards,
+            interface_def_points=interface_def_points,
+            outer_boundary_def_points=outer_boundary_def_points,
+            adjacent_subdomains=adjacent_subdomains,
+            mesh_resolution=mesh_resolution,
+            viscosity=viscosity,
+            porosity=porosity,
+            L=L,
+            lambda_param=lambda_param,
+            relative_permeability=relative_permeability,
+            saturation=sat_pressure_relationship,
+            starttime=starttime,
+            number_of_timesteps=number_of_timesteps,
+            number_of_timesteps_to_analyse=number_of_timesteps_to_analyse,
+            plot_timestep_every=plot_timestep_every,
+            timestep_size=timestep_size,
+            sources=source_expression,
+            initial_conditions=initial_condition,
+            dirichletBC_expression_strings=dirichletBC,
+            exact_solution=exact_solution,
+            densities=densities,
+            include_gravity=include_gravity,
+            write2file=write_to_file,
+            )
 
         simulation.initialise()
         output_dir = simulation.output_dir
@@ -512,26 +551,39 @@ for starttime in starttimes:
         output = simulation.run(analyse_condition=analyse_condition)
         for subdomain_index, subdomain_output in output.items():
             mesh_h = subdomain_output['mesh_size']
-            for phase, different_errornorms in subdomain_output['errornorm'].items():
-                filename = output_dir + "subdomain{}-space-time-errornorm-{}-phase.csv".format(subdomain_index, phase)
-                # for errortype, errornorm in different_errornorms.items():
-
-                    # eocfile = open("eoc_filename", "a")
-                    # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" )
-                    # eocfile.close()
-                    # if subdomain.isRichards:mesh_h
+            for phase, error_dict in subdomain_output['errornorm'].items():
+                filename = output_dir \
+                    + "subdomain{}".format(subdomain_index)\
+                    + "-space-time-errornorm-{}-phase.csv".format(phase)
+                # for errortype, errornorm in error_dict.items():
+
+                # eocfile = open("eoc_filename", "a")
+                # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" )
+                # eocfile.close()
+                # if subdomain.isRichards:mesh_h
                 data_dict = {
                     'mesh_parameter': mesh_resolution,
                     'mesh_h': mesh_h,
                 }
-                for error_type, errornorms in different_errornorms.items():
+                for norm_type, errornorm in error_dict.items():
                     data_dict.update(
-                        {error_type: errornorms}
+                        {norm_type: errornorm}
                     )
                 errors = pd.DataFrame(data_dict, index=[mesh_resolution])
                 # check if file exists
-                if os.path.isfile(filename) == True:
+                if os.path.isfile(filename) is True:
                     with open(filename, 'a') as f:
-                        errors.to_csv(f, header=False, sep='\t', encoding='utf-8', index=False)
+                        errors.to_csv(
+                            f,
+                            header=False,
+                            sep='\t',
+                            encoding='utf-8',
+                            index=False
+                            )
                 else:
-                    errors.to_csv(filename, sep='\t', encoding='utf-8', index=False)
+                    errors.to_csv(
+                        filename,
+                        sep='\t',
+                        encoding='utf-8',
+                        index=False
+                        )
diff --git a/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study-new-gli-bak.py b/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study-new-gli-bak.py
deleted file mode 100755
index 23463c313e5d0a85d86406c0a734c1e3f7c389fd..0000000000000000000000000000000000000000
--- a/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study-new-gli-bak.py
+++ /dev/null
@@ -1,512 +0,0 @@
-#!/usr/bin/python3
-import dolfin as df
-import mshr
-import numpy as np
-import sympy as sym
-import typing as tp
-import domainPatch as dp
-import LDDsimulation as ldd
-import functools as ft
-import helpers as hlp
-import datetime
-import os
-import pandas as pd
-
-date = datetime.datetime.now()
-datestr = date.strftime("%Y-%m-%d")
-#import ufl as ufl
-
-# init sympy session
-sym.init_printing()
-
-use_case = "TP-R-2-patch-realistic-new-nw-gli"
-# solver_tol = 6E-7
-max_iter_num = 1000
-FEM_Lagrange_degree = 1
-mesh_study = True
-resolutions = { 1: 7e-7,
-                2: 7e-7,
-                4: 7e-7,
-                8: 7e-7,
-                16: 7e-7,
-                32: 7e-7,
-                64: 7e-7,
-                128: 7e-7,
-                #256: 7e-7,
-                }
-
-############ GRID #######################
-# mesh_resolution = 20
-timestep_size = 0.001
-number_of_timesteps = 800
-plot_timestep_every = 2
-# decide how many timesteps you want analysed. Analysed means, that we write out
-# subsequent errors of the L-iteration within the timestep.
-number_of_timesteps_to_analyse = 4
-starttimes = [0.0, 0.7]
-
-Lw = 0.025 #/timestep_size
-Lnw=Lw
-
-lambda_w = 40
-lambda_nw = 40
-
-include_gravity = False
-debugflag = False
-analyse_condition = False
-
-output_string = "./output/{}-{}_timesteps{}_P{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree)
-
-# toggle what should be written to files
-if mesh_study:
-    write_to_file = {
-        'space_errornorms': True,
-        'meshes_and_markers': True,
-        'L_iterations_per_timestep': False,
-        'solutions': False,
-        'absolute_differences': False,
-        'condition_numbers': analyse_condition,
-        'subsequent_errors': False
-    }
-else:
-    write_to_file = {
-        'space_errornorms': True,
-        'meshes_and_markers': True,
-        'L_iterations_per_timestep': False,
-        'solutions': True,
-        'absolute_differences': True,
-        'condition_numbers': analyse_condition,
-        'subsequent_errors': True
-    }
-
-
-
-##### Domain and Interface ####
-# global simulation domain domain
-sub_domain0_vertices = [df.Point(-1.0, -1.0),
-                        df.Point(1.0, -1.0),
-                        df.Point(1.0, 1.0),
-                        df.Point(-1.0, 1.0)]
-# interface between subdomain1 and subdomain2
-interface12_vertices = [df.Point(-1.0, 0.0),
-                        df.Point(1.0, 0.0) ]
-# subdomain1.
-sub_domain1_vertices = [interface12_vertices[0],
-                        interface12_vertices[1],
-                        sub_domain0_vertices[2],
-                        sub_domain0_vertices[3]]
-
-# vertex coordinates of the outer boundaries. If it can not be specified as a
-# polygon, use an entry per boundary polygon. This information is used for defining
-# the Dirichlet boundary conditions. If a domain is completely internal, the
-# dictionary entry should be 0: None
-subdomain1_outer_boundary_verts = {
-    0: [interface12_vertices[1], #
-        sub_domain0_vertices[2],
-        sub_domain0_vertices[3], #
-        interface12_vertices[0]]
-}
-# subdomain2
-sub_domain2_vertices = [sub_domain0_vertices[0],
-                        sub_domain0_vertices[1],
-                        interface12_vertices[1],
-                        interface12_vertices[0] ]
-
-subdomain2_outer_boundary_verts = {
-    0: [interface12_vertices[0], #
-        sub_domain0_vertices[0],
-        sub_domain0_vertices[1],
-        interface12_vertices[1]]
-}
-
-# list of subdomains given by the boundary polygon vertices.
-# Subdomains are given as a list of dolfin points forming
-# a closed polygon, such that mshr.Polygon(subdomain_def_points[i]) can be used
-# to create the subdomain. subdomain_def_points[0] contains the
-# vertices of the global simulation domain and subdomain_def_points[i] contains the
-# vertices of the subdomain i.
-subdomain_def_points = [sub_domain0_vertices,#
-                      sub_domain1_vertices,#
-                      sub_domain2_vertices]
-# in the below list, index 0 corresponds to the 12 interface which has index 1
-interface_def_points = [interface12_vertices]
-
-# if a subdomain has no outer boundary write None instead, i.e.
-# i: None
-# if i is the index of the inner subdomain.
-outer_boundary_def_points = {
-    # subdomain number
-    1 : subdomain1_outer_boundary_verts,
-    2 : subdomain2_outer_boundary_verts
-}
-
-# adjacent_subdomains[i] contains the indices of the subdomains sharing the
-# interface i (i.e. given by interface_def_points[i]).
-adjacent_subdomains = [[1,2]]
-isRichards = {
-    1: True, #
-    2: False
-    }
-
-
-viscosity = {#
-# subdom_num : viscosity
-    1 : {'wetting' :1},
-         #'nonwetting': 1}, #
-    2 : {'wetting' :1,
-         'nonwetting': 1/50}
-}
-
-porosity = {#
-# subdom_num : porosity
-    1 : 0.22,#
-    2 : 0.0022
-}
-
-# Dict of the form: { subdom_num : density }
-densities = {
-    1: {'wetting': 997},
-    2: {'wetting': 997,
-        'nonwetting': 1.225},
-}
-
-gravity_acceleration = 9.81
-
-L = {#
-# subdom_num : subdomain L for L-scheme
-    1 : {'wetting' :Lw},
-         # 'nonwetting': 0.25},#
-    2 : {'wetting' :Lw,
-         'nonwetting': Lnw}
-}
-
-
-lambda_param = {#
-# subdom_num : lambda parameter for the L-scheme
-    1 : {'wetting' :lambda_w,
-         'nonwetting': lambda_nw},#
-    2 : {'wetting' :lambda_w,
-         'nonwetting': lambda_nw}
-}
-
-## relative permeabilty functions on subdomain 1
-def rel_perm1w(s):
-    # relative permeabilty wetting on subdomain1
-    return s**2
-
-# def rel_perm1nw(s):
-#     # relative permeabilty nonwetting on subdomain1
-#     return (1-s)**2
-
-_rel_perm1w = ft.partial(rel_perm1w)
-# _rel_perm1nw = ft.partial(rel_perm1nw)
-subdomain1_rel_perm = {
-    'wetting': _rel_perm1w,#
-    # 'nonwetting': _rel_perm1nw
-}
-## relative permeabilty functions on subdomain 2
-def rel_perm2w(s):
-    # relative permeabilty wetting on subdomain2
-    return s**3
-def rel_perm2nw(s):
-    # relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2
-    return (1-s)**3
-
-_rel_perm2w = ft.partial(rel_perm2w)
-_rel_perm2nw = ft.partial(rel_perm2nw)
-
-subdomain2_rel_perm = {
-    'wetting': _rel_perm2w,#
-    'nonwetting': _rel_perm2nw
-}
-
-## dictionary of relative permeabilties on all domains.
-relative_permeability = {#
-    1: subdomain1_rel_perm,
-    2: subdomain2_rel_perm
-}
-
-
-# definition of the derivatives of the relative permeabilities
-# relative permeabilty functions on subdomain 1
-def rel_perm1w_prime(s):
-    # relative permeabilty on subdomain1
-    return 2*s
-
-# def rel_perm1nw_prime(s):
-#     # relative permeabilty on subdomain1
-#     return 2*(1-s)
-
-# definition of the derivatives of the relative permeabilities
-# relative permeabilty functions on subdomain 1
-def rel_perm2w_prime(s):
-    # relative permeabilty on subdomain1
-    return 3*s**2
-
-def rel_perm2nw_prime(s):
-    # relative permeabilty on subdomain1
-    return -3*(1-s)**2
-
-_rel_perm1w_prime = ft.partial(rel_perm1w_prime)
-# _rel_perm1nw_prime = ft.partial(rel_perm1nw_prime)
-_rel_perm2w_prime = ft.partial(rel_perm2w_prime)
-_rel_perm2nw_prime = ft.partial(rel_perm2nw_prime)
-
-subdomain1_rel_perm_prime = {
-    'wetting': _rel_perm1w_prime
-    # 'nonwetting': _rel_perm1nw_prime
-}
-
-
-subdomain2_rel_perm_prime = {
-    'wetting': _rel_perm2w_prime,
-    'nonwetting': _rel_perm2nw_prime
-}
-
-# dictionary of relative permeabilties on all domains.
-ka_prime = {
-    1: subdomain1_rel_perm_prime,
-    2: subdomain2_rel_perm_prime,
-}
-
-
-# def saturation1(pc, subdomain_index):
-#     # inverse capillary pressure-saturation-relationship
-#     return df.conditional(pc > 0, 1/((1 + pc)**(1/(subdomain_index + 1))), 1)
-#
-# def saturation2(pc, n_index, alpha):
-#     # inverse capillary pressure-saturation-relationship
-#     return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1)
-#
-# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where
-# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw
-# def saturation1_sym(pc, subdomain_index):
-#     # inverse capillary pressure-saturation-relationship
-#     return 1/((1 + pc)**(1/(subdomain_index + 1)))
-#
-#
-# def saturation2_sym(pc, n_index, alpha):
-#     # inverse capillary pressure-saturation-relationship
-#     #df.conditional(pc > 0,
-#     return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index))
-#
-#
-# # derivative of S-pc relationship with respect to pc. This is needed for the
-# # construction of a analytic solution.
-# def saturation1_sym_prime(pc, subdomain_index):
-#     # inverse capillary pressure-saturation-relationship
-#     return -(1/(subdomain_index + 1))*(1 + pc)**((-subdomain_index - 2)/(subdomain_index + 1))
-#
-#
-# def saturation2_sym_prime(pc, n_index, alpha):
-#     # inverse capillary pressure-saturation-relationship
-#     return -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1)) / ( (1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index) )
-#
-# # note that the conditional definition of S-pc in the nonsymbolic part will be
-# # incorporated in the construction of the exact solution below.
-# S_pc_sym = {
-#     1: ft.partial(saturation1_sym, subdomain_index = 1),
-#     2: ft.partial(saturation2_sym, n_index=3, alpha=0.001),
-# }
-#
-# S_pc_sym_prime = {
-#     1: ft.partial(saturation1_sym_prime, subdomain_index = 1),
-#     2: ft.partial(saturation2_sym_prime, n_index=3, alpha=0.001),
-# }
-#
-# sat_pressure_relationship = {
-#     1: ft.partial(saturation1, subdomain_index = 1),#,
-#     2: ft.partial(saturation2, n_index=3, alpha=0.001),
-# }
-
-def saturation(pc, index):
-    # inverse capillary pressure-saturation-relationship
-    return df.conditional(pc > 0, 1/((1 + pc)**(1/(index + 1))), 1)
-
-
-def saturation_sym(pc, index):
-    # inverse capillary pressure-saturation-relationship
-    return 1/((1 + pc)**(1/(index + 1)))
-
-
-# derivative of S-pc relationship with respect to pc. This is needed for the
-# construction of a analytic solution.
-def saturation_sym_prime(pc, index):
-    # inverse capillary pressure-saturation-relationship
-    return -1/((index+1)*(1 + pc)**((index+2)/(index+1)))
-
-
-# note that the conditional definition of S-pc in the nonsymbolic part will be
-# incorporated in the construction of the exact solution below.
-S_pc_sym = {
-    1: ft.partial(saturation_sym, index=1),
-    2: ft.partial(saturation_sym, index=2),
-    # 3: ft.partial(saturation_sym, index=2),
-    # 4: ft.partial(saturation_sym, index=1)
-}
-
-S_pc_sym_prime = {
-    1: ft.partial(saturation_sym_prime, index=1),
-    2: ft.partial(saturation_sym_prime, index=2),
-    # 3: ft.partial(saturation_sym_prime, index=2),
-    # 4: ft.partial(saturation_sym_prime, index=1)
-}
-
-sat_pressure_relationship = {
-    1: ft.partial(saturation, index=1),
-    2: ft.partial(saturation, index=2),
-    # 3: ft.partial(saturation, index=2),
-    # 4: ft.partial(saturation, index=1)
-}
-
-
-#############################################
-# Manufacture source expressions with sympy #
-#############################################
-x, y = sym.symbols('x[0], x[1]')  # needed by UFL
-t = sym.symbols('t', positive=True)
-
-p_e_sym = {
-    1: {'wetting': (-5.0 - (1.0 + t*t)*(1.0 + x*x + y*y))}, #*(1-x)**2*(1+x)**2*(1-y)**2},
-    2: {'wetting': (-5.0 - (1.0 + t*t)*(1.0 + x*x)), #*(1-x)**2*(1+x)**2*(1+y)**2,
-        'nonwetting': (-1-t*(1.1+y + x**2))*y**3}, #*(1-x)**2*(1+x)**2*(1+y)**2},
-} #-y*y*(sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t)) - t*t*x*(0.5-y)*y*(1-x)
-
-
-pc_e_sym = dict()
-for subdomain, isR in isRichards.items():
-    if isR:
-        pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting'].copy()})
-    else:
-        pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'].copy()
-                                        - p_e_sym[subdomain]['wetting'].copy()})
-
-
-symbols = {"x": x,
-           "y": y,
-           "t": t}
-# turn above symbolic code into exact solution for dolphin and
-# construct the rhs that matches the above exact solution.
-exact_solution_example = hlp.generate_exact_solution_expressions(
-                        symbols=symbols,
-                        isRichards=isRichards,
-                        symbolic_pressure=p_e_sym,
-                        symbolic_capillary_pressure=pc_e_sym,
-                        saturation_pressure_relationship=S_pc_sym,
-                        saturation_pressure_relationship_prime=S_pc_sym_prime,
-                        viscosity=viscosity,
-                        porosity=porosity,
-                        relative_permeability=relative_permeability,
-                        relative_permeability_prime=ka_prime,
-                        densities=densities,
-                        gravity_acceleration=gravity_acceleration,
-                        include_gravity=include_gravity,
-                        )
-source_expression = exact_solution_example['source']
-exact_solution = exact_solution_example['exact_solution']
-initial_condition = exact_solution_example['initial_condition']
-
-# Dictionary of dirichlet boundary conditions.
-dirichletBC = dict()
-# similarly to the outer boundary dictionary, if a patch has no outer boundary
-# None should be written instead of an expression.
-# This is a bit of a brainfuck:
-# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind.
-# Since a domain patch can have several disjoint outer boundary parts, the
-# expressions need to get an enumaration index which starts at 0.
-# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of
-# subdomain ind and boundary part j.
-# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting']
-# return the actual expression needed for the dirichlet condition for both
-# phases if present.
-
-# subdomain index: {outer boudary part index: {phase: expression}}
-for subdomain in isRichards.keys():
-    # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None
-    if outer_boundary_def_points[subdomain] is None:
-        dirichletBC.update({subdomain: None})
-    else:
-        dirichletBC.update({subdomain: dict()})
-        # set the dirichlet conditions to be the same code as exact solution on
-        # the subdomain.
-        for outer_boundary_ind in outer_boundary_def_points[subdomain].keys():
-            dirichletBC[subdomain].update(
-                {outer_boundary_ind: exact_solution[subdomain]}
-                )
-
-
-# def saturation(pressure, subdomain_index):
-#     # inverse capillary pressure-saturation-relationship
-#     return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1)
-#
-# sa
-
-for starttime in starttimes:
-    for mesh_resolution, solver_tol in resolutions.items():
-        # initialise LDD simulation class
-        simulation = ldd.LDDsimulation(
-            tol=1E-14,
-            LDDsolver_tol=solver_tol,
-            debug=debugflag,
-            max_iter_num=max_iter_num,
-            FEM_Lagrange_degree=FEM_Lagrange_degree,
-            mesh_study=mesh_study
-            )
-
-        simulation.set_parameters(use_case=use_case,
-                                  output_dir=output_string,
-                                  subdomain_def_points=subdomain_def_points,
-                                  isRichards=isRichards,
-                                  interface_def_points=interface_def_points,
-                                  outer_boundary_def_points=outer_boundary_def_points,
-                                  adjacent_subdomains=adjacent_subdomains,
-                                  mesh_resolution=mesh_resolution,
-                                  viscosity=viscosity,
-                                  porosity=porosity,
-                                  L=L,
-                                  lambda_param=lambda_param,
-                                  relative_permeability=relative_permeability,
-                                  saturation=sat_pressure_relationship,
-                                  starttime=starttime,
-                                  number_of_timesteps=number_of_timesteps,
-                                  number_of_timesteps_to_analyse=number_of_timesteps_to_analyse,
-                                  plot_timestep_every=plot_timestep_every,
-                                  timestep_size=timestep_size,
-                                  sources=source_expression,
-                                  initial_conditions=initial_condition,
-                                  dirichletBC_expression_strings=dirichletBC,
-                                  exact_solution=exact_solution,
-                                  densities=densities,
-                                  include_gravity=include_gravity,
-                                  write2file=write_to_file,
-                                  )
-
-        simulation.initialise()
-        output_dir = simulation.output_dir
-        # simulation.write_exact_solution_to_xdmf()
-        output = simulation.run(analyse_condition=analyse_condition)
-        for subdomain_index, subdomain_output in output.items():
-            mesh_h = subdomain_output['mesh_size']
-            for phase, different_errornorms in subdomain_output['errornorm'].items():
-                filename = output_dir + "subdomain{}-space-time-errornorm-{}-phase.csv".format(subdomain_index, phase)
-                # for errortype, errornorm in different_errornorms.items():
-
-                    # eocfile = open("eoc_filename", "a")
-                    # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" )
-                    # eocfile.close()
-                    # if subdomain.isRichards:mesh_h
-                data_dict = {
-                    'mesh_parameter': mesh_resolution,
-                    'mesh_h': mesh_h,
-                }
-                for error_type, errornorms in different_errornorms.items():
-                    data_dict.update(
-                        {error_type: errornorms}
-                    )
-                errors = pd.DataFrame(data_dict, index=[mesh_resolution])
-                # check if file exists
-                if os.path.isfile(filename) == True:
-                    with open(filename, 'a') as f:
-                        errors.to_csv(f, header=False, sep='\t', encoding='utf-8', index=False)
-                else:
-                    errors.to_csv(filename, sep='\t', encoding='utf-8', index=False)
diff --git a/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study.py b/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study.py
index 6afe2dc92a9745702ef31231bf3c53686ea76a5f..fd1b6c042590827e8bc7cdcb94bd55c9ce0a3dde 100755
--- a/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study.py
+++ b/Two-phase-Richards/two-patch/TP-R-two-patch-test-case/mesh_studies/TP-R-2-patch-mesh-study.py
@@ -194,6 +194,8 @@ outer_boundary_def_points = {
 # adjacent_subdomains[i] contains the indices of the subdomains sharing the
 # interface i (i.e. given by interface_def_points[i]).
 adjacent_subdomains = [[1,2]]
+
+# MODEL CONFIGURATION #########################################################
 isRichards = {
     1: True, #
     2: False
@@ -416,9 +418,9 @@ sat_pressure_relationship = {
 }
 
 
-#############################################
+###############################################################################
 # Manufacture source expressions with sympy #
-#############################################
+###############################################################################
 x, y = sym.symbols('x[0], x[1]')  # needed by UFL
 t = sym.symbols('t', positive=True)
 
@@ -476,6 +478,8 @@ dirichletBC = dict()
 # return the actual expression needed for the dirichlet condition for both
 # phases if present.
 
+
+# BOUNDARY CONDITIONS #########################################################
 # subdomain index: {outer boudary part index: {phase: expression}}
 for subdomain in isRichards.keys():
     # subdomain can have no outer boundary
@@ -491,6 +495,7 @@ for subdomain in isRichards.keys():
                 )
 
 
+# LOG FILE OUTPUT #############################################################
 # read this file and print it to std out. This way the simulation can produce a
 # log file with ./TP-R-layered_soil.py | tee simulation.log
 f = open(thisfile, 'r')
@@ -498,6 +503,7 @@ print(f.read())
 f.close()
 
 
+# RUN #########################################################################
 for starttime in starttimes:
     for mesh_resolution, solver_tol in resolutions.items():
         # initialise LDD simulation class