From 7155205503d57786a8c0530479e9e427e8eb7565 Mon Sep 17 00:00:00 2001 From: David <forenkram@gmx.de> Date: Mon, 15 Jun 2020 19:25:30 +0200 Subject: [PATCH] set up new TPTP examples --- .../TP-TP-layered_soil_with_inner_patch.py | 804 ++++++++++++------ .../Archive/TP-TP-2-patch-alterantive.py | 511 +++++++++++ ...P-2-patch-nonwetting-zero-on-subdomain1.py | 527 ++++++++++++ .../Archive/TP-TP-2-patch-test.py | 528 ++++++++++++ .../TP-TP-2-patch-different-intrinsic-perm.py | 598 +++++++++++++ .../TP-TP-2-patch-same-intrinsic-perm.py | 598 +++++++++++++ .../TP-TP-2-patch-test.py | 494 ++++++----- .../TP-TP-2-patch-test-case/run-simulation | 16 + 8 files changed, 3611 insertions(+), 465 deletions(-) create mode 100755 Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/Archive/TP-TP-2-patch-alterantive.py create mode 100755 Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/Archive/TP-TP-2-patch-nonwetting-zero-on-subdomain1.py create mode 100755 Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/Archive/TP-TP-2-patch-test.py create mode 100755 Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/TP-TP-2-patch-different-intrinsic-perm.py create mode 100755 Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/TP-TP-2-patch-same-intrinsic-perm.py create mode 100755 Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/run-simulation diff --git a/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch.py b/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch.py index b46fbab..6f420d5 100755 --- a/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch.py +++ b/Two-phase-Two-phase/multi-patch/TP-TP-layered-soil-case-with-inner-patch/TP-TP-layered_soil_with_inner_patch.py @@ -1,50 +1,174 @@ #!/usr/bin/python3 -"""This program sets up a domain together with a decomposition into subdomains -modelling layered soil. This is used for our LDD article with tp-tp and tp-r -coupling. +"""TP-TP 2 patch soil simulation. -Along with the subdomains and the mesh domain markers are set upself. -The resulting mesh is saved into files for later use. +This program sets up an LDD simulation """ -#!/usr/bin/python3 import dolfin as df -import mshr -import numpy as np import sympy as sym -import typing as tp import functools as ft -import domainPatch as dp import LDDsimulation as ldd import helpers as hlp +import datetime +import os +import pandas as pd # init sympy session sym.init_printing() -use_case = "TP-TP-layered-soil-with-inner-patch" -solver_tol = 1E-6 - -############ GRID #######################ΓΌ -mesh_resolution = 30 +# PREREQUISITS ############################################################### +# check if output directory "./output" exists. This will be used in +# the generation of the output string. +if not os.path.exists('./output'): + os.mkdir('./output') + print("Directory ", './output', " created ") +else: + print("Directory ", './output', " already exists. Will use as output \ + directory") + +date = datetime.datetime.now() +datestr = date.strftime("%Y-%m-%d") + +# Name of the usecase that will be printed during simulation. +use_case = "TP-TP-layered-soil-inner-patch-realistic" +# The name of this very file. Needed for creating log output. +thisfile = "TP-TP-layered_soil_with_inner_patch.py" + +# GENERAL SOLVER CONFIG ###################################################### +# maximal iteration per timestep +max_iter_num = 300 +FEM_Lagrange_degree = 1 + +# GRID AND MESH STUDY SPECIFICATIONS ######################################### +mesh_study = False +resolutions = { + # 1: 1e-6, + # 2: 1e-6, + # 4: 1e-6, + # 8: 1e-6, + 16: 5e-6, + # 32: 5e-6, + # 64: 2e-6, + # 128: 1e-6, + # 256: 1e-6, + } + +# starttimes gives a list of starttimes to run the simulation from. +# The list is looped over and a simulation is run with t_0 as initial time +# for each element t_0 in starttimes. +starttimes = [0.0] timestep_size = 0.001 -number_of_timesteps = 1500 -# decide how many timesteps you want analysed. Analysed means, that we write out -# subsequent errors of the L-iteration within the timestep. -number_of_timesteps_to_analyse = 10 -starttime = 0 +number_of_timesteps = 10 + +# LDD scheme parameters ###################################################### +Lw1 = 0.25 # /timestep_size +Lnw1 = Lw1 + +Lw2 = 0.25 # /timestep_size +Lnw2 = Lw2 + +Lw3 = 0.05 # /timestep_size +Lnw3 = Lw3 + +Lw4 = 0.05 # /timestep_size +Lnw4 = Lw4 + +Lw5 = 0.05 # /timestep_size +Lnw5 = Lw5 + +Lw6 = 0.05 # /timestep_size +Lnw6 = Lw6 + +lambda12_w = 40 +lambda12_nw = 40 + +lambda23_w = 40 +lambda23_nw = 40 + +lambda24_w = 40 +lambda24_nw= 40 + +lambda25_w= 40 +lambda25_nw= 40 + +lambda34_w = 40 +lambda34_nw = 40 + +lambda36_w = 40 +lambda36_nw = 40 -Lw = 0.25 #/timestep_size -Lnw=Lw +lambda45_w = 40 +lambda45_nw = 40 -lambda_w = 41 -lambda_nw = 41 +lambda46_w = 40 +lambda46_nw = 40 + +lambda56_w = 40 +lambda56_nw = 40 include_gravity = True -debugflag = False +debugflag = True analyse_condition = False -output_string = "./output/test-after-bugfix-nondirichlet_number_of_timesteps{}_".format(number_of_timesteps) +# I/O CONFIG ################################################################# +# when number_of_timesteps is high, it might take a long time to write all +# timesteps to disk. Therefore, you can choose to only write data of every +# plot_timestep_every timestep to disk. +plot_timestep_every = 4 +# Decide how many timesteps you want analysed. Analysed means, that +# subsequent errors of the L-iteration within the timestep are written out. +number_of_timesteps_to_analyse = 5 + +# fine grained control over data to be written to disk in the mesh study case +# as well as for a regular simuation for a fixed grid. +if mesh_study: + write_to_file = { + # output the relative errornorm (integration in space) w.r.t. an exact + # solution for each timestep into a csv file. + 'space_errornorms': True, + # save the mesh and marker functions to disk + 'meshes_and_markers': True, + # save xdmf/h5 data for each LDD iteration for timesteps determined by + # number_of_timesteps_to_analyse. I/O intensive! + 'L_iterations_per_timestep': False, + # save solution to xdmf/h5. + 'solutions': True, + # save absolute differences w.r.t an exact solution to xdmf/h5 file + # to monitor where on the domains errors happen + 'absolute_differences': True, + # analyise condition numbers for timesteps determined by + # number_of_timesteps_to_analyse and save them over time to csv. + 'condition_numbers': analyse_condition, + # output subsequent iteration errors measured in L^2 to csv for + # timesteps determined by number_of_timesteps_to_analyse. + # Usefull to monitor convergence of the acutal LDD solver. + 'subsequent_errors': True + } +else: + write_to_file = { + 'space_errornorms': True, + 'meshes_and_markers': True, + 'L_iterations_per_timestep': False, + 'solutions': True, + 'absolute_differences': True, + 'condition_numbers': analyse_condition, + 'subsequent_errors': True + } + +# OUTPUT FILE STRING ######################################################### +if mesh_study: + output_string = "./output/{}-{}_timesteps{}_P{}".format( + datestr, use_case, number_of_timesteps, FEM_Lagrange_degree + ) +else: + for tol in resolutions.values(): + solver_tol = tol + output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format( + datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol + ) + +# DOMAIN AND INTERFACE ####################################################### # global domain subdomain0_vertices = [df.Point(-1.0,-1.0), # df.Point(1.0,-1.0),# @@ -101,48 +225,6 @@ interface45_vertices = [interface56_vertices[0], interface25_vertices[0] ] -# # subdomain1. -# subdomain1_vertices = [interface12_vertices[0], -# interface12_vertices[1], -# interface12_vertices[2], -# interface12_vertices[3], -# interface12_vertices[4], # southern boundary, 12 interface -# subdomain0_vertices[2], # eastern boundary, outer boundary -# subdomain0_vertices[3]] # northern boundary, outer on_boundary -# -# # vertex coordinates of the outer boundaries. If it can not be specified as a -# # polygon, use an entry per boundary polygon. This information is used for defining -# # the Dirichlet boundary conditions. If a domain is completely internal, the -# # dictionary entry should be 0: None -# subdomain1_outer_boundary_verts = { -# 0: [interface12_vertices[4], # -# subdomain0_vertices[2], # eastern boundary, outer boundary -# subdomain0_vertices[3], -# interface12_vertices[0]] -# } -# - - -# #subdomain1 -# subdomain2_vertices = [interface23_vertices[0], -# interface23_vertices[1], -# interface23_vertices[2], -# interface23_vertices[3], -# interface23_vertices[4], -# interface23_vertices[5], # southern boundary, 23 interface -# subdomain1_vertices[4], # eastern boundary, outer boundary -# subdomain1_vertices[3], -# subdomain1_vertices[2], -# subdomain1_vertices[1], -# subdomain1_vertices[0] ] # northern boundary, 12 interface -# -# subdomain2_outer_boundary_verts = { -# 0: [interface23_vertices[5], -# subdomain1_vertices[4]], -# 1: [subdomain1_vertices[0], -# interface23_vertices[0]] -# } -# # interface_vertices introduces a global numbering of interfaces. interface_def_points = [interface12_vertices, @@ -155,6 +237,7 @@ interface_def_points = [interface12_vertices, interface46_vertices, interface56_vertices, ] + adjacent_subdomains = [[1,2], [2,3], [2,4], @@ -171,17 +254,18 @@ subdomain1_vertices = [interface12_vertices[0], interface12_vertices[1], interface12_vertices[2], interface12_vertices[3], - interface12_vertices[4], # southern boundary, 12 interface - subdomain0_vertices[2], # eastern boundary, outer boundary - subdomain0_vertices[3]] # northern boundary, outer on_boundary + interface12_vertices[4], # southern boundary, 12 interface + subdomain0_vertices[2], # eastern boundary, outer boundary + subdomain0_vertices[3]] # northern boundary, outer on_boundary # vertex coordinates of the outer boundaries. If it can not be specified as a -# polygon, use an entry per boundary polygon. This information is used for defining +# polygon, use an entry per boundary polygon. +# This information is used for defining # the Dirichlet boundary conditions. If a domain is completely internal, the # dictionary entry should be 0: None subdomain1_outer_boundary_verts = { - 0: [subdomain1_vertices[4], # - subdomain1_vertices[5], # eastern boundary, outer boundary + 0: [subdomain1_vertices[4], + subdomain1_vertices[5], # eastern boundary, outer boundary subdomain1_vertices[6], subdomain1_vertices[0]] } @@ -191,12 +275,12 @@ subdomain2_vertices = [interface23_vertices[0], interface23_vertices[1], interface23_vertices[2], interface24_vertices[1], - interface25_vertices[1], # southern boundary, 23 interface - subdomain1_vertices[4], # eastern boundary, outer boundary + interface25_vertices[1], # southern boundary, 23 interface + subdomain1_vertices[4], # eastern boundary, outer boundary subdomain1_vertices[3], subdomain1_vertices[2], subdomain1_vertices[1], - subdomain1_vertices[0] ] # northern boundary, 12 interface + subdomain1_vertices[0] ] # northern boundary, 12 interface subdomain2_outer_boundary_verts = { 0: [subdomain2_vertices[9], @@ -288,6 +372,7 @@ outer_boundary_def_points = { 6: subdomain6_outer_boundary_verts } +# MODEL CONFIGURATION ######################################################### isRichards = { 1: False, @@ -298,45 +383,37 @@ isRichards = { 6: False } -# isRichards = { -# 1: True, -# 2: True, -# 3: True, -# 4: True, -# 5: True, -# 6: True -# } # Dict of the form: { subdom_num : viscosity } viscosity = { - 1: {'wetting' :1, + 1: {'wetting' :1.0, 'nonwetting': 1/50}, - 2: {'wetting' :1, + 2: {'wetting' :1.0, 'nonwetting': 1/50}, - 3: {'wetting' :1, + 3: {'wetting' :1.0, 'nonwetting': 1/50}, - 4: {'wetting' :1, + 4: {'wetting' :1.0, 'nonwetting': 1/50}, - 5: {'wetting' :1, + 5: {'wetting' :1.0, 'nonwetting': 1/50}, - 6: {'wetting' :1, + 6: {'wetting' :1.0, 'nonwetting': 1/50}, } # Dict of the form: { subdom_num : density } densities = { - 1: {'wetting': 1, #997 - 'nonwetting': 1}, #1}, #1.225}, - 2: {'wetting': 1, #997 - 'nonwetting': 1}, #1.225}, - 3: {'wetting': 1, #997 - 'nonwetting': 1}, #1.225}, - 4: {'wetting': 1, #997 - 'nonwetting': 1}, #1.225} - 5: {'wetting': 1, #997 - 'nonwetting': 1}, #1.225}, - 6: {'wetting': 1, #997 - 'nonwetting': 1} #1.225} + 1: {'wetting': 997.0, #997 + 'nonwetting': 1.225}, #1}, #1.225}, + 2: {'wetting': 997.0, #997 + 'nonwetting': 1.225}, #1.225}, + 3: {'wetting': 997.0, #997 + 'nonwetting': 1.225}, #1.225}, + 4: {'wetting': 997.0, #997 + 'nonwetting': 1.225}, #1.225} + 5: {'wetting': 997.0, #997 + 'nonwetting': 1.225}, #1.225}, + 6: {'wetting': 997.0, #997 + 'nonwetting': 1.225} #1.225} } gravity_acceleration = 9.81 @@ -344,124 +421,286 @@ gravity_acceleration = 9.81 # https://www.geotechdata.info/parameter/soil-porosity.html # Dict of the form: { subdom_num : porosity } porosity = { - 1: 1, #0.2, # Clayey gravels, clayey sandy gravels - 2: 1, #0.22, # Silty gravels, silty sandy gravels - 3: 1, #0.37, # Clayey sands - 4: 1, #0.2 # Silty or sandy clay - 5: 1, # - 6: 1, # + 1: 0.2, #0.2, # Clayey gravels, clayey sandy gravels + 2: 0.2, #0.22, # Silty gravels, silty sandy gravels + 3: 0.2, #0.37, # Clayey sands + 4: 0.2, #0.2 # Silty or sandy clay + 5: 0.2, # + 6: 0.2, # } # subdom_num : subdomain L for L-scheme L = { - 1: {'wetting' :Lw, - 'nonwetting': Lnw}, - 2: {'wetting' :Lw, - 'nonwetting': Lnw}, - 3: {'wetting' :Lw, - 'nonwetting': Lnw}, - 4: {'wetting' :Lw, - 'nonwetting': Lnw}, - 5: {'wetting' :Lw, - 'nonwetting': Lnw}, - 6: {'wetting' :Lw, - 'nonwetting': Lnw} + 1: {'wetting' :Lw1, + 'nonwetting': Lnw1}, + 2: {'wetting' :Lw2, + 'nonwetting': Lnw2}, + 3: {'wetting' :Lw3, + 'nonwetting': Lnw3}, + 4: {'wetting' :Lw4, + 'nonwetting': Lnw4}, + 5: {'wetting' :Lw5, + 'nonwetting': Lnw5}, + 6: {'wetting' :Lw6, + 'nonwetting': Lnw6} } -# subdom_num : lambda parameter for the L-scheme + +# interface_num : lambda parameter for the L-scheme on that interface. +# Note that interfaces are numbered starting from 0, because +# adjacent_subdomains is a list and not a dict. Historic fuckup, I know +# We have defined above as interfaces +# # interface_vertices introduces a global numbering of interfaces. +# interface_def_points = [interface12_vertices, +# interface23_vertices, +# interface24_vertices, +# interface25_vertices, +# interface34_vertices, +# interface36_vertices, +# interface45_vertices, +# interface46_vertices, +# interface56_vertices, +# ] lambda_param = { - 1: {'wetting': lambda_w, - 'nonwetting': lambda_nw},# - 2: {'wetting': lambda_w, - 'nonwetting': lambda_nw},# - 3: {'wetting': lambda_w, - 'nonwetting': lambda_nw},# - 4: {'wetting': lambda_w, - 'nonwetting': lambda_nw},# - 5: {'wetting': lambda_w, - 'nonwetting': lambda_nw},# - 6: {'wetting': lambda_w, - 'nonwetting': lambda_nw},# + 0: {'wetting': lambda12_w, + 'nonwetting': lambda12_nw},# + 1: {'wetting': lambda23_w, + 'nonwetting': lambda23_nw},# + 2: {'wetting': lambda24_w, + 'nonwetting': lambda24_nw},# + 3: {'wetting': lambda25_w, + 'nonwetting': lambda25_nw},# + 4: {'wetting': lambda34_w, + 'nonwetting': lambda34_nw},# + 5: {'wetting': lambda36_w, + 'nonwetting': lambda36_nw},# + 6: {'wetting': lambda45_w, + 'nonwetting': lambda45_nw},# + 7: {'wetting': lambda46_w, + 'nonwetting': lambda46_nw},# + 8: {'wetting': lambda56_w, + 'nonwetting': lambda56_nw},# +} + + +# after Lewis, see pdf file +intrinsic_permeability = { + 1: 0.01, # sand + 2: 0.01, # sand, there is a range + 3: 0.01, #10e-2, # clay has a range + 4: 0.01, #10e-3 + 5: 0.01, #10e-2, # clay has a range + 6: 0.01, #10e-3 } -## relative permeabilty functions on subdomain 1 +# relative permeabilty functions on subdomain 1 def rel_perm1w(s): # relative permeabilty wetting on subdomain1 - return s**2 + return intrinsic_permeability[1]*s**2 def rel_perm1nw(s): # relative permeabilty nonwetting on subdomain1 - return (1-s)**2 + return intrinsic_permeability[1]*(1-s)**2 -## relative permeabilty functions on subdomain 2 +# relative permeabilty functions on subdomain 2 def rel_perm2w(s): # relative permeabilty wetting on subdomain2 - return s**3 + return intrinsic_permeability[2]*s**2 def rel_perm2nw(s): - # relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2 - return (1-s)**3 + # relative permeabilty nonwetting on subdomain2 + return intrinsic_permeability[2]*(1-s)**2 + + +# relative permeabilty functions on subdomain 3 +def rel_perm3w(s): + # relative permeabilty wetting on subdomain3 + return intrinsic_permeability[3]*s**3 + + +def rel_perm3nw(s): + # relative permeabilty nonwetting on subdomain3 + return intrinsic_permeability[3]*(1-s)**3 + + +# relative permeabilty functions on subdomain 4 +def rel_perm4w(s): + # relative permeabilty wetting on subdomain4 + return intrinsic_permeability[4]*s**3 + + +def rel_perm4nw(s): + # relative permeabilty nonwetting on subdomain4 + return intrinsic_permeability[4]*(1-s)**3 + + +# relative permeabilty functions on subdomain 5 +def rel_perm5w(s): + # relative permeabilty wetting on subdomain5 + return intrinsic_permeability[5]*s**3 + + +def rel_perm5nw(s): + # relative permeabilty nonwetting on subdomain5 + return intrinsic_permeability[5]*(1-s)**3 + + +# relative permeabilty functions on subdomain 6 +def rel_perm6w(s): + # relative permeabilty wetting on subdomain6 + return intrinsic_permeability[6]*s**3 + + +def rel_perm6nw(s): + # relative permeabilty nonwetting on subdomain6 + return intrinsic_permeability[6]*(1-s)**3 _rel_perm1w = ft.partial(rel_perm1w) _rel_perm1nw = ft.partial(rel_perm1nw) + _rel_perm2w = ft.partial(rel_perm2w) _rel_perm2nw = ft.partial(rel_perm2nw) +_rel_perm3w = ft.partial(rel_perm3w) +_rel_perm3nw = ft.partial(rel_perm3nw) + +_rel_perm4w = ft.partial(rel_perm4w) +_rel_perm4nw = ft.partial(rel_perm4nw) + +_rel_perm5w = ft.partial(rel_perm5w) +_rel_perm5nw = ft.partial(rel_perm5nw) + +_rel_perm6w = ft.partial(rel_perm6w) +_rel_perm6nw = ft.partial(rel_perm6nw) + subdomain1_rel_perm = { - 'wetting': _rel_perm1w,# + 'wetting': _rel_perm1w, 'nonwetting': _rel_perm1nw } subdomain2_rel_perm = { - 'wetting': _rel_perm2w,# + 'wetting': _rel_perm2w, 'nonwetting': _rel_perm2nw } -# _rel_perm3 = ft.partial(rel_perm2) -# subdomain3_rel_perm = subdomain2_rel_perm.copy() -# -# _rel_perm4 = ft.partial(rel_perm1) -# subdomain4_rel_perm = subdomain1_rel_perm.copy() +subdomain3_rel_perm = { + 'wetting': _rel_perm3w, + 'nonwetting': _rel_perm3nw +} + +subdomain4_rel_perm = { + 'wetting': _rel_perm4w, + 'nonwetting': _rel_perm4nw +} + +subdomain5_rel_perm = { + 'wetting': _rel_perm5w, + 'nonwetting': _rel_perm5nw +} + +subdomain6_rel_perm = { + 'wetting': _rel_perm6w, + 'nonwetting': _rel_perm6nw +} # dictionary of relative permeabilties on all domains. relative_permeability = { 1: subdomain1_rel_perm, - 2: subdomain1_rel_perm, - 3: subdomain2_rel_perm, - 4: subdomain2_rel_perm, - 5: subdomain2_rel_perm, - 6: subdomain2_rel_perm, + 2: subdomain2_rel_perm, + 3: subdomain3_rel_perm, + 4: subdomain4_rel_perm, + 5: subdomain5_rel_perm, + 6: subdomain6_rel_perm } + # definition of the derivatives of the relative permeabilities # relative permeabilty functions on subdomain 1 def rel_perm1w_prime(s): # relative permeabilty on subdomain1 - return 2*s + return intrinsic_permeability[1]*2*s + def rel_perm1nw_prime(s): # relative permeabilty on subdomain1 - return -2*(1-s) + return -1*intrinsic_permeability[1]*2*(1-s) + -# definition of the derivatives of the relative permeabilities -# relative permeabilty functions on subdomain 1 def rel_perm2w_prime(s): - # relative permeabilty on subdomain1 - return 3*s**2 + # relative permeabilty on subdomain2 + return intrinsic_permeability[2]*2*s + def rel_perm2nw_prime(s): - # relative permeabilty on subdomain1 - return -3*(1-s)**2 + # relative permeabilty on subdomain2 + return -1*intrinsic_permeability[2]*2*(1-s) + + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 3 +def rel_perm3w_prime(s): + # relative permeabilty on subdomain3 + return intrinsic_permeability[3]*3*s**2 + + +def rel_perm3nw_prime(s): + # relative permeabilty on subdomain3 + return -1*intrinsic_permeability[3]*3*(1-s)**2 + + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 4 +def rel_perm4w_prime(s): + # relative permeabilty on subdomain4 + return intrinsic_permeability[4]*3*s**2 + + +def rel_perm4nw_prime(s): + # relative permeabilty on subdomain4 + return -1*intrinsic_permeability[4]*3*(1-s)**2 + + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 5 +def rel_perm5w_prime(s): + # relative permeabilty on subdomain5 + return intrinsic_permeability[5]*3*s**2 + + +def rel_perm5nw_prime(s): + # relative permeabilty on subdomain5 + return -1*intrinsic_permeability[5]*3*(1-s)**2 + + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 6 +def rel_perm6w_prime(s): + # relative permeabilty on subdomain6 + return intrinsic_permeability[6]*3*s**2 + + +def rel_perm6nw_prime(s): + # relative permeabilty on subdomain6 + return -1*intrinsic_permeability[6]*3*(1-s)**2 + _rel_perm1w_prime = ft.partial(rel_perm1w_prime) _rel_perm1nw_prime = ft.partial(rel_perm1nw_prime) _rel_perm2w_prime = ft.partial(rel_perm2w_prime) _rel_perm2nw_prime = ft.partial(rel_perm2nw_prime) +_rel_perm3w_prime = ft.partial(rel_perm3w_prime) +_rel_perm3nw_prime = ft.partial(rel_perm3nw_prime) +_rel_perm4w_prime = ft.partial(rel_perm4w_prime) +_rel_perm4nw_prime = ft.partial(rel_perm4nw_prime) +_rel_perm5w_prime = ft.partial(rel_perm5w_prime) +_rel_perm5nw_prime = ft.partial(rel_perm5nw_prime) +_rel_perm6w_prime = ft.partial(rel_perm6w_prime) +_rel_perm6nw_prime = ft.partial(rel_perm6nw_prime) subdomain1_rel_perm_prime = { 'wetting': _rel_perm1w_prime, @@ -474,22 +713,46 @@ subdomain2_rel_perm_prime = { 'nonwetting': _rel_perm2nw_prime } +subdomain3_rel_perm_prime = { + 'wetting': _rel_perm3w_prime, + 'nonwetting': _rel_perm3nw_prime +} + + +subdomain4_rel_perm_prime = { + 'wetting': _rel_perm4w_prime, + 'nonwetting': _rel_perm4nw_prime +} + +subdomain5_rel_perm_prime = { + 'wetting': _rel_perm5w_prime, + 'nonwetting': _rel_perm5nw_prime +} + +subdomain6_rel_perm_prime = { + 'wetting': _rel_perm6w_prime, + 'nonwetting': _rel_perm6nw_prime +} + + # dictionary of relative permeabilties on all domains. ka_prime = { 1: subdomain1_rel_perm_prime, - 2: subdomain1_rel_perm_prime, - 3: subdomain2_rel_perm_prime, - 4: subdomain2_rel_perm_prime, - 5: subdomain2_rel_perm_prime, - 6: subdomain2_rel_perm_prime, + 2: subdomain2_rel_perm_prime, + 3: subdomain3_rel_perm_prime, + 4: subdomain4_rel_perm_prime, + 5: subdomain5_rel_perm_prime, + 6: subdomain6_rel_perm_prime, } -# S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where -# we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw -# this function needs to be monotonically decreasing in the capillary pressure pc. -# since in the richards case pc=-pw, this becomes as a function of pw a mono +# S-pc-relation ship. We use the van Genuchten approach, i.e. +# pc = 1/alpha*(S^{-1/m} -1)^1/n, where we set alpha = 0, assume +# m = 1-1/n (see Helmig) and assume that residual saturation is Sw +# this function needs to be monotonically decreasing in the capillary pressure +# pc. +# Since in the richards case pc=-pw, this becomes as a function of pw a mono # tonically INCREASING function like in our Richards-Richards paper. However # since we unify the treatment in the code for Richards and two-phase, we need # the same requierment @@ -511,11 +774,7 @@ ka_prime = { # def saturation_sym_prime(pc, n_index, alpha): # # inverse capillary pressure-saturation-relationship # return -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1)) / ( (1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index) ) -# -# derivative of S-pc relationship with respect to pc. This is needed for the -# construction of a analytic solution. - -# +## # # note that the conditional definition of S-pc in the nonsymbolic part will be # # incorporated in the construction of the exact solution below. # S_pc_sym = { @@ -554,6 +813,7 @@ def saturation_sym(pc, n_index): # inverse capillary pressure-saturation-relationship return 1/((1 + pc)**(1/(n_index + 1))) + def saturation_sym_prime(pc, n_index): # inverse capillary pressure-saturation-relationship return -1/((n_index+1)*(1 + pc)**((n_index+2)/(n_index+1))) @@ -587,60 +847,42 @@ sat_pressure_relationship = { } -############################################# +############################################################################### # Manufacture source expressions with sympy # -############################################# +############################################################################### x, y = sym.symbols('x[0], x[1]') # needed by UFL t = sym.symbols('t', positive=True) p_e_sym = { - 1: {'wetting': -5.0 - (1.0 + t*t)*(1.0 + x*x + y*y), + 1: {'wetting': -6.0 - (1.0 + t*t)*(1.0 + x*x + y*y), 'nonwetting': (-1 -t*(1.1 + y + x**2)) }, - 2: {'wetting': -5.0 - (1.0 + t*t)*(1.0 + x*x + y*y), + 2: {'wetting': -6.0 - (1.0 + t*t)*(1.0 + x*x + y*y), 'nonwetting': (-1 -t*(1.1 + y + x**2)) }, - 3: {'wetting': (-5.0 - (1.0 + t*t)*(1.0 + x*x)), - 'nonwetting': (-1 -t*(1 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2) }, - 4: {'wetting': (-5.0 - (1.0 + t*t)*(1.0 + x*x)), - 'nonwetting': (-1 -t*(1 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2) }, - 5: {'wetting': (-5.0 - (1.0 + t*t)*(1.0 + x*x)), - 'nonwetting': (-1 -t*(1 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2) }, - 6: {'wetting': (-5.0 - (1.0 + t*t)*(1.0 + x*x)), - 'nonwetting': (-1 -t*(1 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2) }, - # 2: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-5.0)*(y-5.0)), - # 'nonwetting': - 2 - t*(1 + (y-5.0) + x**2)**2 -sym.sqrt(2+t**2)*(1 + (y-5.0))}, - # 3: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-5.0)*(y-5.0)*3*sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t)), - # 'nonwetting': - 2 - t*(1 + x**2)**2 -sym.sqrt(2+t**2)}, - # 4: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-5.0)*(y-5.0)*3*sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t)), - # 'nonwetting': - 2 - t*(1 + x**2)**2 -sym.sqrt(2+t**2)} + 3: {'wetting': (-6.0 - (1.0 + t*t)*(1.0 + x*x)), + 'nonwetting': (-1 -t*(1.0 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2) }, + 4: {'wetting': (-6.0 - (1.0 + t*t)*(1.0 + x*x)), + 'nonwetting': (-1 -t*(1.0 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2) }, + 5: {'wetting': (-6.0 - (1.0 + t*t)*(1.0 + x*x)), + 'nonwetting': (-1 -t*(1.0 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2) }, + 6: {'wetting': (-6.0 - (1.0 + t*t)*(1.0 + x*x)), + 'nonwetting': (-1 -t*(1.0 + x**2) - sym.sqrt(2+t**2)*(1+y)*y**2) }, + # 2: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-6.0)*(y-6.0)), + # 'nonwetting': - 2 - t*(1.0 + (y-6.0) + x**2)**2 -sym.sqrt(2+t**2)*(1.0 + (y-6.0))}, + # 3: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-6.0)*(y-6.0)*3*sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t)), + # 'nonwetting': - 2 - t*(1.0 + x**2)**2 -sym.sqrt(2+t**2)}, + # 4: {'wetting': 1.0 - (1.0 + t*t)*(10.0 + x*x + (y-6.0)*(y-6.0)*3*sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t)), + # 'nonwetting': - 2 - t*(1.0 + x**2)**2 -sym.sqrt(2+t**2)} } -# pc_e_sym = { -# 1: p_e_sym[1]['nonwetting'] - p_e_sym[1]['wetting'], -# 2: p_e_sym[2]['nonwetting'] - p_e_sym[2]['wetting'], -# 3: p_e_sym[3]['nonwetting'] - p_e_sym[3]['wetting'], -# 4: p_e_sym[4]['nonwetting'] - p_e_sym[4]['wetting'], -# 5: p_e_sym[5]['nonwetting'] - p_e_sym[5]['wetting'], -# 6: p_e_sym[5]['nonwetting'] - p_e_sym[6]['wetting'] -# } - -# pc_e_sym = { -# 1: -p_e_sym[1]['wetting'], -# 2: -p_e_sym[2]['wetting'], -# 3: -p_e_sym[3]['wetting'], -# 4: -p_e_sym[4]['wetting'], -# 5: -p_e_sym[5]['wetting'], -# 6: -p_e_sym[6]['wetting'] -# } - pc_e_sym = dict() for subdomain, isR in isRichards.items(): if isR: - pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting']}) + pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting'].copy()}) else: - pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'] - - p_e_sym[subdomain]['wetting']}) + pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'].copy() + - p_e_sym[subdomain]['wetting'].copy()}) symbols = {"x": x, @@ -667,6 +909,7 @@ source_expression = exact_solution_example['source'] exact_solution = exact_solution_example['exact_solution'] initial_condition = exact_solution_example['initial_condition'] +# BOUNDARY CONDITIONS ######################################################### # Dictionary of dirichlet boundary conditions. dirichletBC = dict() # similarly to the outer boundary dictionary, if a patch has no outer boundary @@ -683,7 +926,7 @@ dirichletBC = dict() # subdomain index: {outer boudary part index: {phase: expression}} for subdomain in isRichards.keys(): - # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None + # subdomain can have no outer boundary if outer_boundary_def_points[subdomain] is None: dirichletBC.update({subdomain: None}) else: @@ -695,42 +938,97 @@ for subdomain in isRichards.keys(): {outer_boundary_ind: exact_solution[subdomain]} ) -write_to_file = { - 'meshes_and_markers': True, - 'L_iterations': True -} -# initialise LDD simulation class -simulation = ldd.LDDsimulation(tol=1E-14, debug=debugflag, LDDsolver_tol=solver_tol) -simulation.set_parameters(use_case = use_case, - output_dir=output_string, - subdomain_def_points=subdomain_def_points, - isRichards=isRichards, - interface_def_points=interface_def_points, - outer_boundary_def_points=outer_boundary_def_points, - adjacent_subdomains=adjacent_subdomains, - mesh_resolution=mesh_resolution, - viscosity=viscosity, - porosity=porosity, - L=L, - lambda_param=lambda_param, - relative_permeability=relative_permeability, - saturation=sat_pressure_relationship, - starttime=starttime, - number_of_timesteps=number_of_timesteps, - number_of_timesteps_to_analyse=number_of_timesteps_to_analyse, - timestep_size=timestep_size, - sources=source_expression, - initial_conditions=initial_condition, - dirichletBC_expression_strings=dirichletBC, - exact_solution=exact_solution, - densities=densities, - include_gravity=include_gravity, - write2file=write_to_file, - ) - -simulation.initialise() -# print(simulation.__dict__) -simulation.run(analyse_condition=analyse_condition) -# simulation.LDDsolver(time=0, debug=True, analyse_timestep=True) -# df.info(parameters, True) +# LOG FILE OUTPUT ############################################################# +# read this file and print it to std out. This way the simulation can produce a +# log file with ./TP-R-layered_soil.py | tee simulation.log +f = open(thisfile, 'r') +print(f.read()) +f.close() + + +# RUN ######################################################################### +for starttime in starttimes: + for mesh_resolution, solver_tol in resolutions.items(): + # initialise LDD simulation class + simulation = ldd.LDDsimulation( + tol=1E-14, + LDDsolver_tol=solver_tol, + debug=debugflag, + max_iter_num=max_iter_num, + FEM_Lagrange_degree=FEM_Lagrange_degree, + mesh_study=mesh_study + ) + + simulation.set_parameters( + use_case=use_case, + output_dir=output_string, + subdomain_def_points=subdomain_def_points, + isRichards=isRichards, + interface_def_points=interface_def_points, + outer_boundary_def_points=outer_boundary_def_points, + adjacent_subdomains=adjacent_subdomains, + mesh_resolution=mesh_resolution, + viscosity=viscosity, + porosity=porosity, + L=L, + lambda_param=lambda_param, + relative_permeability=relative_permeability, + saturation=sat_pressure_relationship, + starttime=starttime, + number_of_timesteps=number_of_timesteps, + number_of_timesteps_to_analyse=number_of_timesteps_to_analyse, + plot_timestep_every=plot_timestep_every, + timestep_size=timestep_size, + sources=source_expression, + initial_conditions=initial_condition, + dirichletBC_expression_strings=dirichletBC, + exact_solution=exact_solution, + densities=densities, + include_gravity=include_gravity, + gravity_acceleration=gravity_acceleration, + write2file=write_to_file, + ) + + simulation.initialise() + output_dir = simulation.output_dir + # simulation.write_exact_solution_to_xdmf() + output = simulation.run(analyse_condition=analyse_condition) + for subdomain_index, subdomain_output in output.items(): + mesh_h = subdomain_output['mesh_size'] + for phase, error_dict in subdomain_output['errornorm'].items(): + filename = output_dir \ + + "subdomain{}".format(subdomain_index)\ + + "-space-time-errornorm-{}-phase.csv".format(phase) + # for errortype, errornorm in error_dict.items(): + + # eocfile = open("eoc_filename", "a") + # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" ) + # eocfile.close() + # if subdomain.isRichards:mesh_h + data_dict = { + 'mesh_parameter': mesh_resolution, + 'mesh_h': mesh_h, + } + for norm_type, errornorm in error_dict.items(): + data_dict.update( + {norm_type: errornorm} + ) + errors = pd.DataFrame(data_dict, index=[mesh_resolution]) + # check if file exists + if os.path.isfile(filename) is True: + with open(filename, 'a') as f: + errors.to_csv( + f, + header=False, + sep='\t', + encoding='utf-8', + index=False + ) + else: + errors.to_csv( + filename, + sep='\t', + encoding='utf-8', + index=False + ) diff --git a/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/Archive/TP-TP-2-patch-alterantive.py b/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/Archive/TP-TP-2-patch-alterantive.py new file mode 100755 index 0000000..1df40d9 --- /dev/null +++ b/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/Archive/TP-TP-2-patch-alterantive.py @@ -0,0 +1,511 @@ +#!/usr/bin/python3 +import dolfin as df +import mshr +import numpy as np +import sympy as sym +import typing as tp +import domainPatch as dp +import LDDsimulation as ldd +import functools as ft +import helpers as hlp +import datetime +import os +import pandas as pd + +date = datetime.datetime.now() +datestr = date.strftime("%Y-%m-%d") +#import ufl as ufl + +# init sympy session +sym.init_printing() + +use_case = "TP-TP-2-patch-alternative" +solver_tol = 5E-7 +max_iter_num = 10 +FEM_Lagrange_degree = 1 +mesh_study = False +resolutions = [20] + +############ GRID ####################### +# mesh_resolution = 20 +timestep_size = 0.0001 +number_of_timesteps = 50 +# smallest possible number is 1 +plot_timestep_every = 5 +# decide how many timesteps you want analysed. Analysed means, that we write out +# subsequent errors of the L-iteration within the timestep. +number_of_timesteps_to_analyse = 0 +starttime = 0.0 + +Lw = 0.25 #/timestep_size +Lnw=Lw + +lambda_w = 40 +lambda_nw = 40 + +include_gravity = False +debugflag = False +analyse_condition = False + +output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}_".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol) + +# toggle what should be written to files +if mesh_study: + write_to_file = { + 'space_errornorms': True, + 'meshes_and_markers': True, + 'L_iterations_per_timestep': False, + 'solutions': False, + 'absolute_differences': False, + 'condition_numbers': analyse_condition, + 'subsequent_errors': False + } +else: + write_to_file = { + 'space_errornorms': True, + 'meshes_and_markers': True, + 'L_iterations_per_timestep': False, + 'solutions': True, + 'absolute_differences': True, + 'condition_numbers': analyse_condition, + 'subsequent_errors': True + } + +##### Domain and Interface #### +# global simulation domain domain +sub_domain0_vertices = [df.Point(-1.0,-1.0), # + df.Point(1.0,-1.0),# + df.Point(1.0,1.0),# + df.Point(-1.0,1.0)] +# interface between subdomain1 and subdomain2 +interface12_vertices = [df.Point(-1.0, 0.0), + df.Point(1.0, 0.0) ] +# subdomain1. +sub_domain1_vertices = [interface12_vertices[0], + interface12_vertices[1], + sub_domain0_vertices[2], + sub_domain0_vertices[3] ] + +# vertex coordinates of the outer boundaries. If it can not be specified as a +# polygon, use an entry per boundary polygon. This information is used for defining +# the Dirichlet boundary conditions. If a domain is completely internal, the +# dictionary entry should be 0: None +subdomain1_outer_boundary_verts = { + 0: [interface12_vertices[1], + sub_domain0_vertices[2], + sub_domain0_vertices[3], # + interface12_vertices[0]] +} +# subdomain2 +sub_domain2_vertices = [sub_domain0_vertices[0], + sub_domain0_vertices[1], + interface12_vertices[1], + interface12_vertices[0] ] + +subdomain2_outer_boundary_verts = { + 0: [interface12_vertices[0], # + sub_domain0_vertices[0], + sub_domain0_vertices[1], + interface12_vertices[1]] +} +# subdomain2_outer_boundary_verts = { +# 0: [interface12_vertices[0], df.Point(0.0,0.0)],# +# 1: [df.Point(0.0,0.0), df.Point(1.0,0.0)], # +# 2: [df.Point(1.0,0.0), interface12_vertices[1]] +# } +# subdomain2_outer_boundary_verts = { +# 0: None +# } + +# list of subdomains given by the boundary polygon vertices. +# Subdomains are given as a list of dolfin points forming +# a closed polygon, such that mshr.Polygon(subdomain_def_points[i]) can be used +# to create the subdomain. subdomain_def_points[0] contains the +# vertices of the global simulation domain and subdomain_def_points[i] contains the +# vertices of the subdomain i. +subdomain_def_points = [sub_domain0_vertices,# + sub_domain1_vertices,# + sub_domain2_vertices] +# in the below list, index 0 corresponds to the 12 interface which has index 1 +interface_def_points = [interface12_vertices] + +# if a subdomain has no outer boundary write None instead, i.e. +# i: None +# if i is the index of the inner subdomain. +outer_boundary_def_points = { + # subdomain number + 1 : subdomain1_outer_boundary_verts, + 2 : subdomain2_outer_boundary_verts +} + +# adjacent_subdomains[i] contains the indices of the subdomains sharing the +# interface i (i.e. given by interface_def_points[i]). +adjacent_subdomains = [[1,2]] +isRichards = { + 1: False, # + 2: False + } + + +viscosity = {# +# subdom_num : viscosity + 1 : {'wetting' :1, + 'nonwetting': 1}, # + 2 : {'wetting' :1, + 'nonwetting': 1} +} + +porosity = {# +# subdom_num : porosity + 1 : 1,# + 2 : 1 +} + +# Dict of the form: { subdom_num : density } +densities = { + 1: {'wetting': 1, #997, + 'nonwetting': 1}, #1225}, + 2: {'wetting': 1, #997, + 'nonwetting': 1}, #1225}, +} + +gravity_acceleration = 9.81 + +L = {# +# subdom_num : subdomain L for L-scheme + 1 : {'wetting' :Lw, + 'nonwetting': Lnw},# + 2 : {'wetting' :Lw, + 'nonwetting': Lnw} +} + +lambda_param = {# +# subdom_num : lambda parameter for the L-scheme + 1 : {'wetting' :lambda_w, + 'nonwetting': lambda_nw},# + 2 : {'wetting' :lambda_w, + 'nonwetting': lambda_nw} +} + +## relative permeabilty functions on subdomain 1 +def rel_perm1w(s): + # relative permeabilty wetting on subdomain1 + return s**2 + +def rel_perm1nw(s): + # relative permeabilty nonwetting on subdomain1 + return (1-s)**2 + +_rel_perm1w = ft.partial(rel_perm1w) +_rel_perm1nw = ft.partial(rel_perm1nw) + +subdomain1_rel_perm = { + 'wetting': _rel_perm1w,# + 'nonwetting': _rel_perm1nw +} +## relative permeabilty functions on subdomain 2 +def rel_perm2w(s): + # relative permeabilty wetting on subdomain2 + return s**3 +def rel_perm2nw(s): + # relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2 + return (1-s)**3 + +_rel_perm2w = ft.partial(rel_perm2w) +_rel_perm2nw = ft.partial(rel_perm2nw) + +subdomain2_rel_perm = { + 'wetting': _rel_perm2w,# + 'nonwetting': _rel_perm2nw +} + +## dictionary of relative permeabilties on all domains. +relative_permeability = {# + 1: subdomain1_rel_perm, + 2: subdomain2_rel_perm +} + + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 1 +def rel_perm1w_prime(s): + # relative permeabilty on subdomain1 + return 2*s + +def rel_perm1nw_prime(s): + # relative permeabilty on subdomain1 + return -2*(1-s) + +# # definition of the derivatives of the relative permeabilities +# # relative permeabilty functions on subdomain 1 +def rel_perm2w_prime(s): + # relative permeabilty on subdomain1 + return 3*s**2 + +def rel_perm2nw_prime(s): + # relative permeabilty on subdomain1 + return -3*(1-s)**2 + +_rel_perm1w_prime = ft.partial(rel_perm1w_prime) +_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime) +_rel_perm2w_prime = ft.partial(rel_perm2w_prime) +_rel_perm2nw_prime = ft.partial(rel_perm2nw_prime) + +subdomain1_rel_perm_prime = { + 'wetting': _rel_perm1w_prime, + 'nonwetting': _rel_perm1nw_prime +} + + +subdomain2_rel_perm_prime = { + 'wetting': _rel_perm2w_prime, + 'nonwetting': _rel_perm2nw_prime +} + +# dictionary of relative permeabilties on all domains. +ka_prime = { + 1: subdomain1_rel_perm_prime, + 2: subdomain2_rel_perm_prime, +} + + + +def saturation(pc, index): + # inverse capillary pressure-saturation-relationship + return df.conditional(pc > 0, 1/((1 + pc)**(1/(index + 1))), 1) + + +def saturation_sym(pc, index): + # inverse capillary pressure-saturation-relationship + return 1/((1 + pc)**(1/(index + 1))) + + +# derivative of S-pc relationship with respect to pc. This is needed for the +# construction of a analytic solution. +def saturation_sym_prime(pc, index): + # inverse capillary pressure-saturation-relationship + return -1/((index+1)*(1 + pc)**((index+2)/(index+1))) + + +# note that the conditional definition of S-pc in the nonsymbolic part will be +# incorporated in the construction of the exact solution below. +S_pc_sym = { + 1: ft.partial(saturation_sym, index=1), + 2: ft.partial(saturation_sym, index=2), + # 3: ft.partial(saturation_sym, index=2), + # 4: ft.partial(saturation_sym, index=1) +} + +S_pc_sym_prime = { + 1: ft.partial(saturation_sym_prime, index=1), + 2: ft.partial(saturation_sym_prime, index=2), + # 3: ft.partial(saturation_sym_prime, index=2), + # 4: ft.partial(saturation_sym_prime, index=1) +} + +sat_pressure_relationship = { + 1: ft.partial(saturation, index=1), + 2: ft.partial(saturation, index=2), + # 3: ft.partial(saturation, index=2), + # 4: ft.partial(saturation, index=1) +} + +# +# def saturation(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1) +# +# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where +# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw +# def saturation_sym(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# #df.conditional(pc > 0, +# return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)) +# +# +# # derivative of S-pc relationship with respect to pc. This is needed for the +# # construction of a analytic solution. +# def saturation_sym_prime(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# return -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1)) / ( (1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index) ) +# +# # note that the conditional definition of S-pc in the nonsymbolic part will be +# # incorporated in the construction of the exact solution below. +# S_pc_sym = { +# 1: ft.partial(saturation_sym, n_index=3, alpha=0.001), +# 2: ft.partial(saturation_sym, n_index=6, alpha=0.001), +# # 3: ft.partial(saturation_sym, n_index=3, alpha=0.001), +# # 4: ft.partial(saturation_sym, n_index=3, alpha=0.001), +# # 5: ft.partial(saturation_sym, n_index=3, alpha=0.001), +# # 6: ft.partial(saturation_sym, n_index=3, alpha=0.001) +# } +# +# S_pc_sym_prime = { +# 1: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), +# 2: ft.partial(saturation_sym_prime, n_index=6, alpha=0.001), +# # 3: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), +# # 4: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), +# # 5: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), +# # 6: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001) +# } +# +# sat_pressure_relationship = { +# 1: ft.partial(saturation, n_index=3, alpha=0.001), +# 2: ft.partial(saturation, n_index=6, alpha=0.001), +# # 3: ft.partial(saturation, n_index=3, alpha=0.001), +# # 4: ft.partial(saturation, n_index=3, alpha=0.001), +# # 5: ft.partial(saturation, n_index=3, alpha=0.001), +# # 6: ft.partial(saturation, n_index=3, alpha=0.001) +# } +# + + +############################################# +# Manufacture source expressions with sympy # +############################################# +x, y = sym.symbols('x[0], x[1]') # needed by UFL +t = sym.symbols('t', positive=True) + +p_e_sym = { + 1: {'wetting': -7 - (1+t*t)*(1 + x*x + y*y), + 'nonwetting': -2 -t*(1 + y + x**2)}, + 2: {'wetting': -7.0 - (1.0 + t*t)*(1.0 + x*x), + 'nonwetting': -2 -t*(1 + x**2)**2 - sym.sqrt(2+t**2)*(1+y)**2*x**2*y**2}, +} + +pc_e_sym = dict() +for subdomain, isR in isRichards.items(): + if isR: + pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting'].copy()}) + else: + pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'].copy() + - p_e_sym[subdomain]['wetting'].copy()}) + + +symbols = {"x": x, + "y": y, + "t": t} +# turn above symbolic code into exact solution for dolphin and +# construct the rhs that matches the above exact solution. +exact_solution_example = hlp.generate_exact_solution_expressions( + symbols=symbols, + isRichards=isRichards, + symbolic_pressure=p_e_sym, + symbolic_capillary_pressure=pc_e_sym, + saturation_pressure_relationship=S_pc_sym, + saturation_pressure_relationship_prime=S_pc_sym_prime, + viscosity=viscosity, + porosity=porosity, + relative_permeability=relative_permeability, + relative_permeability_prime=ka_prime, + densities=densities, + gravity_acceleration=gravity_acceleration, + include_gravity=include_gravity, + ) +source_expression = exact_solution_example['source'] +exact_solution = exact_solution_example['exact_solution'] +initial_condition = exact_solution_example['initial_condition'] + +# Dictionary of dirichlet boundary conditions. +dirichletBC = dict() +# similarly to the outer boundary dictionary, if a patch has no outer boundary +# None should be written instead of an expression. +# This is a bit of a brainfuck: +# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind. +# Since a domain patch can have several disjoint outer boundary parts, the +# expressions need to get an enumaration index which starts at 0. +# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of +# subdomain ind and boundary part j. +# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting'] +# return the actual expression needed for the dirichlet condition for both +# phases if present. + +# subdomain index: {outer boudary part index: {phase: expression}} +for subdomain in isRichards.keys(): + # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None + if outer_boundary_def_points[subdomain] is None: + dirichletBC.update({subdomain: None}) + else: + dirichletBC.update({subdomain: dict()}) + # set the dirichlet conditions to be the same code as exact solution on + # the subdomain. + for outer_boundary_ind in outer_boundary_def_points[subdomain].keys(): + dirichletBC[subdomain].update( + {outer_boundary_ind: exact_solution[subdomain]} + ) + + +# def saturation(pressure, subdomain_index): +# # inverse capillary pressure-saturation-relationship +# return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1) +# +# sa + +for mesh_resolution in resolutions: + # initialise LDD simulation class + simulation = ldd.LDDsimulation( + tol=1E-14, + LDDsolver_tol=solver_tol, + debug=debugflag, + max_iter_num=max_iter_num, + FEM_Lagrange_degree=FEM_Lagrange_degree, + mesh_study=mesh_study + ) + + simulation.set_parameters(use_case=use_case, + output_dir=output_string, + subdomain_def_points=subdomain_def_points, + isRichards=isRichards, + interface_def_points=interface_def_points, + outer_boundary_def_points=outer_boundary_def_points, + adjacent_subdomains=adjacent_subdomains, + mesh_resolution=mesh_resolution, + viscosity=viscosity, + porosity=porosity, + L=L, + lambda_param=lambda_param, + relative_permeability=relative_permeability, + saturation=sat_pressure_relationship, + starttime=starttime, + number_of_timesteps=number_of_timesteps, + number_of_timesteps_to_analyse=number_of_timesteps_to_analyse, + plot_timestep_every=plot_timestep_every, + timestep_size=timestep_size, + sources=source_expression, + initial_conditions=initial_condition, + dirichletBC_expression_strings=dirichletBC, + exact_solution=exact_solution, + densities=densities, + include_gravity=include_gravity, + write2file=write_to_file, + ) + + simulation.initialise() + output_dir = simulation.output_dir + # simulation.write_exact_solution_to_xdmf() + output = simulation.run(analyse_condition=analyse_condition) + for subdomain_index, subdomain_output in output.items(): + mesh_h = subdomain_output['mesh_size'] + for phase, different_errornorms in subdomain_output['errornorm'].items(): + filename = output_dir + "subdomain{}-space-time-errornorm-{}-phase.csv".format(subdomain_index, phase) + # for errortype, errornorm in different_errornorms.items(): + + # eocfile = open("eoc_filename", "a") + # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" ) + # eocfile.close() + # if subdomain.isRichards:mesh_h + data_dict = { + 'mesh_parameter': mesh_resolution, + 'mesh_h': mesh_h, + } + for error_type, errornorms in different_errornorms.items(): + data_dict.update( + {error_type: errornorms} + ) + errors = pd.DataFrame(data_dict, index=[mesh_resolution]) + # check if file exists + if os.path.isfile(filename) == True: + with open(filename, 'a') as f: + errors.to_csv(f, header=False, sep='\t', encoding='utf-8', index=False) + else: + errors.to_csv(filename, sep='\t', encoding='utf-8', index=False) diff --git a/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/Archive/TP-TP-2-patch-nonwetting-zero-on-subdomain1.py b/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/Archive/TP-TP-2-patch-nonwetting-zero-on-subdomain1.py new file mode 100755 index 0000000..de6c451 --- /dev/null +++ b/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/Archive/TP-TP-2-patch-nonwetting-zero-on-subdomain1.py @@ -0,0 +1,527 @@ +#!/usr/bin/python3 +import dolfin as df +import mshr +import numpy as np +import sympy as sym +import typing as tp +import domainPatch as dp +import LDDsimulation as ldd +import functools as ft +import helpers as hlp +import datetime +import os +import pandas as pd + +date = datetime.datetime.now() +datestr = date.strftime("%Y-%m-%d") +#import ufl as ufl + +# init sympy session +sym.init_printing() + +use_case = "TP-TP-2-patch-nonwetting-zero-on-subdomain1" +# solver_tol = 5E-7 +max_iter_num = 1000 +FEM_Lagrange_degree = 1 +mesh_study = False +resolutions = { + # 1: 1e-7, # h=2 + # 2: 2e-5, # h=1.1180 + # 4: 1e-6, # h=0.5590 + # 8: 1e-6, # h=0.2814 + # 16: 5e-7, # h=0.1412 + 32: 5e-7, + # 64: 5e-7, + # 128: 5e-7 + } + + +############ GRID ####################### +# mesh_resolution = 20 +timestep_size = 0.005 +number_of_timesteps = 250 +plot_timestep_every = 1 +# decide how many timesteps you want analysed. Analysed means, that we write out +# subsequent errors of the L-iteration within the timestep. +number_of_timesteps_to_analyse = 5 +starttime = 0.0 + +Lw = 0.05 #/timestep_size +Lnw=Lw + +lambda_w = 40 +lambda_nw = 40 +include_gravity = False +debugflag = False +analyse_condition = True + +if mesh_study: + output_string = "./output/{}-{}_timesteps{}_P{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree) +else: + for tol in resolutions.values(): + solver_tol = tol + output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol) + + +# toggle what should be written to files +if mesh_study: + write_to_file = { + 'space_errornorms': True, + 'meshes_and_markers': True, + 'L_iterations_per_timestep': False, + 'solutions': False, + 'absolute_differences': False, + 'condition_numbers': analyse_condition, + 'subsequent_errors': False + } +else: + write_to_file = { + 'space_errornorms': True, + 'meshes_and_markers': True, + 'L_iterations_per_timestep': False, + 'solutions': True, + 'absolute_differences': True, + 'condition_numbers': analyse_condition, + 'subsequent_errors': True + } + +##### Domain and Interface #### +# global simulation domain domain +sub_domain0_vertices = [df.Point(-1.0,-1.0), # + df.Point(1.0,-1.0),# + df.Point(1.0,1.0),# + df.Point(-1.0,1.0)] +# interface between subdomain1 and subdomain2 +interface12_vertices = [df.Point(-1.0, 0.0), + df.Point(1.0, 0.0) ] +# subdomain1. +sub_domain1_vertices = [interface12_vertices[0], + interface12_vertices[1], + sub_domain0_vertices[2], + sub_domain0_vertices[3] ] + +# vertex coordinates of the outer boundaries. If it can not be specified as a +# polygon, use an entry per boundary polygon. This information is used for defining +# the Dirichlet boundary conditions. If a domain is completely internal, the +# dictionary entry should be 0: None +subdomain1_outer_boundary_verts = { + 0: [interface12_vertices[1], + sub_domain0_vertices[2], + sub_domain0_vertices[3], # + interface12_vertices[0]] +} +# subdomain2 +sub_domain2_vertices = [sub_domain0_vertices[0], + sub_domain0_vertices[1], + interface12_vertices[1], + interface12_vertices[0] ] + +subdomain2_outer_boundary_verts = { + 0: [interface12_vertices[0], # + sub_domain0_vertices[0], + sub_domain0_vertices[1], + interface12_vertices[1]] +} +# subdomain2_outer_boundary_verts = { +# 0: [interface12_vertices[0], df.Point(0.0,0.0)],# +# 1: [df.Point(0.0,0.0), df.Point(1.0,0.0)], # +# 2: [df.Point(1.0,0.0), interface12_vertices[1]] +# } +# subdomain2_outer_boundary_verts = { +# 0: None +# } + +# list of subdomains given by the boundary polygon vertices. +# Subdomains are given as a list of dolfin points forming +# a closed polygon, such that mshr.Polygon(subdomain_def_points[i]) can be used +# to create the subdomain. subdomain_def_points[0] contains the +# vertices of the global simulation domain and subdomain_def_points[i] contains the +# vertices of the subdomain i. +subdomain_def_points = [sub_domain0_vertices,# + sub_domain1_vertices,# + sub_domain2_vertices] +# in the below list, index 0 corresponds to the 12 interface which has index 1 +interface_def_points = [interface12_vertices] + +# if a subdomain has no outer boundary write None instead, i.e. +# i: None +# if i is the index of the inner subdomain. +outer_boundary_def_points = { + # subdomain number + 1 : subdomain1_outer_boundary_verts, + 2 : subdomain2_outer_boundary_verts +} + +# adjacent_subdomains[i] contains the indices of the subdomains sharing the +# interface i (i.e. given by interface_def_points[i]). +adjacent_subdomains = [[1,2]] +isRichards = { + 1: False, # + 2: False + } + + +viscosity = {# +# subdom_num : viscosity + 1 : {'wetting' :1, + 'nonwetting': 1}, # + 2 : {'wetting' :1, + 'nonwetting': 1} +} + +porosity = {# +# subdom_num : porosity + 1 : 1,# + 2 : 1 +} + +# Dict of the form: { subdom_num : density } +densities = { + 1: {'wetting': 1, #997, + 'nonwetting': 1}, #1225}, + 2: {'wetting': 1, #997, + 'nonwetting': 1}, #1225}, +} + +gravity_acceleration = 9.81 + +L = {# +# subdom_num : subdomain L for L-scheme + 1 : {'wetting' :Lw, + 'nonwetting': Lnw},# + 2 : {'wetting' :Lw, + 'nonwetting': Lnw} +} + + +lambda_param = {# +# subdom_num : lambda parameter for the L-scheme + 1 : {'wetting' :lambda_w, + 'nonwetting': lambda_nw},# + 2 : {'wetting' :lambda_w, + 'nonwetting': lambda_nw} +} + +## relative permeabilty functions on subdomain 1 +def rel_perm1w(s): + # relative permeabilty wetting on subdomain1 + return s**2 + +def rel_perm1nw(s): + # relative permeabilty nonwetting on subdomain1 + return (1-s)**2 + +_rel_perm1w = ft.partial(rel_perm1w) +_rel_perm1nw = ft.partial(rel_perm1nw) + +subdomain1_rel_perm = { + 'wetting': _rel_perm1w,# + 'nonwetting': _rel_perm1nw +} +## relative permeabilty functions on subdomain 2 +def rel_perm2w(s): + # relative permeabilty wetting on subdomain2 + return s**3 +def rel_perm2nw(s): + # relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2 + return (1-s)**3 + +_rel_perm2w = ft.partial(rel_perm2w) +_rel_perm2nw = ft.partial(rel_perm2nw) + +subdomain2_rel_perm = { + 'wetting': _rel_perm2w,# + 'nonwetting': _rel_perm2nw +} + +## dictionary of relative permeabilties on all domains. +relative_permeability = {# + 1: subdomain1_rel_perm, + 2: subdomain2_rel_perm +} + + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 1 +def rel_perm1w_prime(s): + # relative permeabilty on subdomain1 + return 2*s + +def rel_perm1nw_prime(s): + # relative permeabilty on subdomain1 + return -2*(1-s) + +# # definition of the derivatives of the relative permeabilities +# # relative permeabilty functions on subdomain 1 +def rel_perm2w_prime(s): + # relative permeabilty on subdomain1 + return 3*s**2 + +def rel_perm2nw_prime(s): + # relative permeabilty on subdomain1 + return -3*(1-s)**2 + +_rel_perm1w_prime = ft.partial(rel_perm1w_prime) +_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime) +_rel_perm2w_prime = ft.partial(rel_perm2w_prime) +_rel_perm2nw_prime = ft.partial(rel_perm2nw_prime) + +subdomain1_rel_perm_prime = { + 'wetting': _rel_perm1w_prime, + 'nonwetting': _rel_perm1nw_prime +} + + +subdomain2_rel_perm_prime = { + 'wetting': _rel_perm2w_prime, + 'nonwetting': _rel_perm2nw_prime +} + +# dictionary of relative permeabilties on all domains. +ka_prime = { + 1: subdomain1_rel_perm_prime, + 2: subdomain2_rel_perm_prime, +} + + + +def saturation(pc, index): + # inverse capillary pressure-saturation-relationship + return df.conditional(pc > 0, 1/((1 + pc)**(1/(index + 1))), 1) + + +def saturation_sym(pc, index): + # inverse capillary pressure-saturation-relationship + return 1/((1 + pc)**(1/(index + 1))) + + +# derivative of S-pc relationship with respect to pc. This is needed for the +# construction of a analytic solution. +def saturation_sym_prime(pc, index): + # inverse capillary pressure-saturation-relationship + return -1/((index+1)*(1 + pc)**((index+2)/(index+1))) + + +# note that the conditional definition of S-pc in the nonsymbolic part will be +# incorporated in the construction of the exact solution below. +S_pc_sym = { + 1: ft.partial(saturation_sym, index=1), + 2: ft.partial(saturation_sym, index=2), + # 3: ft.partial(saturation_sym, index=2), + # 4: ft.partial(saturation_sym, index=1) +} + +S_pc_sym_prime = { + 1: ft.partial(saturation_sym_prime, index=1), + 2: ft.partial(saturation_sym_prime, index=2), + # 3: ft.partial(saturation_sym_prime, index=2), + # 4: ft.partial(saturation_sym_prime, index=1) +} + +sat_pressure_relationship = { + 1: ft.partial(saturation, index=1), + 2: ft.partial(saturation, index=2), + # 3: ft.partial(saturation, index=2), + # 4: ft.partial(saturation, index=1) +} + +# +# def saturation(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1) +# +# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where +# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw +# def saturation_sym(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# #df.conditional(pc > 0, +# return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)) +# +# +# # derivative of S-pc relationship with respect to pc. This is needed for the +# # construction of a analytic solution. +# def saturation_sym_prime(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# return -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1)) / ( (1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index) ) +# +# # note that the conditional definition of S-pc in the nonsymbolic part will be +# # incorporated in the construction of the exact solution below. +# S_pc_sym = { +# 1: ft.partial(saturation_sym, n_index=3, alpha=0.001), +# 2: ft.partial(saturation_sym, n_index=6, alpha=0.001), +# # 3: ft.partial(saturation_sym, n_index=3, alpha=0.001), +# # 4: ft.partial(saturation_sym, n_index=3, alpha=0.001), +# # 5: ft.partial(saturation_sym, n_index=3, alpha=0.001), +# # 6: ft.partial(saturation_sym, n_index=3, alpha=0.001) +# } +# +# S_pc_sym_prime = { +# 1: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), +# 2: ft.partial(saturation_sym_prime, n_index=6, alpha=0.001), +# # 3: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), +# # 4: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), +# # 5: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), +# # 6: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001) +# } +# +# sat_pressure_relationship = { +# 1: ft.partial(saturation, n_index=3, alpha=0.001), +# 2: ft.partial(saturation, n_index=6, alpha=0.001), +# # 3: ft.partial(saturation, n_index=3, alpha=0.001), +# # 4: ft.partial(saturation, n_index=3, alpha=0.001), +# # 5: ft.partial(saturation, n_index=3, alpha=0.001), +# # 6: ft.partial(saturation, n_index=3, alpha=0.001) +# } +# + + +############################################# +# Manufacture source expressions with sympy # +############################################# +x, y = sym.symbols('x[0], x[1]') # needed by UFL +t = sym.symbols('t', positive=True) + +p_e_sym = { + 1: {'wetting': (-5.0 - (1.0 + t*t)*(1.0 + x*x + y*y)), #*cutoff, + 'nonwetting': 0.0*t}, #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2}, + 2: {'wetting': (-5.0 - (1.0 + t*t)*(1.0 + x*x + y*y)), #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2, + 'nonwetting': (-1-t*(1.1+y + x**2))*y**3}, #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2}, +} + + +pc_e_sym = dict() +for subdomain, isR in isRichards.items(): + if isR: + pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting'].copy()}) + else: + pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'].copy() + - p_e_sym[subdomain]['wetting'].copy()}) + + +symbols = {"x": x, + "y": y, + "t": t} +# turn above symbolic code into exact solution for dolphin and +# construct the rhs that matches the above exact solution. +exact_solution_example = hlp.generate_exact_solution_expressions( + symbols=symbols, + isRichards=isRichards, + symbolic_pressure=p_e_sym, + symbolic_capillary_pressure=pc_e_sym, + saturation_pressure_relationship=S_pc_sym, + saturation_pressure_relationship_prime=S_pc_sym_prime, + viscosity=viscosity, + porosity=porosity, + relative_permeability=relative_permeability, + relative_permeability_prime=ka_prime, + densities=densities, + gravity_acceleration=gravity_acceleration, + include_gravity=include_gravity, + ) +source_expression = exact_solution_example['source'] +exact_solution = exact_solution_example['exact_solution'] +initial_condition = exact_solution_example['initial_condition'] + +# Dictionary of dirichlet boundary conditions. +dirichletBC = dict() +# similarly to the outer boundary dictionary, if a patch has no outer boundary +# None should be written instead of an expression. +# This is a bit of a brainfuck: +# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind. +# Since a domain patch can have several disjoint outer boundary parts, the +# expressions need to get an enumaration index which starts at 0. +# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of +# subdomain ind and boundary part j. +# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting'] +# return the actual expression needed for the dirichlet condition for both +# phases if present. + +# subdomain index: {outer boudary part index: {phase: expression}} +for subdomain in isRichards.keys(): + # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None + if outer_boundary_def_points[subdomain] is None: + dirichletBC.update({subdomain: None}) + else: + dirichletBC.update({subdomain: dict()}) + # set the dirichlet conditions to be the same code as exact solution on + # the subdomain. + for outer_boundary_ind in outer_boundary_def_points[subdomain].keys(): + dirichletBC[subdomain].update( + {outer_boundary_ind: exact_solution[subdomain]} + ) + + +# def saturation(pressure, subdomain_index): +# # inverse capillary pressure-saturation-relationship +# return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1) +# +# sa + +for mesh_resolution, solver_tol in resolutions.items(): + # initialise LDD simulation class + simulation = ldd.LDDsimulation( + tol=1E-14, + LDDsolver_tol=solver_tol, + debug=debugflag, + max_iter_num=max_iter_num, + FEM_Lagrange_degree=FEM_Lagrange_degree, + mesh_study=mesh_study + ) + + simulation.set_parameters(use_case=use_case, + output_dir=output_string, + subdomain_def_points=subdomain_def_points, + isRichards=isRichards, + interface_def_points=interface_def_points, + outer_boundary_def_points=outer_boundary_def_points, + adjacent_subdomains=adjacent_subdomains, + mesh_resolution=mesh_resolution, + viscosity=viscosity, + porosity=porosity, + L=L, + lambda_param=lambda_param, + relative_permeability=relative_permeability, + saturation=sat_pressure_relationship, + starttime=starttime, + number_of_timesteps=number_of_timesteps, + number_of_timesteps_to_analyse=number_of_timesteps_to_analyse, + plot_timestep_every=plot_timestep_every, + timestep_size=timestep_size, + sources=source_expression, + initial_conditions=initial_condition, + dirichletBC_expression_strings=dirichletBC, + exact_solution=exact_solution, + densities=densities, + include_gravity=include_gravity, + write2file=write_to_file, + ) + + simulation.initialise() + output_dir = simulation.output_dir + # simulation.write_exact_solution_to_xdmf() + output = simulation.run(analyse_condition=analyse_condition) + for subdomain_index, subdomain_output in output.items(): + mesh_h = subdomain_output['mesh_size'] + for phase, different_errornorms in subdomain_output['errornorm'].items(): + filename = output_dir + "subdomain{}-space-time-errornorm-{}-phase.csv".format(subdomain_index, phase) + # for errortype, errornorm in different_errornorms.items(): + + # eocfile = open("eoc_filename", "a") + # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" ) + # eocfile.close() + # if subdomain.isRichards:mesh_h + data_dict = { + 'mesh_parameter': mesh_resolution, + 'mesh_h': mesh_h, + } + for error_type, errornorms in different_errornorms.items(): + data_dict.update( + {error_type: errornorms} + ) + errors = pd.DataFrame(data_dict, index=[mesh_resolution]) + # check if file exists + if os.path.isfile(filename) == True: + with open(filename, 'a') as f: + errors.to_csv(f, header=False, sep='\t', encoding='utf-8', index=False) + else: + errors.to_csv(filename, sep='\t', encoding='utf-8', index=False) diff --git a/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/Archive/TP-TP-2-patch-test.py b/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/Archive/TP-TP-2-patch-test.py new file mode 100755 index 0000000..d892719 --- /dev/null +++ b/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/Archive/TP-TP-2-patch-test.py @@ -0,0 +1,528 @@ +#!/usr/bin/python3 +import dolfin as df +import mshr +import numpy as np +import sympy as sym +import typing as tp +import domainPatch as dp +import LDDsimulation as ldd +import functools as ft +import helpers as hlp +import datetime +import os +import pandas as pd + +date = datetime.datetime.now() +datestr = date.strftime("%Y-%m-%d") +#import ufl as ufl + +# init sympy session +sym.init_printing() + +use_case = "TP-TP-2-patch" +# solver_tol = 5E-7 +max_iter_num = 1000 +FEM_Lagrange_degree = 1 +mesh_study = False +resolutions = { + # 1: 1e-7, # h=2 + # 2: 2e-5, # h=1.1180 + # 4: 1e-6, # h=0.5590 + # 8: 1e-6, # h=0.2814 + # 16: 5e-7, # h=0.1412 + 32: 1e-6, + # 64: 5e-7, + # 128: 5e-7 + } + + +############ GRID ####################### +# mesh_resolution = 20 +timestep_size = 0.001 +number_of_timesteps = 1500 +plot_timestep_every = 5 +# decide how many timesteps you want analysed. Analysed means, that we write out +# subsequent errors of the L-iteration within the timestep. +number_of_timesteps_to_analyse = 5 +starttime = 0.0 + +Lw = 0.05 #/timestep_size +Lnw=Lw + +lambda_w = 4 +lambda_nw = 4 + +include_gravity = True +debugflag = False +analyse_condition = True + +if mesh_study: + output_string = "./output/{}-{}_timesteps{}_P{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree) +else: + for tol in resolutions.values(): + solver_tol = tol + output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol) + + +# toggle what should be written to files +if mesh_study: + write_to_file = { + 'space_errornorms': True, + 'meshes_and_markers': True, + 'L_iterations_per_timestep': False, + 'solutions': False, + 'absolute_differences': False, + 'condition_numbers': analyse_condition, + 'subsequent_errors': False + } +else: + write_to_file = { + 'space_errornorms': True, + 'meshes_and_markers': True, + 'L_iterations_per_timestep': False, + 'solutions': True, + 'absolute_differences': True, + 'condition_numbers': analyse_condition, + 'subsequent_errors': True + } + +##### Domain and Interface #### +# global simulation domain domain +sub_domain0_vertices = [df.Point(-1.0,-1.0), # + df.Point(1.0,-1.0),# + df.Point(1.0,1.0),# + df.Point(-1.0,1.0)] +# interface between subdomain1 and subdomain2 +interface12_vertices = [df.Point(-1.0, 0.0), + df.Point(1.0, 0.0) ] +# subdomain1. +sub_domain1_vertices = [interface12_vertices[0], + interface12_vertices[1], + sub_domain0_vertices[2], + sub_domain0_vertices[3] ] + +# vertex coordinates of the outer boundaries. If it can not be specified as a +# polygon, use an entry per boundary polygon. This information is used for defining +# the Dirichlet boundary conditions. If a domain is completely internal, the +# dictionary entry should be 0: None +subdomain1_outer_boundary_verts = { + 0: [interface12_vertices[1], + sub_domain0_vertices[2], + sub_domain0_vertices[3], # + interface12_vertices[0]] +} +# subdomain2 +sub_domain2_vertices = [sub_domain0_vertices[0], + sub_domain0_vertices[1], + interface12_vertices[1], + interface12_vertices[0] ] + +subdomain2_outer_boundary_verts = { + 0: [interface12_vertices[0], # + sub_domain0_vertices[0], + sub_domain0_vertices[1], + interface12_vertices[1]] +} +# subdomain2_outer_boundary_verts = { +# 0: [interface12_vertices[0], df.Point(0.0,0.0)],# +# 1: [df.Point(0.0,0.0), df.Point(1.0,0.0)], # +# 2: [df.Point(1.0,0.0), interface12_vertices[1]] +# } +# subdomain2_outer_boundary_verts = { +# 0: None +# } + +# list of subdomains given by the boundary polygon vertices. +# Subdomains are given as a list of dolfin points forming +# a closed polygon, such that mshr.Polygon(subdomain_def_points[i]) can be used +# to create the subdomain. subdomain_def_points[0] contains the +# vertices of the global simulation domain and subdomain_def_points[i] contains the +# vertices of the subdomain i. +subdomain_def_points = [sub_domain0_vertices,# + sub_domain1_vertices,# + sub_domain2_vertices] +# in the below list, index 0 corresponds to the 12 interface which has index 1 +interface_def_points = [interface12_vertices] + +# if a subdomain has no outer boundary write None instead, i.e. +# i: None +# if i is the index of the inner subdomain. +outer_boundary_def_points = { + # subdomain number + 1 : subdomain1_outer_boundary_verts, + 2 : subdomain2_outer_boundary_verts +} + +# adjacent_subdomains[i] contains the indices of the subdomains sharing the +# interface i (i.e. given by interface_def_points[i]). +adjacent_subdomains = [[1,2]] +isRichards = { + 1: False, # + 2: False + } + + +viscosity = {# +# subdom_num : viscosity + 1 : {'wetting' :1, + 'nonwetting': 1}, # + 2 : {'wetting' :1, + 'nonwetting': 1} +} + +porosity = {# +# subdom_num : porosity + 1 : 1,# + 2 : 1 +} + +# Dict of the form: { subdom_num : density } +densities = { + 1: {'wetting': 1, #997, + 'nonwetting': 1}, #1225}, + 2: {'wetting': 1, #997, + 'nonwetting': 1}, #1225}, +} + +gravity_acceleration = 1#9.81 + +L = {# +# subdom_num : subdomain L for L-scheme + 1 : {'wetting' :Lw, + 'nonwetting': Lnw},# + 2 : {'wetting' :Lw, + 'nonwetting': Lnw} +} + + +lambda_param = {# +# subdom_num : lambda parameter for the L-scheme + 1 : {'wetting' :lambda_w, + 'nonwetting': lambda_nw},# + 2 : {'wetting' :lambda_w, + 'nonwetting': lambda_nw} +} + +## relative permeabilty functions on subdomain 1 +def rel_perm1w(s): + # relative permeabilty wetting on subdomain1 + return s**2 + +def rel_perm1nw(s): + # relative permeabilty nonwetting on subdomain1 + return (1-s)**2 + +_rel_perm1w = ft.partial(rel_perm1w) +_rel_perm1nw = ft.partial(rel_perm1nw) + +subdomain1_rel_perm = { + 'wetting': _rel_perm1w,# + 'nonwetting': _rel_perm1nw +} +## relative permeabilty functions on subdomain 2 +def rel_perm2w(s): + # relative permeabilty wetting on subdomain2 + return s**3 +def rel_perm2nw(s): + # relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2 + return (1-s)**3 + +_rel_perm2w = ft.partial(rel_perm2w) +_rel_perm2nw = ft.partial(rel_perm2nw) + +subdomain2_rel_perm = { + 'wetting': _rel_perm2w,# + 'nonwetting': _rel_perm2nw +} + +## dictionary of relative permeabilties on all domains. +relative_permeability = {# + 1: subdomain1_rel_perm, + 2: subdomain2_rel_perm +} + + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 1 +def rel_perm1w_prime(s): + # relative permeabilty on subdomain1 + return 2*s + +def rel_perm1nw_prime(s): + # relative permeabilty on subdomain1 + return -2*(1-s) + +# # definition of the derivatives of the relative permeabilities +# # relative permeabilty functions on subdomain 1 +def rel_perm2w_prime(s): + # relative permeabilty on subdomain1 + return 3*s**2 + +def rel_perm2nw_prime(s): + # relative permeabilty on subdomain1 + return -3*(1-s)**2 + +_rel_perm1w_prime = ft.partial(rel_perm1w_prime) +_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime) +_rel_perm2w_prime = ft.partial(rel_perm2w_prime) +_rel_perm2nw_prime = ft.partial(rel_perm2nw_prime) + +subdomain1_rel_perm_prime = { + 'wetting': _rel_perm1w_prime, + 'nonwetting': _rel_perm1nw_prime +} + + +subdomain2_rel_perm_prime = { + 'wetting': _rel_perm2w_prime, + 'nonwetting': _rel_perm2nw_prime +} + +# dictionary of relative permeabilties on all domains. +ka_prime = { + 1: subdomain1_rel_perm_prime, + 2: subdomain2_rel_perm_prime, +} + + + +def saturation(pc, index): + # inverse capillary pressure-saturation-relationship + return df.conditional(pc > 0, 1/((1 + pc)**(1/(index + 1))), 1) + + +def saturation_sym(pc, index): + # inverse capillary pressure-saturation-relationship + return 1/((1 + pc)**(1/(index + 1))) + + +# derivative of S-pc relationship with respect to pc. This is needed for the +# construction of a analytic solution. +def saturation_sym_prime(pc, index): + # inverse capillary pressure-saturation-relationship + return -1/((index+1)*(1 + pc)**((index+2)/(index+1))) + + +# note that the conditional definition of S-pc in the nonsymbolic part will be +# incorporated in the construction of the exact solution below. +S_pc_sym = { + 1: ft.partial(saturation_sym, index=1), + 2: ft.partial(saturation_sym, index=2), + # 3: ft.partial(saturation_sym, index=2), + # 4: ft.partial(saturation_sym, index=1) +} + +S_pc_sym_prime = { + 1: ft.partial(saturation_sym_prime, index=1), + 2: ft.partial(saturation_sym_prime, index=2), + # 3: ft.partial(saturation_sym_prime, index=2), + # 4: ft.partial(saturation_sym_prime, index=1) +} + +sat_pressure_relationship = { + 1: ft.partial(saturation, index=1), + 2: ft.partial(saturation, index=2), + # 3: ft.partial(saturation, index=2), + # 4: ft.partial(saturation, index=1) +} + +# +# def saturation(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1) +# +# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where +# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw +# def saturation_sym(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# #df.conditional(pc > 0, +# return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)) +# +# +# # derivative of S-pc relationship with respect to pc. This is needed for the +# # construction of a analytic solution. +# def saturation_sym_prime(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# return -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1)) / ( (1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index) ) +# +# # note that the conditional definition of S-pc in the nonsymbolic part will be +# # incorporated in the construction of the exact solution below. +# S_pc_sym = { +# 1: ft.partial(saturation_sym, n_index=3, alpha=0.001), +# 2: ft.partial(saturation_sym, n_index=6, alpha=0.001), +# # 3: ft.partial(saturation_sym, n_index=3, alpha=0.001), +# # 4: ft.partial(saturation_sym, n_index=3, alpha=0.001), +# # 5: ft.partial(saturation_sym, n_index=3, alpha=0.001), +# # 6: ft.partial(saturation_sym, n_index=3, alpha=0.001) +# } +# +# S_pc_sym_prime = { +# 1: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), +# 2: ft.partial(saturation_sym_prime, n_index=6, alpha=0.001), +# # 3: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), +# # 4: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), +# # 5: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), +# # 6: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001) +# } +# +# sat_pressure_relationship = { +# 1: ft.partial(saturation, n_index=3, alpha=0.001), +# 2: ft.partial(saturation, n_index=6, alpha=0.001), +# # 3: ft.partial(saturation, n_index=3, alpha=0.001), +# # 4: ft.partial(saturation, n_index=3, alpha=0.001), +# # 5: ft.partial(saturation, n_index=3, alpha=0.001), +# # 6: ft.partial(saturation, n_index=3, alpha=0.001) +# } +# + + +############################################# +# Manufacture source expressions with sympy # +############################################# +x, y = sym.symbols('x[0], x[1]') # needed by UFL +t = sym.symbols('t', positive=True) + +p_e_sym = { + 1: {'wetting': (-6 - (1+t*t)*(1 + x*x + y*y)), #*cutoff, + 'nonwetting': (-1 -t*(1.1+ y*y))}, #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2}, + 2: {'wetting': (-6.0 - (1.0 + t*t)*(1.0 + x*x)), #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2, + 'nonwetting': (-1 -t*(1.1 + y*y) - sym.sin((x*y-0.5*t)*y**2)**2)}, #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2}, +} + + +pc_e_sym = dict() +for subdomain, isR in isRichards.items(): + if isR: + pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting'].copy()}) + else: + pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'].copy() + - p_e_sym[subdomain]['wetting'].copy()}) + + +symbols = {"x": x, + "y": y, + "t": t} +# turn above symbolic code into exact solution for dolphin and +# construct the rhs that matches the above exact solution. +exact_solution_example = hlp.generate_exact_solution_expressions( + symbols=symbols, + isRichards=isRichards, + symbolic_pressure=p_e_sym, + symbolic_capillary_pressure=pc_e_sym, + saturation_pressure_relationship=S_pc_sym, + saturation_pressure_relationship_prime=S_pc_sym_prime, + viscosity=viscosity, + porosity=porosity, + relative_permeability=relative_permeability, + relative_permeability_prime=ka_prime, + densities=densities, + gravity_acceleration=gravity_acceleration, + include_gravity=include_gravity, + ) +source_expression = exact_solution_example['source'] +exact_solution = exact_solution_example['exact_solution'] +initial_condition = exact_solution_example['initial_condition'] + +# Dictionary of dirichlet boundary conditions. +dirichletBC = dict() +# similarly to the outer boundary dictionary, if a patch has no outer boundary +# None should be written instead of an expression. +# This is a bit of a brainfuck: +# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind. +# Since a domain patch can have several disjoint outer boundary parts, the +# expressions need to get an enumaration index which starts at 0. +# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of +# subdomain ind and boundary part j. +# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting'] +# return the actual expression needed for the dirichlet condition for both +# phases if present. + +# subdomain index: {outer boudary part index: {phase: expression}} +for subdomain in isRichards.keys(): + # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None + if outer_boundary_def_points[subdomain] is None: + dirichletBC.update({subdomain: None}) + else: + dirichletBC.update({subdomain: dict()}) + # set the dirichlet conditions to be the same code as exact solution on + # the subdomain. + for outer_boundary_ind in outer_boundary_def_points[subdomain].keys(): + dirichletBC[subdomain].update( + {outer_boundary_ind: exact_solution[subdomain]} + ) + + +# def saturation(pressure, subdomain_index): +# # inverse capillary pressure-saturation-relationship +# return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1) +# +# sa + +for mesh_resolution, solver_tol in resolutions.items(): + # initialise LDD simulation class + simulation = ldd.LDDsimulation( + tol=1E-14, + LDDsolver_tol=solver_tol, + debug=debugflag, + max_iter_num=max_iter_num, + FEM_Lagrange_degree=FEM_Lagrange_degree, + mesh_study=mesh_study + ) + + simulation.set_parameters(use_case=use_case, + output_dir=output_string, + subdomain_def_points=subdomain_def_points, + isRichards=isRichards, + interface_def_points=interface_def_points, + outer_boundary_def_points=outer_boundary_def_points, + adjacent_subdomains=adjacent_subdomains, + mesh_resolution=mesh_resolution, + viscosity=viscosity, + porosity=porosity, + L=L, + lambda_param=lambda_param, + relative_permeability=relative_permeability, + saturation=sat_pressure_relationship, + starttime=starttime, + number_of_timesteps=number_of_timesteps, + number_of_timesteps_to_analyse=number_of_timesteps_to_analyse, + plot_timestep_every=plot_timestep_every, + timestep_size=timestep_size, + sources=source_expression, + initial_conditions=initial_condition, + dirichletBC_expression_strings=dirichletBC, + exact_solution=exact_solution, + densities=densities, + include_gravity=include_gravity, + write2file=write_to_file, + ) + + simulation.initialise() + output_dir = simulation.output_dir + # simulation.write_exact_solution_to_xdmf() + output = simulation.run(analyse_condition=analyse_condition) + for subdomain_index, subdomain_output in output.items(): + mesh_h = subdomain_output['mesh_size'] + for phase, different_errornorms in subdomain_output['errornorm'].items(): + filename = output_dir + "subdomain{}-space-time-errornorm-{}-phase.csv".format(subdomain_index, phase) + # for errortype, errornorm in different_errornorms.items(): + + # eocfile = open("eoc_filename", "a") + # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" ) + # eocfile.close() + # if subdomain.isRichards:mesh_h + data_dict = { + 'mesh_parameter': mesh_resolution, + 'mesh_h': mesh_h, + } + for error_type, errornorms in different_errornorms.items(): + data_dict.update( + {error_type: errornorms} + ) + errors = pd.DataFrame(data_dict, index=[mesh_resolution]) + # check if file exists + if os.path.isfile(filename) == True: + with open(filename, 'a') as f: + errors.to_csv(f, header=False, sep='\t', encoding='utf-8', index=False) + else: + errors.to_csv(filename, sep='\t', encoding='utf-8', index=False) diff --git a/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/TP-TP-2-patch-different-intrinsic-perm.py b/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/TP-TP-2-patch-different-intrinsic-perm.py new file mode 100755 index 0000000..0daba08 --- /dev/null +++ b/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/TP-TP-2-patch-different-intrinsic-perm.py @@ -0,0 +1,598 @@ +#!/usr/bin/python3 +"""TP-TP 2 patch soil simulation. + +This program sets up an LDD simulation +""" + +import dolfin as df +import sympy as sym +import functools as ft +import LDDsimulation as ldd +import helpers as hlp +import datetime +import os +import pandas as pd + +# init sympy session +sym.init_printing() + +# PREREQUISITS ############################################################### +# check if output directory "./output" exists. This will be used in +# the generation of the output string. +if not os.path.exists('./output'): + os.mkdir('./output') + print("Directory ", './output', " created ") +else: + print("Directory ", './output', " already exists. Will use as output \ + directory") + +date = datetime.datetime.now() +datestr = date.strftime("%Y-%m-%d") + +# Name of the usecase that will be printed during simulation. +use_case = "TP-TP-2P-realistic-different-intrinsic-perm" +# The name of this very file. Needed for creating log output. +thisfile = "TP-TP-2-patch-different-intrinsic-perm.py" + +# GENERAL SOLVER CONFIG ###################################################### +# maximal iteration per timestep +max_iter_num = 300 +FEM_Lagrange_degree = 1 + +# GRID AND MESH STUDY SPECIFICATIONS ######################################### +mesh_study = False +resolutions = { + # 1: 1e-6, + # 2: 1e-6, + # 4: 1e-6, + # 8: 1e-6, + # 16: 5e-6, + 32: 3e-6, + # 64: 2e-6, + # 128: 1e-6, + # 256: 1e-6, + } + +# starttimes gives a list of starttimes to run the simulation from. +# The list is looped over and a simulation is run with t_0 as initial time +# for each element t_0 in starttimes. +starttimes = [0.0] +timestep_size = 0.001 +number_of_timesteps = 1000 + +# LDD scheme parameters ###################################################### +Lw1 = 0.25 #/timestep_size +Lnw1= 0.25 + +Lw2 = 0.25 #/timestep_size +Lnw2= 0.25 + +lambda_w = 4 +lambda_nw = 4 + +include_gravity = True +debugflag = False +analyse_condition = False + +# I/O CONFIG ################################################################# +# when number_of_timesteps is high, it might take a long time to write all +# timesteps to disk. Therefore, you can choose to only write data of every +# plot_timestep_every timestep to disk. +plot_timestep_every = 4 +# Decide how many timesteps you want analysed. Analysed means, that +# subsequent errors of the L-iteration within the timestep are written out. +number_of_timesteps_to_analyse = 5 + +# fine grained control over data to be written to disk in the mesh study case +# as well as for a regular simuation for a fixed grid. +if mesh_study: + write_to_file = { + # output the relative errornorm (integration in space) w.r.t. an exact + # solution for each timestep into a csv file. + 'space_errornorms': True, + # save the mesh and marker functions to disk + 'meshes_and_markers': True, + # save xdmf/h5 data for each LDD iteration for timesteps determined by + # number_of_timesteps_to_analyse. I/O intensive! + 'L_iterations_per_timestep': False, + # save solution to xdmf/h5. + 'solutions': True, + # save absolute differences w.r.t an exact solution to xdmf/h5 file + # to monitor where on the domains errors happen + 'absolute_differences': True, + # analyise condition numbers for timesteps determined by + # number_of_timesteps_to_analyse and save them over time to csv. + 'condition_numbers': analyse_condition, + # output subsequent iteration errors measured in L^2 to csv for + # timesteps determined by number_of_timesteps_to_analyse. + # Usefull to monitor convergence of the acutal LDD solver. + 'subsequent_errors': True + } +else: + write_to_file = { + 'space_errornorms': True, + 'meshes_and_markers': True, + 'L_iterations_per_timestep': False, + 'solutions': True, + 'absolute_differences': True, + 'condition_numbers': analyse_condition, + 'subsequent_errors': True + } + +# OUTPUT FILE STRING ######################################################### +if mesh_study: + output_string = "./output/{}-{}_timesteps{}_P{}".format( + datestr, use_case, number_of_timesteps, FEM_Lagrange_degree + ) +else: + for tol in resolutions.values(): + solver_tol = tol + output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format( + datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol + ) + + +# DOMAIN AND INTERFACE ####################################################### +# global simulation domain domain +sub_domain0_vertices = [df.Point(-1.0, -1.0), + df.Point(1.0, -1.0), + df.Point(1.0, 1.0), + df.Point(-1.0, 1.0)] +# interface between subdomain1 and subdomain2 +interface12_vertices = [df.Point(-1.0, 0.0), + df.Point(1.0, 0.0) ] +# subdomain1. +sub_domain1_vertices = [interface12_vertices[0], + interface12_vertices[1], + sub_domain0_vertices[2], + sub_domain0_vertices[3]] + +# vertex coordinates of the outer boundaries. If it can not be specified as a +# polygon, use an entry per boundary polygon. This information is used for defining +# the Dirichlet boundary conditions. If a domain is completely internal, the +# dictionary entry should be 0: None +subdomain1_outer_boundary_verts = { + 0: [interface12_vertices[1], # + sub_domain0_vertices[2], + sub_domain0_vertices[3], # + interface12_vertices[0]] +} +# subdomain2 +sub_domain2_vertices = [sub_domain0_vertices[0], + sub_domain0_vertices[1], + interface12_vertices[1], + interface12_vertices[0] ] + +subdomain2_outer_boundary_verts = { + 0: [interface12_vertices[0], # + sub_domain0_vertices[0], + sub_domain0_vertices[1], + interface12_vertices[1]] +} + +# list of subdomains given by the boundary polygon vertices. +# Subdomains are given as a list of dolfin points forming +# a closed polygon, such that mshr.Polygon(subdomain_def_points[i]) can be used +# to create the subdomain. subdomain_def_points[0] contains the +# vertices of the global simulation domain and subdomain_def_points[i] contains the +# vertices of the subdomain i. +subdomain_def_points = [sub_domain0_vertices,# + sub_domain1_vertices,# + sub_domain2_vertices] +# in the below list, index 0 corresponds to the 12 interface which has index 1 +interface_def_points = [interface12_vertices] + +# if a subdomain has no outer boundary write None instead, i.e. +# i: None +# if i is the index of the inner subdomain. +outer_boundary_def_points = { + # subdomain number + 1 : subdomain1_outer_boundary_verts, + 2 : subdomain2_outer_boundary_verts +} + +# adjacent_subdomains[i] contains the indices of the subdomains sharing the +# interface i (i.e. given by interface_def_points[i]). +adjacent_subdomains = [[1,2]] + + +# MODEL CONFIGURATION ######################################################### +isRichards = { + 1: False, # + 2: False + } + + +viscosity = {# +# subdom_num : viscosity + 1: {'wetting' :1.0, + 'nonwetting': 1/50}, # + 2: {'wetting' :1.0, + 'nonwetting': 1/50} +} + +porosity = {# +# subdom_num : porosity + 1: 0.22,# + 2: 0.22 +} + +# Dict of the form: { subdom_num : density } +densities = { + 1: {'wetting': 997.0, + 'nonwetting': 1.225}, + 2: {'wetting': 997.0, + 'nonwetting': 1.225} +} + +gravity_acceleration = 9.81 + +L = {# +# subdom_num : subdomain L for L-scheme + 1 : {'wetting' :Lw1, + 'nonwetting': Lnw1},# + 2 : {'wetting' :Lw2, + 'nonwetting': Lnw2} +} + + +lambda_param = {# +# subdom_num : lambda parameter for the L-scheme + 0 : {'wetting' :lambda_w, + 'nonwetting': lambda_nw},# +} + +intrinsic_permeability = { + 1: 0.1, + 2: 0.01, +} + + +## relative permeabilty functions on subdomain 1 +def rel_perm1w(s): + # relative permeabilty wetting on subdomain1 + return intrinsic_permeability[1]*s**2 + +def rel_perm1nw(s): + # relative permeabilty nonwetting on subdomain1 + return intrinsic_permeability[1]*(1-s)**2 + +_rel_perm1w = ft.partial(rel_perm1w) +_rel_perm1nw = ft.partial(rel_perm1nw) + +subdomain1_rel_perm = { + 'wetting': _rel_perm1w,# + 'nonwetting': _rel_perm1nw +} +## relative permeabilty functions on subdomain 2 +def rel_perm2w(s): + # relative permeabilty wetting on subdomain2 + return intrinsic_permeability[2]*s**3 +def rel_perm2nw(s): + # relative permeabilty nonwetting on subdomain2 + return intrinsic_permeability[2]*(1-s)**3 + +_rel_perm2w = ft.partial(rel_perm2w) +_rel_perm2nw = ft.partial(rel_perm2nw) + +subdomain2_rel_perm = { + 'wetting': _rel_perm2w,# + 'nonwetting': _rel_perm2nw +} + +## dictionary of relative permeabilties on all domains. +relative_permeability = {# + 1: subdomain1_rel_perm, + 2: subdomain2_rel_perm +} + + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 1 +def rel_perm1w_prime(s): + # relative permeabilty on subdomain1 + return intrinsic_permeability[1]*2*s + +def rel_perm1nw_prime(s): + # relative permeabilty on subdomain1 + return -1*intrinsic_permeability[1]*2*(1-s) + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 1 +def rel_perm2w_prime(s): + # relative permeabilty on subdomain2 + return intrinsic_permeability[2]*3*s**2 + +def rel_perm2nw_prime(s): + # relative permeabilty on subdomain2 + return -3*intrinsic_permeability[2]*(1-s)**2 + +_rel_perm1w_prime = ft.partial(rel_perm1w_prime) +_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime) +_rel_perm2w_prime = ft.partial(rel_perm2w_prime) +_rel_perm2nw_prime = ft.partial(rel_perm2nw_prime) + +subdomain1_rel_perm_prime = { + 'wetting': _rel_perm1w_prime, + 'nonwetting': _rel_perm1nw_prime +} + + +subdomain2_rel_perm_prime = { + 'wetting': _rel_perm2w_prime, + 'nonwetting': _rel_perm2nw_prime +} + +# dictionary of relative permeabilties on all domains. +ka_prime = { + 1: subdomain1_rel_perm_prime, + 2: subdomain2_rel_perm_prime, +} + + +# def saturation1(pc, subdomain_index): +# # inverse capillary pressure-saturation-relationship +# return df.conditional(pc > 0, 1/((1 + pc)**(1/(subdomain_index + 1))), 1) +# +# def saturation2(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1) +# +# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where +# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw +# def saturation1_sym(pc, subdomain_index): +# # inverse capillary pressure-saturation-relationship +# return 1/((1 + pc)**(1/(subdomain_index + 1))) +# +# +# def saturation2_sym(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# #df.conditional(pc > 0, +# return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)) +# +# +# # derivative of S-pc relationship with respect to pc. This is needed for the +# # construction of a analytic solution. +# def saturation1_sym_prime(pc, subdomain_index): +# # inverse capillary pressure-saturation-relationship +# return -(1/(subdomain_index + 1))*(1 + pc)**((-subdomain_index - 2)/(subdomain_index + 1)) +# +# +# def saturation2_sym_prime(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# return -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1)) / ( (1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index) ) +# +# # note that the conditional definition of S-pc in the nonsymbolic part will be +# # incorporated in the construction of the exact solution below. +# S_pc_sym = { +# 1: ft.partial(saturation1_sym, subdomain_index = 1), +# 2: ft.partial(saturation2_sym, n_index=3, alpha=0.001), +# } +# +# S_pc_sym_prime = { +# 1: ft.partial(saturation1_sym_prime, subdomain_index = 1), +# 2: ft.partial(saturation2_sym_prime, n_index=3, alpha=0.001), +# } +# +# sat_pressure_relationship = { +# 1: ft.partial(saturation1, subdomain_index = 1),#, +# 2: ft.partial(saturation2, n_index=3, alpha=0.001), +# } + +def saturation(pc, index): + # inverse capillary pressure-saturation-relationship + return df.conditional(pc > 0, 1/((1 + pc)**(1/(index + 1))), 1) + + +def saturation_sym(pc, index): + # inverse capillary pressure-saturation-relationship + return 1/((1 + pc)**(1/(index + 1))) + + +# derivative of S-pc relationship with respect to pc. This is needed for the +# construction of a analytic solution. +def saturation_sym_prime(pc, index): + # inverse capillary pressure-saturation-relationship + return -1/((index+1)*(1 + pc)**((index+2)/(index+1))) + + +# note that the conditional definition of S-pc in the nonsymbolic part will be +# incorporated in the construction of the exact solution below. +S_pc_sym = { + 1: ft.partial(saturation_sym, index=1), + 2: ft.partial(saturation_sym, index=2), + # 3: ft.partial(saturation_sym, index=2), + # 4: ft.partial(saturation_sym, index=1) +} + +S_pc_sym_prime = { + 1: ft.partial(saturation_sym_prime, index=1), + 2: ft.partial(saturation_sym_prime, index=2), + # 3: ft.partial(saturation_sym_prime, index=2), + # 4: ft.partial(saturation_sym_prime, index=1) +} + +sat_pressure_relationship = { + 1: ft.partial(saturation, index=1), + 2: ft.partial(saturation, index=2), + # 3: ft.partial(saturation, index=2), + # 4: ft.partial(saturation, index=1) +} + + +############################################################################### +# Manufacture source expressions with sympy # +############################################################################### +x, y = sym.symbols('x[0], x[1]') # needed by UFL +t = sym.symbols('t', positive=True) + +# p_e_sym = { +# 1: {'wetting': (-7.0 - (1.0 + t*t)*(1.0 + x*x + y*y))}, #*(1-x)**2*(1+x)**2*(1-y)**2}, +# 2: {'wetting': (-7.0 - (1.0 + t*t)*(1.0 + x*x)), #*(1-x)**2*(1+x)**2*(1+y)**2, +# 'nonwetting': (-2-t*(1.1+y + x**2))*y**2}, #*(1-x)**2*(1+x)**2*(1+y)**2}, +# } #-y*y*(sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t)) - t*t*x*(0.5-y)*y*(1-x) + +p_e_sym = { + 1: {'wetting': (-6 - (1+t*t)*(1 + x*x + y*y)), #*cutoff, + 'nonwetting': (-1 -t*(1.1+ y*y))}, #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2}, + 2: {'wetting': (-6.0 - (1.0 + t*t)*(1.0 + x*x)), #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2, + 'nonwetting': (-1 -t*(1.1 + y*y) - sym.sin((x*y-0.5*t)*y**2)**2)}, #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2}, +} + + +pc_e_sym = dict() +for subdomain, isR in isRichards.items(): + if isR: + pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting'].copy()}) + else: + pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'].copy() + - p_e_sym[subdomain]['wetting'].copy()}) + + +symbols = {"x": x, + "y": y, + "t": t} +# turn above symbolic code into exact solution for dolphin and +# construct the rhs that matches the above exact solution. +exact_solution_example = hlp.generate_exact_solution_expressions( + symbols=symbols, + isRichards=isRichards, + symbolic_pressure=p_e_sym, + symbolic_capillary_pressure=pc_e_sym, + saturation_pressure_relationship=S_pc_sym, + saturation_pressure_relationship_prime=S_pc_sym_prime, + viscosity=viscosity, + porosity=porosity, + relative_permeability=relative_permeability, + relative_permeability_prime=ka_prime, + densities=densities, + gravity_acceleration=gravity_acceleration, + include_gravity=include_gravity, + ) +source_expression = exact_solution_example['source'] +exact_solution = exact_solution_example['exact_solution'] +initial_condition = exact_solution_example['initial_condition'] + +# BOUNDARY CONDITIONS ######################################################### +# Dictionary of dirichlet boundary conditions. +dirichletBC = dict() +# similarly to the outer boundary dictionary, if a patch has no outer boundary +# None should be written instead of an expression. +# This is a bit of a brainfuck: +# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind. +# Since a domain patch can have several disjoint outer boundary parts, the +# expressions need to get an enumaration index which starts at 0. +# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of +# subdomain ind and boundary part j. +# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting'] +# return the actual expression needed for the dirichlet condition for both +# phases if present. + +# subdomain index: {outer boudary part index: {phase: expression}} +for subdomain in isRichards.keys(): + # subdomain can have no outer boundary + if outer_boundary_def_points[subdomain] is None: + dirichletBC.update({subdomain: None}) + else: + dirichletBC.update({subdomain: dict()}) + # set the dirichlet conditions to be the same code as exact solution on + # the subdomain. + for outer_boundary_ind in outer_boundary_def_points[subdomain].keys(): + dirichletBC[subdomain].update( + {outer_boundary_ind: exact_solution[subdomain]} + ) + + +# LOG FILE OUTPUT ############################################################# +# read this file and print it to std out. This way the simulation can produce a +# log file with ./TP-R-layered_soil.py | tee simulation.log +f = open(thisfile, 'r') +print(f.read()) +f.close() + + +# RUN ######################################################################### +for starttime in starttimes: + for mesh_resolution, solver_tol in resolutions.items(): + # initialise LDD simulation class + simulation = ldd.LDDsimulation( + tol=1E-14, + LDDsolver_tol=solver_tol, + debug=debugflag, + max_iter_num=max_iter_num, + FEM_Lagrange_degree=FEM_Lagrange_degree, + mesh_study=mesh_study + ) + + simulation.set_parameters( + use_case=use_case, + output_dir=output_string, + subdomain_def_points=subdomain_def_points, + isRichards=isRichards, + interface_def_points=interface_def_points, + outer_boundary_def_points=outer_boundary_def_points, + adjacent_subdomains=adjacent_subdomains, + mesh_resolution=mesh_resolution, + viscosity=viscosity, + porosity=porosity, + L=L, + lambda_param=lambda_param, + relative_permeability=relative_permeability, + saturation=sat_pressure_relationship, + starttime=starttime, + number_of_timesteps=number_of_timesteps, + number_of_timesteps_to_analyse=number_of_timesteps_to_analyse, + plot_timestep_every=plot_timestep_every, + timestep_size=timestep_size, + sources=source_expression, + initial_conditions=initial_condition, + dirichletBC_expression_strings=dirichletBC, + exact_solution=exact_solution, + densities=densities, + include_gravity=include_gravity, + gravity_acceleration=gravity_acceleration, + write2file=write_to_file, + ) + + simulation.initialise() + output_dir = simulation.output_dir + # simulation.write_exact_solution_to_xdmf() + output = simulation.run(analyse_condition=analyse_condition) + for subdomain_index, subdomain_output in output.items(): + mesh_h = subdomain_output['mesh_size'] + for phase, error_dict in subdomain_output['errornorm'].items(): + filename = output_dir \ + + "subdomain{}".format(subdomain_index)\ + + "-space-time-errornorm-{}-phase.csv".format(phase) + # for errortype, errornorm in error_dict.items(): + + # eocfile = open("eoc_filename", "a") + # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" ) + # eocfile.close() + # if subdomain.isRichards:mesh_h + data_dict = { + 'mesh_parameter': mesh_resolution, + 'mesh_h': mesh_h, + } + for norm_type, errornorm in error_dict.items(): + data_dict.update( + {norm_type: errornorm} + ) + errors = pd.DataFrame(data_dict, index=[mesh_resolution]) + # check if file exists + if os.path.isfile(filename) is True: + with open(filename, 'a') as f: + errors.to_csv( + f, + header=False, + sep='\t', + encoding='utf-8', + index=False + ) + else: + errors.to_csv( + filename, + sep='\t', + encoding='utf-8', + index=False + ) diff --git a/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/TP-TP-2-patch-same-intrinsic-perm.py b/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/TP-TP-2-patch-same-intrinsic-perm.py new file mode 100755 index 0000000..9c10e94 --- /dev/null +++ b/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/TP-TP-2-patch-same-intrinsic-perm.py @@ -0,0 +1,598 @@ +#!/usr/bin/python3 +"""TP-TP 2 patch soil simulation. + +This program sets up an LDD simulation +""" + +import dolfin as df +import sympy as sym +import functools as ft +import LDDsimulation as ldd +import helpers as hlp +import datetime +import os +import pandas as pd + +# init sympy session +sym.init_printing() + +# PREREQUISITS ############################################################### +# check if output directory "./output" exists. This will be used in +# the generation of the output string. +if not os.path.exists('./output'): + os.mkdir('./output') + print("Directory ", './output', " created ") +else: + print("Directory ", './output', " already exists. Will use as output \ + directory") + +date = datetime.datetime.now() +datestr = date.strftime("%Y-%m-%d") + +# Name of the usecase that will be printed during simulation. +use_case = "TP-TP-2P-realistic-same-intrinsic-perm" +# The name of this very file. Needed for creating log output. +thisfile = "TP-TP-2-patch-same-intrinsic-perm.py" + +# GENERAL SOLVER CONFIG ###################################################### +# maximal iteration per timestep +max_iter_num = 300 +FEM_Lagrange_degree = 1 + +# GRID AND MESH STUDY SPECIFICATIONS ######################################### +mesh_study = False +resolutions = { + # 1: 1e-6, + # 2: 1e-6, + # 4: 1e-6, + # 8: 1e-6, + # 16: 5e-6, + 32: 3e-6, + # 64: 2e-6, + # 128: 1e-6, + # 256: 1e-6, + } + +# starttimes gives a list of starttimes to run the simulation from. +# The list is looped over and a simulation is run with t_0 as initial time +# for each element t_0 in starttimes. +starttimes = [0.0] +timestep_size = 0.001 +number_of_timesteps = 1000 + +# LDD scheme parameters ###################################################### +Lw1 = 0.25 #/timestep_size +Lnw1= 0.25 + +Lw2 = 0.25 #/timestep_size +Lnw2= 0.25 + +lambda_w = 4 +lambda_nw = 4 + +include_gravity = True +debugflag = False +analyse_condition = False + +# I/O CONFIG ################################################################# +# when number_of_timesteps is high, it might take a long time to write all +# timesteps to disk. Therefore, you can choose to only write data of every +# plot_timestep_every timestep to disk. +plot_timestep_every = 4 +# Decide how many timesteps you want analysed. Analysed means, that +# subsequent errors of the L-iteration within the timestep are written out. +number_of_timesteps_to_analyse = 5 + +# fine grained control over data to be written to disk in the mesh study case +# as well as for a regular simuation for a fixed grid. +if mesh_study: + write_to_file = { + # output the relative errornorm (integration in space) w.r.t. an exact + # solution for each timestep into a csv file. + 'space_errornorms': True, + # save the mesh and marker functions to disk + 'meshes_and_markers': True, + # save xdmf/h5 data for each LDD iteration for timesteps determined by + # number_of_timesteps_to_analyse. I/O intensive! + 'L_iterations_per_timestep': False, + # save solution to xdmf/h5. + 'solutions': True, + # save absolute differences w.r.t an exact solution to xdmf/h5 file + # to monitor where on the domains errors happen + 'absolute_differences': True, + # analyise condition numbers for timesteps determined by + # number_of_timesteps_to_analyse and save them over time to csv. + 'condition_numbers': analyse_condition, + # output subsequent iteration errors measured in L^2 to csv for + # timesteps determined by number_of_timesteps_to_analyse. + # Usefull to monitor convergence of the acutal LDD solver. + 'subsequent_errors': True + } +else: + write_to_file = { + 'space_errornorms': True, + 'meshes_and_markers': True, + 'L_iterations_per_timestep': False, + 'solutions': True, + 'absolute_differences': True, + 'condition_numbers': analyse_condition, + 'subsequent_errors': True + } + +# OUTPUT FILE STRING ######################################################### +if mesh_study: + output_string = "./output/{}-{}_timesteps{}_P{}".format( + datestr, use_case, number_of_timesteps, FEM_Lagrange_degree + ) +else: + for tol in resolutions.values(): + solver_tol = tol + output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format( + datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol + ) + + +# DOMAIN AND INTERFACE ####################################################### +# global simulation domain domain +sub_domain0_vertices = [df.Point(-1.0, -1.0), + df.Point(1.0, -1.0), + df.Point(1.0, 1.0), + df.Point(-1.0, 1.0)] +# interface between subdomain1 and subdomain2 +interface12_vertices = [df.Point(-1.0, 0.0), + df.Point(1.0, 0.0) ] +# subdomain1. +sub_domain1_vertices = [interface12_vertices[0], + interface12_vertices[1], + sub_domain0_vertices[2], + sub_domain0_vertices[3]] + +# vertex coordinates of the outer boundaries. If it can not be specified as a +# polygon, use an entry per boundary polygon. This information is used for defining +# the Dirichlet boundary conditions. If a domain is completely internal, the +# dictionary entry should be 0: None +subdomain1_outer_boundary_verts = { + 0: [interface12_vertices[1], # + sub_domain0_vertices[2], + sub_domain0_vertices[3], # + interface12_vertices[0]] +} +# subdomain2 +sub_domain2_vertices = [sub_domain0_vertices[0], + sub_domain0_vertices[1], + interface12_vertices[1], + interface12_vertices[0] ] + +subdomain2_outer_boundary_verts = { + 0: [interface12_vertices[0], # + sub_domain0_vertices[0], + sub_domain0_vertices[1], + interface12_vertices[1]] +} + +# list of subdomains given by the boundary polygon vertices. +# Subdomains are given as a list of dolfin points forming +# a closed polygon, such that mshr.Polygon(subdomain_def_points[i]) can be used +# to create the subdomain. subdomain_def_points[0] contains the +# vertices of the global simulation domain and subdomain_def_points[i] contains the +# vertices of the subdomain i. +subdomain_def_points = [sub_domain0_vertices,# + sub_domain1_vertices,# + sub_domain2_vertices] +# in the below list, index 0 corresponds to the 12 interface which has index 1 +interface_def_points = [interface12_vertices] + +# if a subdomain has no outer boundary write None instead, i.e. +# i: None +# if i is the index of the inner subdomain. +outer_boundary_def_points = { + # subdomain number + 1 : subdomain1_outer_boundary_verts, + 2 : subdomain2_outer_boundary_verts +} + +# adjacent_subdomains[i] contains the indices of the subdomains sharing the +# interface i (i.e. given by interface_def_points[i]). +adjacent_subdomains = [[1,2]] + + +# MODEL CONFIGURATION ######################################################### +isRichards = { + 1: False, # + 2: False + } + + +viscosity = {# +# subdom_num : viscosity + 1: {'wetting' :1.0, + 'nonwetting': 1/50}, # + 2: {'wetting' :1.0, + 'nonwetting': 1/50} +} + +porosity = {# +# subdom_num : porosity + 1: 0.22,# + 2: 0.22 +} + +# Dict of the form: { subdom_num : density } +densities = { + 1: {'wetting': 997.0, + 'nonwetting': 1.225}, + 2: {'wetting': 997.0, + 'nonwetting': 1.225} +} + +gravity_acceleration = 9.81 + +L = {# +# subdom_num : subdomain L for L-scheme + 1 : {'wetting' :Lw1, + 'nonwetting': Lnw1},# + 2 : {'wetting' :Lw2, + 'nonwetting': Lnw2} +} + + +lambda_param = {# +# subdom_num : lambda parameter for the L-scheme + 0 : {'wetting' :lambda_w, + 'nonwetting': lambda_nw},# +} + +intrinsic_permeability = { + 1: 0.1, + 2: 0.1, +} + + +## relative permeabilty functions on subdomain 1 +def rel_perm1w(s): + # relative permeabilty wetting on subdomain1 + return intrinsic_permeability[1]*s**2 + +def rel_perm1nw(s): + # relative permeabilty nonwetting on subdomain1 + return intrinsic_permeability[1]*(1-s)**2 + +_rel_perm1w = ft.partial(rel_perm1w) +_rel_perm1nw = ft.partial(rel_perm1nw) + +subdomain1_rel_perm = { + 'wetting': _rel_perm1w,# + 'nonwetting': _rel_perm1nw +} +## relative permeabilty functions on subdomain 2 +def rel_perm2w(s): + # relative permeabilty wetting on subdomain2 + return intrinsic_permeability[2]*s**3 +def rel_perm2nw(s): + # relative permeabilty nonwetting on subdomain2 + return intrinsic_permeability[2]*(1-s)**3 + +_rel_perm2w = ft.partial(rel_perm2w) +_rel_perm2nw = ft.partial(rel_perm2nw) + +subdomain2_rel_perm = { + 'wetting': _rel_perm2w,# + 'nonwetting': _rel_perm2nw +} + +## dictionary of relative permeabilties on all domains. +relative_permeability = {# + 1: subdomain1_rel_perm, + 2: subdomain2_rel_perm +} + + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 1 +def rel_perm1w_prime(s): + # relative permeabilty on subdomain1 + return intrinsic_permeability[1]*2*s + +def rel_perm1nw_prime(s): + # relative permeabilty on subdomain1 + return -1*intrinsic_permeability[1]*2*(1-s) + +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 1 +def rel_perm2w_prime(s): + # relative permeabilty on subdomain2 + return intrinsic_permeability[2]*3*s**2 + +def rel_perm2nw_prime(s): + # relative permeabilty on subdomain2 + return -3*intrinsic_permeability[2]*(1-s)**2 + +_rel_perm1w_prime = ft.partial(rel_perm1w_prime) +_rel_perm1nw_prime = ft.partial(rel_perm1nw_prime) +_rel_perm2w_prime = ft.partial(rel_perm2w_prime) +_rel_perm2nw_prime = ft.partial(rel_perm2nw_prime) + +subdomain1_rel_perm_prime = { + 'wetting': _rel_perm1w_prime, + 'nonwetting': _rel_perm1nw_prime +} + + +subdomain2_rel_perm_prime = { + 'wetting': _rel_perm2w_prime, + 'nonwetting': _rel_perm2nw_prime +} + +# dictionary of relative permeabilties on all domains. +ka_prime = { + 1: subdomain1_rel_perm_prime, + 2: subdomain2_rel_perm_prime, +} + + +# def saturation1(pc, subdomain_index): +# # inverse capillary pressure-saturation-relationship +# return df.conditional(pc > 0, 1/((1 + pc)**(1/(subdomain_index + 1))), 1) +# +# def saturation2(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1) +# +# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where +# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw +# def saturation1_sym(pc, subdomain_index): +# # inverse capillary pressure-saturation-relationship +# return 1/((1 + pc)**(1/(subdomain_index + 1))) +# +# +# def saturation2_sym(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# #df.conditional(pc > 0, +# return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)) +# +# +# # derivative of S-pc relationship with respect to pc. This is needed for the +# # construction of a analytic solution. +# def saturation1_sym_prime(pc, subdomain_index): +# # inverse capillary pressure-saturation-relationship +# return -(1/(subdomain_index + 1))*(1 + pc)**((-subdomain_index - 2)/(subdomain_index + 1)) +# +# +# def saturation2_sym_prime(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# return -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1)) / ( (1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index) ) +# +# # note that the conditional definition of S-pc in the nonsymbolic part will be +# # incorporated in the construction of the exact solution below. +# S_pc_sym = { +# 1: ft.partial(saturation1_sym, subdomain_index = 1), +# 2: ft.partial(saturation2_sym, n_index=3, alpha=0.001), +# } +# +# S_pc_sym_prime = { +# 1: ft.partial(saturation1_sym_prime, subdomain_index = 1), +# 2: ft.partial(saturation2_sym_prime, n_index=3, alpha=0.001), +# } +# +# sat_pressure_relationship = { +# 1: ft.partial(saturation1, subdomain_index = 1),#, +# 2: ft.partial(saturation2, n_index=3, alpha=0.001), +# } + +def saturation(pc, index): + # inverse capillary pressure-saturation-relationship + return df.conditional(pc > 0, 1/((1 + pc)**(1/(index + 1))), 1) + + +def saturation_sym(pc, index): + # inverse capillary pressure-saturation-relationship + return 1/((1 + pc)**(1/(index + 1))) + + +# derivative of S-pc relationship with respect to pc. This is needed for the +# construction of a analytic solution. +def saturation_sym_prime(pc, index): + # inverse capillary pressure-saturation-relationship + return -1/((index+1)*(1 + pc)**((index+2)/(index+1))) + + +# note that the conditional definition of S-pc in the nonsymbolic part will be +# incorporated in the construction of the exact solution below. +S_pc_sym = { + 1: ft.partial(saturation_sym, index=1), + 2: ft.partial(saturation_sym, index=2), + # 3: ft.partial(saturation_sym, index=2), + # 4: ft.partial(saturation_sym, index=1) +} + +S_pc_sym_prime = { + 1: ft.partial(saturation_sym_prime, index=1), + 2: ft.partial(saturation_sym_prime, index=2), + # 3: ft.partial(saturation_sym_prime, index=2), + # 4: ft.partial(saturation_sym_prime, index=1) +} + +sat_pressure_relationship = { + 1: ft.partial(saturation, index=1), + 2: ft.partial(saturation, index=2), + # 3: ft.partial(saturation, index=2), + # 4: ft.partial(saturation, index=1) +} + + +############################################################################### +# Manufacture source expressions with sympy # +############################################################################### +x, y = sym.symbols('x[0], x[1]') # needed by UFL +t = sym.symbols('t', positive=True) + +# p_e_sym = { +# 1: {'wetting': (-7.0 - (1.0 + t*t)*(1.0 + x*x + y*y))}, #*(1-x)**2*(1+x)**2*(1-y)**2}, +# 2: {'wetting': (-7.0 - (1.0 + t*t)*(1.0 + x*x)), #*(1-x)**2*(1+x)**2*(1+y)**2, +# 'nonwetting': (-2-t*(1.1+y + x**2))*y**2}, #*(1-x)**2*(1+x)**2*(1+y)**2}, +# } #-y*y*(sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t)) - t*t*x*(0.5-y)*y*(1-x) + +p_e_sym = { + 1: {'wetting': (-6 - (1+t*t)*(1 + x*x + y*y)), #*cutoff, + 'nonwetting': (-1 -t*(1.1+ y*y))}, #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2}, + 2: {'wetting': (-6.0 - (1.0 + t*t)*(1.0 + x*x)), #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2, + 'nonwetting': (-1 -t*(1.1 + y*y) - sym.sin((x*y-0.5*t)*y**2)**2)}, #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2}, +} + + +pc_e_sym = dict() +for subdomain, isR in isRichards.items(): + if isR: + pc_e_sym.update({subdomain: -p_e_sym[subdomain]['wetting'].copy()}) + else: + pc_e_sym.update({subdomain: p_e_sym[subdomain]['nonwetting'].copy() + - p_e_sym[subdomain]['wetting'].copy()}) + + +symbols = {"x": x, + "y": y, + "t": t} +# turn above symbolic code into exact solution for dolphin and +# construct the rhs that matches the above exact solution. +exact_solution_example = hlp.generate_exact_solution_expressions( + symbols=symbols, + isRichards=isRichards, + symbolic_pressure=p_e_sym, + symbolic_capillary_pressure=pc_e_sym, + saturation_pressure_relationship=S_pc_sym, + saturation_pressure_relationship_prime=S_pc_sym_prime, + viscosity=viscosity, + porosity=porosity, + relative_permeability=relative_permeability, + relative_permeability_prime=ka_prime, + densities=densities, + gravity_acceleration=gravity_acceleration, + include_gravity=include_gravity, + ) +source_expression = exact_solution_example['source'] +exact_solution = exact_solution_example['exact_solution'] +initial_condition = exact_solution_example['initial_condition'] + +# BOUNDARY CONDITIONS ######################################################### +# Dictionary of dirichlet boundary conditions. +dirichletBC = dict() +# similarly to the outer boundary dictionary, if a patch has no outer boundary +# None should be written instead of an expression. +# This is a bit of a brainfuck: +# dirichletBC[ind] gives a dictionary of the outer boundaries of subdomain ind. +# Since a domain patch can have several disjoint outer boundary parts, the +# expressions need to get an enumaration index which starts at 0. +# So dirichletBC[ind][j] is the dictionary of outer dirichlet conditions of +# subdomain ind and boundary part j. +# Finally, dirichletBC[ind][j]['wetting'] and dirichletBC[ind][j]['nonwetting'] +# return the actual expression needed for the dirichlet condition for both +# phases if present. + +# subdomain index: {outer boudary part index: {phase: expression}} +for subdomain in isRichards.keys(): + # subdomain can have no outer boundary + if outer_boundary_def_points[subdomain] is None: + dirichletBC.update({subdomain: None}) + else: + dirichletBC.update({subdomain: dict()}) + # set the dirichlet conditions to be the same code as exact solution on + # the subdomain. + for outer_boundary_ind in outer_boundary_def_points[subdomain].keys(): + dirichletBC[subdomain].update( + {outer_boundary_ind: exact_solution[subdomain]} + ) + + +# LOG FILE OUTPUT ############################################################# +# read this file and print it to std out. This way the simulation can produce a +# log file with ./TP-R-layered_soil.py | tee simulation.log +f = open(thisfile, 'r') +print(f.read()) +f.close() + + +# RUN ######################################################################### +for starttime in starttimes: + for mesh_resolution, solver_tol in resolutions.items(): + # initialise LDD simulation class + simulation = ldd.LDDsimulation( + tol=1E-14, + LDDsolver_tol=solver_tol, + debug=debugflag, + max_iter_num=max_iter_num, + FEM_Lagrange_degree=FEM_Lagrange_degree, + mesh_study=mesh_study + ) + + simulation.set_parameters( + use_case=use_case, + output_dir=output_string, + subdomain_def_points=subdomain_def_points, + isRichards=isRichards, + interface_def_points=interface_def_points, + outer_boundary_def_points=outer_boundary_def_points, + adjacent_subdomains=adjacent_subdomains, + mesh_resolution=mesh_resolution, + viscosity=viscosity, + porosity=porosity, + L=L, + lambda_param=lambda_param, + relative_permeability=relative_permeability, + saturation=sat_pressure_relationship, + starttime=starttime, + number_of_timesteps=number_of_timesteps, + number_of_timesteps_to_analyse=number_of_timesteps_to_analyse, + plot_timestep_every=plot_timestep_every, + timestep_size=timestep_size, + sources=source_expression, + initial_conditions=initial_condition, + dirichletBC_expression_strings=dirichletBC, + exact_solution=exact_solution, + densities=densities, + include_gravity=include_gravity, + gravity_acceleration=gravity_acceleration, + write2file=write_to_file, + ) + + simulation.initialise() + output_dir = simulation.output_dir + # simulation.write_exact_solution_to_xdmf() + output = simulation.run(analyse_condition=analyse_condition) + for subdomain_index, subdomain_output in output.items(): + mesh_h = subdomain_output['mesh_size'] + for phase, error_dict in subdomain_output['errornorm'].items(): + filename = output_dir \ + + "subdomain{}".format(subdomain_index)\ + + "-space-time-errornorm-{}-phase.csv".format(phase) + # for errortype, errornorm in error_dict.items(): + + # eocfile = open("eoc_filename", "a") + # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" ) + # eocfile.close() + # if subdomain.isRichards:mesh_h + data_dict = { + 'mesh_parameter': mesh_resolution, + 'mesh_h': mesh_h, + } + for norm_type, errornorm in error_dict.items(): + data_dict.update( + {norm_type: errornorm} + ) + errors = pd.DataFrame(data_dict, index=[mesh_resolution]) + # check if file exists + if os.path.isfile(filename) is True: + with open(filename, 'a') as f: + errors.to_csv( + f, + header=False, + sep='\t', + encoding='utf-8', + index=False + ) + else: + errors.to_csv( + filename, + sep='\t', + encoding='utf-8', + index=False + ) diff --git a/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/TP-TP-2-patch-test.py b/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/TP-TP-2-patch-test.py index d892719..c084d57 100755 --- a/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/TP-TP-2-patch-test.py +++ b/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/TP-TP-2-patch-test.py @@ -1,79 +1,112 @@ #!/usr/bin/python3 +"""TP-TP 2 patch soil simulation. + +This program sets up an LDD simulation +""" + import dolfin as df -import mshr -import numpy as np import sympy as sym -import typing as tp -import domainPatch as dp -import LDDsimulation as ldd import functools as ft +import LDDsimulation as ldd import helpers as hlp import datetime import os import pandas as pd +# init sympy session +sym.init_printing() + +# PREREQUISITS ############################################################### +# check if output directory "./output" exists. This will be used in +# the generation of the output string. +if not os.path.exists('./output'): + os.mkdir('./output') + print("Directory ", './output', " created ") +else: + print("Directory ", './output', " already exists. Will use as output \ + directory") + date = datetime.datetime.now() datestr = date.strftime("%Y-%m-%d") -#import ufl as ufl -# init sympy session -sym.init_printing() +# Name of the usecase that will be printed during simulation. +use_case = "TP-TP-2P-realistic" +# The name of this very file. Needed for creating log output. +thisfile = "TP-TP-2-patch-test.py" -use_case = "TP-TP-2-patch" -# solver_tol = 5E-7 -max_iter_num = 1000 +# GENERAL SOLVER CONFIG ###################################################### +# maximal iteration per timestep +max_iter_num = 300 FEM_Lagrange_degree = 1 + +# GRID AND MESH STUDY SPECIFICATIONS ######################################### mesh_study = False resolutions = { - # 1: 1e-7, # h=2 - # 2: 2e-5, # h=1.1180 - # 4: 1e-6, # h=0.5590 - # 8: 1e-6, # h=0.2814 - # 16: 5e-7, # h=0.1412 - 32: 1e-6, - # 64: 5e-7, - # 128: 5e-7 + # 1: 1e-6, + # 2: 1e-6, + # 4: 1e-6, + # 8: 1e-6, + # 16: 5e-6, + 32: 5e-6, + # 64: 2e-6, + # 128: 1e-6, + # 256: 1e-6, } - -############ GRID ####################### -# mesh_resolution = 20 +# starttimes gives a list of starttimes to run the simulation from. +# The list is looped over and a simulation is run with t_0 as initial time +# for each element t_0 in starttimes. +starttimes = [0.0] timestep_size = 0.001 -number_of_timesteps = 1500 -plot_timestep_every = 5 -# decide how many timesteps you want analysed. Analysed means, that we write out -# subsequent errors of the L-iteration within the timestep. -number_of_timesteps_to_analyse = 5 -starttime = 0.0 +number_of_timesteps = 10 + +# LDD scheme parameters ###################################################### +Lw1 = 0.25 #/timestep_size +Lnw1= 0.25 -Lw = 0.05 #/timestep_size -Lnw=Lw +Lw2 = 0.25 #/timestep_size +Lnw2= 0.25 lambda_w = 4 lambda_nw = 4 -include_gravity = True -debugflag = False -analyse_condition = True - -if mesh_study: - output_string = "./output/{}-{}_timesteps{}_P{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree) -else: - for tol in resolutions.values(): - solver_tol = tol - output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format(datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol) - +include_gravity = False +debugflag = True +analyse_condition = False + +# I/O CONFIG ################################################################# +# when number_of_timesteps is high, it might take a long time to write all +# timesteps to disk. Therefore, you can choose to only write data of every +# plot_timestep_every timestep to disk. +plot_timestep_every = 4 +# Decide how many timesteps you want analysed. Analysed means, that +# subsequent errors of the L-iteration within the timestep are written out. +number_of_timesteps_to_analyse = 5 -# toggle what should be written to files +# fine grained control over data to be written to disk in the mesh study case +# as well as for a regular simuation for a fixed grid. if mesh_study: write_to_file = { + # output the relative errornorm (integration in space) w.r.t. an exact + # solution for each timestep into a csv file. 'space_errornorms': True, + # save the mesh and marker functions to disk 'meshes_and_markers': True, + # save xdmf/h5 data for each LDD iteration for timesteps determined by + # number_of_timesteps_to_analyse. I/O intensive! 'L_iterations_per_timestep': False, - 'solutions': False, - 'absolute_differences': False, + # save solution to xdmf/h5. + 'solutions': True, + # save absolute differences w.r.t an exact solution to xdmf/h5 file + # to monitor where on the domains errors happen + 'absolute_differences': True, + # analyise condition numbers for timesteps determined by + # number_of_timesteps_to_analyse and save them over time to csv. 'condition_numbers': analyse_condition, - 'subsequent_errors': False + # output subsequent iteration errors measured in L^2 to csv for + # timesteps determined by number_of_timesteps_to_analyse. + # Usefull to monitor convergence of the acutal LDD solver. + 'subsequent_errors': True } else: write_to_file = { @@ -86,12 +119,25 @@ else: 'subsequent_errors': True } -##### Domain and Interface #### +# OUTPUT FILE STRING ######################################################### +if mesh_study: + output_string = "./output/{}-{}_timesteps{}_P{}".format( + datestr, use_case, number_of_timesteps, FEM_Lagrange_degree + ) +else: + for tol in resolutions.values(): + solver_tol = tol + output_string = "./output/{}-{}_timesteps{}_P{}_solver_tol{}".format( + datestr, use_case, number_of_timesteps, FEM_Lagrange_degree, solver_tol + ) + + +# DOMAIN AND INTERFACE ####################################################### # global simulation domain domain -sub_domain0_vertices = [df.Point(-1.0,-1.0), # - df.Point(1.0,-1.0),# - df.Point(1.0,1.0),# - df.Point(-1.0,1.0)] +sub_domain0_vertices = [df.Point(-1.0, -1.0), + df.Point(1.0, -1.0), + df.Point(1.0, 1.0), + df.Point(-1.0, 1.0)] # interface between subdomain1 and subdomain2 interface12_vertices = [df.Point(-1.0, 0.0), df.Point(1.0, 0.0) ] @@ -99,14 +145,14 @@ interface12_vertices = [df.Point(-1.0, 0.0), sub_domain1_vertices = [interface12_vertices[0], interface12_vertices[1], sub_domain0_vertices[2], - sub_domain0_vertices[3] ] + sub_domain0_vertices[3]] # vertex coordinates of the outer boundaries. If it can not be specified as a # polygon, use an entry per boundary polygon. This information is used for defining # the Dirichlet boundary conditions. If a domain is completely internal, the # dictionary entry should be 0: None subdomain1_outer_boundary_verts = { - 0: [interface12_vertices[1], + 0: [interface12_vertices[1], # sub_domain0_vertices[2], sub_domain0_vertices[3], # interface12_vertices[0]] @@ -123,14 +169,6 @@ subdomain2_outer_boundary_verts = { sub_domain0_vertices[1], interface12_vertices[1]] } -# subdomain2_outer_boundary_verts = { -# 0: [interface12_vertices[0], df.Point(0.0,0.0)],# -# 1: [df.Point(0.0,0.0), df.Point(1.0,0.0)], # -# 2: [df.Point(1.0,0.0), interface12_vertices[1]] -# } -# subdomain2_outer_boundary_verts = { -# 0: None -# } # list of subdomains given by the boundary polygon vertices. # Subdomains are given as a list of dolfin points forming @@ -156,6 +194,9 @@ outer_boundary_def_points = { # adjacent_subdomains[i] contains the indices of the subdomains sharing the # interface i (i.e. given by interface_def_points[i]). adjacent_subdomains = [[1,2]] + + +# MODEL CONFIGURATION ######################################################### isRichards = { 1: False, # 2: False @@ -164,53 +205,57 @@ isRichards = { viscosity = {# # subdom_num : viscosity - 1 : {'wetting' :1, - 'nonwetting': 1}, # - 2 : {'wetting' :1, - 'nonwetting': 1} + 1: {'wetting' :1, + 'nonwetting': 1/50}, # + 2: {'wetting' :1, + 'nonwetting': 1/50} } porosity = {# # subdom_num : porosity - 1 : 1,# - 2 : 1 + 1: 0.22,# + 2: 0.22 } # Dict of the form: { subdom_num : density } densities = { - 1: {'wetting': 1, #997, - 'nonwetting': 1}, #1225}, - 2: {'wetting': 1, #997, - 'nonwetting': 1}, #1225}, + 1: {'wetting': 997, + 'nonwetting': 1.225}, + 2: {'wetting': 997, + 'nonwetting': 1.225} } -gravity_acceleration = 1#9.81 +gravity_acceleration = 9.81 L = {# # subdom_num : subdomain L for L-scheme - 1 : {'wetting' :Lw, - 'nonwetting': Lnw},# - 2 : {'wetting' :Lw, - 'nonwetting': Lnw} + 1 : {'wetting' :Lw1, + 'nonwetting': Lnw1},# + 2 : {'wetting' :Lw2, + 'nonwetting': Lnw2} } lambda_param = {# # subdom_num : lambda parameter for the L-scheme - 1 : {'wetting' :lambda_w, + 0 : {'wetting' :lambda_w, 'nonwetting': lambda_nw},# - 2 : {'wetting' :lambda_w, - 'nonwetting': lambda_nw} } +intrinsic_permeability = { + 1: 0.1, + 2: 0.1, +} + + ## relative permeabilty functions on subdomain 1 def rel_perm1w(s): # relative permeabilty wetting on subdomain1 - return s**2 + return intrinsic_permeability[1]*s**2 def rel_perm1nw(s): # relative permeabilty nonwetting on subdomain1 - return (1-s)**2 + return intrinsic_permeability[1]*(1-s)**2 _rel_perm1w = ft.partial(rel_perm1w) _rel_perm1nw = ft.partial(rel_perm1nw) @@ -222,10 +267,10 @@ subdomain1_rel_perm = { ## relative permeabilty functions on subdomain 2 def rel_perm2w(s): # relative permeabilty wetting on subdomain2 - return s**3 + return intrinsic_permeability[2]*s**3 def rel_perm2nw(s): - # relative permeabilty nonwetting on subdosym.cos(0.8*t - (0.8*x + 1/7*y))main2 - return (1-s)**3 + # relative permeabilty nonwetting on subdomain2 + return intrinsic_permeability[2]*(1-s)**3 _rel_perm2w = ft.partial(rel_perm2w) _rel_perm2nw = ft.partial(rel_perm2nw) @@ -246,21 +291,21 @@ relative_permeability = {# # relative permeabilty functions on subdomain 1 def rel_perm1w_prime(s): # relative permeabilty on subdomain1 - return 2*s + return intrinsic_permeability[1]*2*s def rel_perm1nw_prime(s): # relative permeabilty on subdomain1 - return -2*(1-s) + return -1*intrinsic_permeability[1]*2*(1-s) -# # definition of the derivatives of the relative permeabilities -# # relative permeabilty functions on subdomain 1 +# definition of the derivatives of the relative permeabilities +# relative permeabilty functions on subdomain 1 def rel_perm2w_prime(s): - # relative permeabilty on subdomain1 - return 3*s**2 + # relative permeabilty on subdomain2 + return intrinsic_permeability[2]*3*s**2 def rel_perm2nw_prime(s): - # relative permeabilty on subdomain1 - return -3*(1-s)**2 + # relative permeabilty on subdomain2 + return -3*intrinsic_permeability[2]*(1-s)**2 _rel_perm1w_prime = ft.partial(rel_perm1w_prime) _rel_perm1nw_prime = ft.partial(rel_perm1nw_prime) @@ -285,6 +330,54 @@ ka_prime = { } +# def saturation1(pc, subdomain_index): +# # inverse capillary pressure-saturation-relationship +# return df.conditional(pc > 0, 1/((1 + pc)**(1/(subdomain_index + 1))), 1) +# +# def saturation2(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1) +# +# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where +# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw +# def saturation1_sym(pc, subdomain_index): +# # inverse capillary pressure-saturation-relationship +# return 1/((1 + pc)**(1/(subdomain_index + 1))) +# +# +# def saturation2_sym(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# #df.conditional(pc > 0, +# return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)) +# +# +# # derivative of S-pc relationship with respect to pc. This is needed for the +# # construction of a analytic solution. +# def saturation1_sym_prime(pc, subdomain_index): +# # inverse capillary pressure-saturation-relationship +# return -(1/(subdomain_index + 1))*(1 + pc)**((-subdomain_index - 2)/(subdomain_index + 1)) +# +# +# def saturation2_sym_prime(pc, n_index, alpha): +# # inverse capillary pressure-saturation-relationship +# return -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1)) / ( (1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index) ) +# +# # note that the conditional definition of S-pc in the nonsymbolic part will be +# # incorporated in the construction of the exact solution below. +# S_pc_sym = { +# 1: ft.partial(saturation1_sym, subdomain_index = 1), +# 2: ft.partial(saturation2_sym, n_index=3, alpha=0.001), +# } +# +# S_pc_sym_prime = { +# 1: ft.partial(saturation1_sym_prime, subdomain_index = 1), +# 2: ft.partial(saturation2_sym_prime, n_index=3, alpha=0.001), +# } +# +# sat_pressure_relationship = { +# 1: ft.partial(saturation1, subdomain_index = 1),#, +# 2: ft.partial(saturation2, n_index=3, alpha=0.001), +# } def saturation(pc, index): # inverse capillary pressure-saturation-relationship @@ -326,62 +419,19 @@ sat_pressure_relationship = { # 4: ft.partial(saturation, index=1) } -# -# def saturation(pc, n_index, alpha): -# # inverse capillary pressure-saturation-relationship -# return df.conditional(pc > 0, 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)), 1) -# -# # S-pc-relation ship. We use the van Genuchten approach, i.e. pc = 1/alpha*(S^{-1/m} -1)^1/n, where -# # we set alpha = 0, assume m = 1-1/n (see Helmig) and assume that residual saturation is Sw -# def saturation_sym(pc, n_index, alpha): -# # inverse capillary pressure-saturation-relationship -# #df.conditional(pc > 0, -# return 1/((1 + (alpha*pc)**n_index)**((n_index - 1)/n_index)) -# -# -# # derivative of S-pc relationship with respect to pc. This is needed for the -# # construction of a analytic solution. -# def saturation_sym_prime(pc, n_index, alpha): -# # inverse capillary pressure-saturation-relationship -# return -(alpha*(n_index - 1)*(alpha*pc)**(n_index - 1)) / ( (1 + (alpha*pc)**n_index)**((2*n_index - 1)/n_index) ) -# -# # note that the conditional definition of S-pc in the nonsymbolic part will be -# # incorporated in the construction of the exact solution below. -# S_pc_sym = { -# 1: ft.partial(saturation_sym, n_index=3, alpha=0.001), -# 2: ft.partial(saturation_sym, n_index=6, alpha=0.001), -# # 3: ft.partial(saturation_sym, n_index=3, alpha=0.001), -# # 4: ft.partial(saturation_sym, n_index=3, alpha=0.001), -# # 5: ft.partial(saturation_sym, n_index=3, alpha=0.001), -# # 6: ft.partial(saturation_sym, n_index=3, alpha=0.001) -# } -# -# S_pc_sym_prime = { -# 1: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), -# 2: ft.partial(saturation_sym_prime, n_index=6, alpha=0.001), -# # 3: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), -# # 4: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), -# # 5: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001), -# # 6: ft.partial(saturation_sym_prime, n_index=3, alpha=0.001) -# } -# -# sat_pressure_relationship = { -# 1: ft.partial(saturation, n_index=3, alpha=0.001), -# 2: ft.partial(saturation, n_index=6, alpha=0.001), -# # 3: ft.partial(saturation, n_index=3, alpha=0.001), -# # 4: ft.partial(saturation, n_index=3, alpha=0.001), -# # 5: ft.partial(saturation, n_index=3, alpha=0.001), -# # 6: ft.partial(saturation, n_index=3, alpha=0.001) -# } -# - -############################################# +############################################################################### # Manufacture source expressions with sympy # -############################################# +############################################################################### x, y = sym.symbols('x[0], x[1]') # needed by UFL t = sym.symbols('t', positive=True) +# p_e_sym = { +# 1: {'wetting': (-7.0 - (1.0 + t*t)*(1.0 + x*x + y*y))}, #*(1-x)**2*(1+x)**2*(1-y)**2}, +# 2: {'wetting': (-7.0 - (1.0 + t*t)*(1.0 + x*x)), #*(1-x)**2*(1+x)**2*(1+y)**2, +# 'nonwetting': (-2-t*(1.1+y + x**2))*y**2}, #*(1-x)**2*(1+x)**2*(1+y)**2}, +# } #-y*y*(sym.sin(-2*t+2*x)*sym.sin(1/2*y-1.2*t)) - t*t*x*(0.5-y)*y*(1-x) + p_e_sym = { 1: {'wetting': (-6 - (1+t*t)*(1 + x*x + y*y)), #*cutoff, 'nonwetting': (-1 -t*(1.1+ y*y))}, #*(sym.sin((1+y)/2*sym.pi)*sym.sin((1+x)/2*sym.pi))**2}, @@ -423,6 +473,7 @@ source_expression = exact_solution_example['source'] exact_solution = exact_solution_example['exact_solution'] initial_condition = exact_solution_example['initial_condition'] +# BOUNDARY CONDITIONS ######################################################### # Dictionary of dirichlet boundary conditions. dirichletBC = dict() # similarly to the outer boundary dictionary, if a patch has no outer boundary @@ -439,7 +490,7 @@ dirichletBC = dict() # subdomain index: {outer boudary part index: {phase: expression}} for subdomain in isRichards.keys(): - # if subdomain has no outer boundary, outer_boundary_def_points[subdomain] is None + # subdomain can have no outer boundary if outer_boundary_def_points[subdomain] is None: dirichletBC.update({subdomain: None}) else: @@ -452,77 +503,96 @@ for subdomain in isRichards.keys(): ) -# def saturation(pressure, subdomain_index): -# # inverse capillary pressure-saturation-relationship -# return df.conditional(pressure < 0, 1/((1 - pressure)**(1/(subdomain_index + 1))), 1) -# -# sa - -for mesh_resolution, solver_tol in resolutions.items(): - # initialise LDD simulation class - simulation = ldd.LDDsimulation( - tol=1E-14, - LDDsolver_tol=solver_tol, - debug=debugflag, - max_iter_num=max_iter_num, - FEM_Lagrange_degree=FEM_Lagrange_degree, - mesh_study=mesh_study - ) - - simulation.set_parameters(use_case=use_case, - output_dir=output_string, - subdomain_def_points=subdomain_def_points, - isRichards=isRichards, - interface_def_points=interface_def_points, - outer_boundary_def_points=outer_boundary_def_points, - adjacent_subdomains=adjacent_subdomains, - mesh_resolution=mesh_resolution, - viscosity=viscosity, - porosity=porosity, - L=L, - lambda_param=lambda_param, - relative_permeability=relative_permeability, - saturation=sat_pressure_relationship, - starttime=starttime, - number_of_timesteps=number_of_timesteps, - number_of_timesteps_to_analyse=number_of_timesteps_to_analyse, - plot_timestep_every=plot_timestep_every, - timestep_size=timestep_size, - sources=source_expression, - initial_conditions=initial_condition, - dirichletBC_expression_strings=dirichletBC, - exact_solution=exact_solution, - densities=densities, - include_gravity=include_gravity, - write2file=write_to_file, - ) - - simulation.initialise() - output_dir = simulation.output_dir - # simulation.write_exact_solution_to_xdmf() - output = simulation.run(analyse_condition=analyse_condition) - for subdomain_index, subdomain_output in output.items(): - mesh_h = subdomain_output['mesh_size'] - for phase, different_errornorms in subdomain_output['errornorm'].items(): - filename = output_dir + "subdomain{}-space-time-errornorm-{}-phase.csv".format(subdomain_index, phase) - # for errortype, errornorm in different_errornorms.items(): +# LOG FILE OUTPUT ############################################################# +# read this file and print it to std out. This way the simulation can produce a +# log file with ./TP-R-layered_soil.py | tee simulation.log +f = open(thisfile, 'r') +print(f.read()) +f.close() + + +# RUN ######################################################################### +for starttime in starttimes: + for mesh_resolution, solver_tol in resolutions.items(): + # initialise LDD simulation class + simulation = ldd.LDDsimulation( + tol=1E-14, + LDDsolver_tol=solver_tol, + debug=debugflag, + max_iter_num=max_iter_num, + FEM_Lagrange_degree=FEM_Lagrange_degree, + mesh_study=mesh_study + ) + + simulation.set_parameters( + use_case=use_case, + output_dir=output_string, + subdomain_def_points=subdomain_def_points, + isRichards=isRichards, + interface_def_points=interface_def_points, + outer_boundary_def_points=outer_boundary_def_points, + adjacent_subdomains=adjacent_subdomains, + mesh_resolution=mesh_resolution, + viscosity=viscosity, + porosity=porosity, + L=L, + lambda_param=lambda_param, + relative_permeability=relative_permeability, + saturation=sat_pressure_relationship, + starttime=starttime, + number_of_timesteps=number_of_timesteps, + number_of_timesteps_to_analyse=number_of_timesteps_to_analyse, + plot_timestep_every=plot_timestep_every, + timestep_size=timestep_size, + sources=source_expression, + initial_conditions=initial_condition, + dirichletBC_expression_strings=dirichletBC, + exact_solution=exact_solution, + densities=densities, + include_gravity=include_gravity, + gravity_acceleration=gravity_acceleration, + write2file=write_to_file, + ) + + simulation.initialise() + output_dir = simulation.output_dir + # simulation.write_exact_solution_to_xdmf() + output = simulation.run(analyse_condition=analyse_condition) + for subdomain_index, subdomain_output in output.items(): + mesh_h = subdomain_output['mesh_size'] + for phase, error_dict in subdomain_output['errornorm'].items(): + filename = output_dir \ + + "subdomain{}".format(subdomain_index)\ + + "-space-time-errornorm-{}-phase.csv".format(phase) + # for errortype, errornorm in error_dict.items(): # eocfile = open("eoc_filename", "a") # eocfile.write( str(mesh_h) + " " + str(errornorm) + "\n" ) # eocfile.close() # if subdomain.isRichards:mesh_h - data_dict = { - 'mesh_parameter': mesh_resolution, - 'mesh_h': mesh_h, - } - for error_type, errornorms in different_errornorms.items(): - data_dict.update( - {error_type: errornorms} - ) - errors = pd.DataFrame(data_dict, index=[mesh_resolution]) - # check if file exists - if os.path.isfile(filename) == True: - with open(filename, 'a') as f: - errors.to_csv(f, header=False, sep='\t', encoding='utf-8', index=False) - else: - errors.to_csv(filename, sep='\t', encoding='utf-8', index=False) + data_dict = { + 'mesh_parameter': mesh_resolution, + 'mesh_h': mesh_h, + } + for norm_type, errornorm in error_dict.items(): + data_dict.update( + {norm_type: errornorm} + ) + errors = pd.DataFrame(data_dict, index=[mesh_resolution]) + # check if file exists + if os.path.isfile(filename) is True: + with open(filename, 'a') as f: + errors.to_csv( + f, + header=False, + sep='\t', + encoding='utf-8', + index=False + ) + else: + errors.to_csv( + filename, + sep='\t', + encoding='utf-8', + index=False + ) diff --git a/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/run-simulation b/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/run-simulation new file mode 100755 index 0000000..0eb4975 --- /dev/null +++ b/Two-phase-Two-phase/two-patch/TP-TP-2-patch-test-case/run-simulation @@ -0,0 +1,16 @@ +#!/bin/bash + +[ $# -eq 0 ] && { echo "Usage: $0 simulation_file [logfile_name]"; exit 1; } + +SIMULATION_FILE=$1 +SIMULATION=${SIMULATION_FILE%.py} +LOGFILE_DEFAULT="$SIMULATION.log" + +DATE=$(date -I) +LOGFILE=${2:-$DATE-$LOGFILE_DEFAULT} + +GREETING="Simulation $SIMULATION is run on $DATE by $USER" + +echo $GREETING +echo "running $SIMULATION_FILE | tee $LOGFILE" +./$SIMULATION_FILE | tee $LOGFILE -- GitLab